박사

Advanced Management for Plant Uptake of Pesticide Residues in Soil: Soil-Plant Uptake Modeling and Enhanced Remediation : 토양 잔류농약의 식물흡수에 대한 최신 토양관리 기술: 토양-식물 흡수모델 및 효율적 토양복원

황정인 2016년
논문상세정보
' Advanced Management for Plant Uptake of Pesticide Residues in Soil: Soil-Plant Uptake Modeling and Enhanced Remediation : 토양 잔류농약의 식물흡수에 대한 최신 토양관리 기술: 토양-식물 흡수모델 및 효율적 토양복원' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 특수기술:기구,설비,자원
  • Pesticide
  • Remediation
  • Soil management standard
  • fenton reaction
  • plant uptake model
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
166 0

0.0%

' Advanced Management for Plant Uptake of Pesticide Residues in Soil: Soil-Plant Uptake Modeling and Enhanced Remediation : 토양 잔류농약의 식물흡수에 대한 최신 토양관리 기술: 토양-식물 흡수모델 및 효율적 토양복원' 의 참고문헌

  • Đurović, R.; Gajić-Umiljendić, J.; Đordević, T. Effects of organic matter and clay content in soil on pesticide adsorption processes. Pestic. Phytomed. 2009, 24, 51-57.
  • lvarez, M.; Mortier, C. D.; Cirelli, A. F. Behavior of insecticide chlorpyrifos on soils and sediments with different organic matter content from provincial de Buenos Aires, Rep blica Argentina. Water Air Soil Pollut. 2013, 224, 1453.
  • Xu, X.; Yang, H.; Li, Q.; Yang, B.; Wang, X.; Lee, F. S. C. Residues of organochlorine pesticides in near shore waters of LaiZhou Bay and JiaoZhou Bay, Shandong Peninsula, China. Chemosphere 2007, 68, 126-139.
  • Xu, X. -M.; Yu, S.; Li, R.; Fan, J.; Chen, S. -H.; Shen, H. -T; Han, J. -L.; Huang, B. -F.; Ren, Y. -P. Distribution and migration study of pesticides between peel and pulp in grape by online gel permeation chromatography-gas chromatography/mass spectrometry. Food Chem. 2012, 135, 161-169.
  • Xin, Y.; Liu, H.; Han, L.; Zhou, Y. Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. J. Hazard. Mater. 2011, 192, 1812-1818.
  • Wu, J.; Laird, D. A. Interactions of chlorpyrifos with colloidal materials in aqueous systems. J. Environ. Qual. 2004, 33, 1765-1770.
  • Wu, C.; Spongberg, A. L.; Witter, J. D.; Fang, M.; Czajkowski, K. P. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ. Sci. Technol. 2010, 44, 6157-6161.
  • Weber, J.; Halsall, C. J.; Muir, D.; Texeira, C.; Small, J.; Solomon, K.; Hermanson, M.; Hung, H.; Bidleman, T. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Artic. Sci. Total Environ. 2010, 408, 2966-2984.
  • Weber, J.; Halsall, C. J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; Hermanson, M.; Hung, H.; Bidleman, T. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 2010, 408, 2966-2984.
  • Weber, J.; Halsall, C. J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; Hermanso, M.; Hung, H.; Bidleman, T. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 2010, 408, 2966- 2984.
  • Wantala, K.; Khemthong, P.; Wittayakun, J.; Grisdanurak, N. Visible light-irradiated degradation of alachlor on Fe-TiO2 with assistance of H2O2. Korean J. Chem. Eng. 2011, 28, 2178-2183.
  • Wang, C. J.; Liu, Z. Q. Foliar uptake of pesticides-present status and future challenge. Pestic. Biochem. Phys. 2007, 87, 1-8.
  • Walse, S. S.; Shimizu, K. D.; Ferry, J. L. Surface-catalyzed transformations of aqueous endosulfan. Environ. Sci. Technol. 2002, 36, 4846-4853.
  • Walse, S. S.; Scott, G. I.; Ferry, J. L. Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: formation of endosulfan γ-hydroxycarboxylate. J. Environ. Monit. 2003, 5, 373-379.
  • Walse, S. S.; Scott, G. I.; Ferry, J. L. Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: formation of endosulfan ɤ-hydroxycarboxylate. J. Environ. Monitor. 2003, 5, 373-937.
  • Walse, S. S.; Scott, G. I.; Ferry, J. L. Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: formation of endosulfan ɤ-hydroxycarboxylate. J. Environ. Monit. 2003, 5, 373-379.
  • Walse, S. S.; Scott, G. I.; Ferry, J. L. Stereoselective degradation of aqueous endosulfan in modular estuarine mesocosms: Formation of endosulfan ɣ-hydroxycarboxylate. J. Environ. Monitor. 2003, 5, 373-379.
  • Walpole, S. C.; Prieto-Merino, D.; Edwards, P.; Cleland, J.; Stevens, G.; Roberts, L. The weight of nations: an estimation of adult human biomass. BMC public health 2012, 12, 439.
  • WHO (World Health Organization). Chronic individual food consumption summary statistics. URL (https://extranet.who.int/sree/Reports?op=vs&path=/WHO_HQ_Reports/G7/PROD /EXT/CIFOCOSS_Food&userid=G7_ro&password=inetsoft123) (March 10, 2016).
  • USDA (United State Department of Agriculture). Kellogg soil survey laboratory methods manual, Soil survey investigation report No. 42, version 5.0; soil survey staff (Ed.); USDA: Lincoln, NB, 2014.
  • UNEP (United Nations Environment Programme). Report of the conference of the parties to the Stockholm Convention on persistent organic pollutants on the work of its fifth meeting; Available at http://chm.pops.int/Convention/COP/Meetings/COP5/tabid/1267/mctl/ViewDetails/ EventModID/870/EventID/%20109/xmid/4351/Default.aspx; Assessed on April 16, 2016.
  • U.S. EPA (Environmental Protection Agency). Technical support document for land application of sewage sludge, Volume II. Document: Federal Register EPA 822/R- 93-001b; Office of Science and Technology, U.S. Environmental Protection Agency: Washigton, D.C., 1992; available at http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20003LCQ.txt.
  • U.S. EPA (Environmental Protection Agency). Endosulfan sulfate 1031-07-8 draft. In Update of human health ambient water quality criteria; U.S. EPA publications: Washington, DC, 2014.
  • U.S. EPA (Environmental Protection Agency). CSFII analysis of food intake distributions. Document: EPA/600/R-03-029; Office of Research and Development, U.S. Environmental Protection Agency: Washigton, D.C., 2003; available at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=56610.
  • U.S. DHHS (Development of Health and Human Services). Anthropometric reference data for children and adults: United States, 2007-2010. In vital and health statistics; U.S. DHHS publication: Washigton, D.C., 2012; pp. 38-39; available at http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf.
  • Trapp, S.; Rasmussen, D.; Sams e-Petersen, L. Fruit tree model for uptake of organic compounds from soil. SAR QSAR Environ. Res. 2003, 14, 17-26.
  • Trapp, S.; Eggen, T. Simulation of the plant uptake of organophosphates and other emerging pollutants for greenhouse experiments and field conditions. Environ. Sci. Pollut. Res. 2013, 20, 4018-4029.
  • Trapp, S. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest. Manag. Sci. 2000, 56, 767-778.
  • Trapp, S. Fruit Tree model for uptake of organic compounds from soil and air. SAR QSAR Environ. Res. 2007, 18, 367-387.
  • Tao, Y.; Pan, L.; Zhan, H.; Tian, S. Assessment of the toxicity of organochlorine pesticide endosulfan in clams Ruditapes philippinarum. Ecotoxicol. Environ. Saf. 2013, 93, 22-30.
  • Takaki, K.; Wade, A. J.; Collins, C. D. Assessment of plant uptake models used in exposure assessment tools for soils contaminated with organic pollutants. Environ. Sci. Technol. 2014, 48, 12073-12082.
  • Spark, K. M.; Swift, R. S. Effect of soil composition and dissolved organic matter on pesticide sorption. Sci. Total Environ. 2002, 298, 147-161.
  • Singh, V.; Singh, N. Uptake and accumulation of endosulfan isomers and its metabolite endosulfan sulfate in naturally growing plants of contaminated area. Ecotox. Environ. Safe. 2014, 104, 189-193.
  • Singh, S. P.; Bose, P. Degradation kinetics of endosulfan isomers by micron- and nanosized zero valent iron particles (MZVI and NZVI). J. Chem. Technol. Biotechnol. 2015; DOI 10.1002/jctb.4818.
  • Singh, N. C.; Dasgupta, T. P.; Roberts, E. V.; Mansingh, A. Dynamics of pesticides in tropical conditions. 1. Kinetic studies of volatilization, hydrolysis, and photolysis of dieldrin and α- and β-endosulfan. J. Agric. Food Chem. 1991, 39, 575-579.
  • Singh, D. P.; Khattar, J. I. S.; Nadda, J.; Singh, Y.; Garg, A.; Kaur, N.; Gulati, A. Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ. Sci. Pollu. Res. 2011, 18, 1351-1359.
  • Shone, M. G. T.; Wood, A. V. A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley I. Absorption in relation to physico-chemical properties. J. Exp. Bot. 1974a, 25, 390-400.
  • Shone, M. G. T.; Bartlett, B. O.; Wood, A. V. A comparison of the uptake and translocation of some organic herbicides and a systemic fungicide by barley II. Relationship between uptake by roots and translocation to shoots. J. Exp. Bot. 1974b, 25, 401-409.
  • Shivaramaiah, H. M.; Sanchez-Bayo, F.; Al-Rifai, J.; Kennedy, I. R. The fate of endosulfan in water. J. Environ. Sci. Health B 2005, 40, 711-720.
  • Shivaramaiah, H. M.; Kennedy, I. R. Biodegradaion of endosulfan by a soil bacterium. J. Environ. Sci. Heal. B. 2006, 41, 895-905.
  • Shivaramaiah, H. M.; Kenndy, I. R. Biodegradation of endosulfan by a soil bacterium. J. Environ. Sci. Heal. B 2006, 41, 895-905.
  • Shin, H. S.; Kim, T. K.; Kim, J. E. Dechlorination of organochlorine insecticide, endosulfan by zerovalent iron. Kor. J. Environ. Agric. 2009, 28, 202-208.
  • Shimizu, A.; Tokumura, M.; Nakajima, K.; Kawase, Y. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipiration. J. Hazard. Mater. 2012, 201‒202, 60- 67.
  • Shi, J.; Ai, Z.; Zhang, L. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles. Water Res. 2014, 59, 145-153.
  • Sethunathan, N.; Megharaj, M.; Chen, Z. L.; Williams, B. D.; Lewis, G.; Naidu, R. Algal degradation of a known endocrine disrupting insecticide, α-endosulfna, and its metabolite, endosulfan sulfate, in liquid medium and soil. J. Agric. Foor Chem. 2004, 52, 3030-3035.
  • Scow, K. M.; Fan, S.; Johnson, C.; Ma, G. M. Biodegradation of sorbed chemicals in soil. Environ. Health Persp. 1995, 103, 93-95.
  • Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072-1077.
  • Schmidt, W. F.; Hapeman, C. J.; Fettinger, J. C.; Rice, C. P.; Biboulian, S. Structure and asymmetry in the isomeric conversion of alpha to beta-endosulfan. J. Agric. Food Chem. 1997, 45, 1023-1025.
  • Schmidt, W. F.; Biboulian, S.; Rice, C. P.; Fettinger, J. C.; McConnell L. L.; Hapeman, C. J. Thermodynamic spectroscopic, and computational evidence for the irreversible conversion of alpha to beta-endosulfan. J. Agric. Food Chem. 2001, 49, 5372-5376.
  • Saha, A. K.; Sinha, A. Current trend on application of zero-valent iron (ZVI) for dehalogenation of organo chlorine pesticides. Discovery 2015, 40, 167-174.
  • Sabljić, A.; G sten, H.; Verhaar, H.; Hermens, J. QSAR modelling of soil sorption. Improvements and systematic of log Koc vs. log Kow correlations. Chemosphere 1995, 31, 4489-4514.
  • Rosas, J. M.; Vicente, F.; Santos, A.; Romero, A. Soil remediation using soil washing followed by Fenton system. Chem. Eng. J. 2013, 220, 125-132.
  • Rice, C. P.; Chernyak, S. M.; McConnell, L. L.; Henry’s Law constants for pesticides measured as a function of temperature and salinity. J. Agric. Food Chem. 1997b, 45, 2291-2295.
  • Rice, C. P.; Chernyak, S. M.; McConnell, L. I. Henry’s law constants for pesticides measured as a function of temperature and salinity. J. Agric. Food Chem. 1997, 45, 2291-2298.
  • Rice, C. P.; Chernyak, S. M.; Hapeman, C. J.; Biboulian, S. Air-water distribution of the endosulfan isomers. J. Environ. Qual. 1997a, 26, 1101-1106.
  • Ricco, R.; Trevisan, M.; Capri, E. Effect of surface waxes on the persistence of chlorpyrifos-methyl in apples, strawberries and grapefruits. Food Addit. Contam. 2006, 23, 683-692.
  • Rein, A.; Legind, C. N.; Trapp, S. New concepts for dynamic plant uptake models. SAR QSAR Environ. Res. 2011, 22, 191-215.
  • Rastogi, A.; Al-Abed, S. R.; Dionysiou, D. D. Sulfate radical-based ferrousperoxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B-Environ. 2009, 85, 171-179.
  • Ram rez-Snadoval, M.; Melchor-Partida, G. N.; Mu iz-Hern ndez, S.; Gir n-P rez, M. I.; Rojas-Garc a, A. E.; Medina-D az, I. M.; Robledo-Marenco, M. L.; Vel zquez- Fern ndez, J. B. Phytoremediatory effect and growth of two species of Ocmum in endosulfan polluted soil. J. Hazard. Mater. 2011, 192, 388-392.
  • RDA (Rural Development Administration). Physicochemical properties of soil. In Analytical method for soil and plant; Ihm, J. N. (Ed.); Sam Mi: Suwon, Republic of Korea, 2000; pp 103-130.
  • Qin, Y.; Song, F.; Ai, Z.; Zhang, P.; Zhang, L. Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 Fenton system. Environ. Sci. Technol. 2015, 49, 7948- 7956.
  • Qiang, Z.; Liu, C.; Dong, B.; Zhang, Y. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere 2010, 78, 517- 526.
  • Pipi, A. R. F.; De Andrade, A. R.; Brillas, E.; Sir s, I. Total removal of alachlor from water by electrochemical processes. Sep. Purif. Technol. 2014, 132, 674-683.
  • Paterson, S.; Mackay, D. A model of organic chemical uptake by plants from soil and the atmosphere. Environ. Sci. Technol. 1994, 28, 2259-2266.
  • Pardo, F.; Rosas, J. M.; Santos, A.; Romero, A. Remediation of a biodiesel blendcontaminated soil by using a modified Fenton process. Environ. Sci. Pollut. Res. 2014, 21, 12198-12207.
  • Otte, P. F.; Lijzen, J. P. A.; Otte, J. G.; Swartjes, F.A.; Versluijs, C.W. Evaluation and revision of the CSOIL parameter set. Document: RIVM Report 711701021;
  • Ortiz-Hern ndez, M. L.; S nchez-salinas, E. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev. Int. Contam. Ambient 2010, 26, 27-38.
  • Ortiz-Hern ndez, M. L.; S chez-salinas, E. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agrichultural soils in Mexico. Rev. Int. Contam. Ambient. 2010, 224, 27-38.
  • OECD (Organization for Economic Cooperation and Development). Test no. 106: Adsorption-desorption using a batch equilibrium method. In OECD guidelines for the testing of chemicals; OECD publications: Paris, France, 2000.
  • Noubactep, C. A critical review on the process of contaminant removal in Fe0-H2O system. Environ. Technol. 2008, 29, 909-920.
  • Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, B98, 33-50.
  • National Institute of Public Health and The Environment: Bilthoven, Netherlands, 2001; available at http://www.rivm.nl/dsresource?objectid=rivmp:19033&type=org&disposition=inlin e&ns_nc=1.
  • Namiki, S.; Otani, T.; Seike, N. Fate and plant uptake of persistent organic pollutants in soil. Soil Sci. Plant Nutr. 2013, 59, 669-679.
  • Mukherjee, R.; Sinha, A.; Lama, Y.; Kumar, V. Utilization of zero valent iron (ZVI) particles produced from steel industry waste for in-situ remediation of ground water contaminated with organochlorine pesticide heptachlor. Int. J. Environ. Res. 2015, 9, 19-16.
  • Mon, E. E.; Hirata, T.; Kawamoto, K.; Hiradate, S.; Komatsu, T.; Moldrup, P. Adsorption of 2,4-dichlorophenoxyacetic acid onto volcanic ash soils: Effects of pH and soil organic matter. Environ. Asia 2009, 1, 1-9.
  • Michels, A. J.; Frei, B. Myths, artifacts, and fatal flaws: Identifying limitations and opportunities in vitamin C research. Nutrients 2013, 5, 5161-5192.
  • Mckone, T. E.; Maddalena, R. L. Plant uptake of organic pollutants from soil: Bioconcentration estimates based on models and experiments. Environ. Toxicol. Chem. 2007, 26, 2494-2504.
  • Marin, A.; Oliva, J.; Garcia, C.; Navarro, S.; Barba, A. Dissipation rates of cyprodinil and fludioxonil in lettuce and table grape in the field and under cold storage conditions. J. Agric. Food Chem. 2003, 51, 4708-4711.
  • Macbean, C. The pesticide manual, 16th ed.; British Crop Production Council: Alton, Hampshire, UK, 2012; pp 414-415.
  • Macbean, C. The pesticide manual, 16th ed.; British Crop Production Council: Alton, Hampshire, UK, 2012; pp 199-201.
  • Ma, J.; Song, W.; Chen, C.; Ma, W.; Zhao, J.; Tang, Y. Fenton degradation of organic compounds promoted by dyes under visible irradiation. Environ. Sci. Technol. 2005, 39, 5810-5815.
  • MFDS (Ministry of Food and Drug Safety). Pesticide residue database. URL (http://www.foodnara.go.kr/residue/main.do) (January 4, 2015).
  • Luo, T.; Ai, Z.; Zhang, L. Fe@Fe2O3 core−shell nanowires as iron reagent. 4. Sono- Fenton degradation of pentachlorophenol and mechanism analysis. J. Phys. Chem. C 2008, 112, 8675-8681.
  • Lu, M. C.; Lin, C. J.; Liao, C. H.; Ting, W. P.; Huang, R. Y. Influence of pH on the dewatering of activated sludge by Fenton’s reagent. Water Sci. Technol. 2001, 44, 327-332.
  • Lu, L.; Ai, Z.; Li, J.; Zheng, Z.; Li, Q.; Zhang, L. Synthesis and characterization of Fe- Fe2O3 core-shell nanowires and nanonecklaces. Cryst. Growth Des. 2007, 7, 459- 464.
  • Liu, Y.; Sun, H.; Liu, F.; Wang, S. Dissipation and residue of myclobutanil in lychee. Bull. Environ. Contam. Toxicol. 2012, 88, 902-905.
  • Li, X. -Q.; Elliot, D. W.; Zhang, W. -X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Crit. Rev. Solid State 2006, 31, 111-122.
  • Li, S. -N.; Sun, Y.; Yang, T.; Huangpu, W. -G. Relationship between mobility factors (Rf) of two hydrophobic termiticides and selected field and artificial soil parameters. Sci. Total Environ. 2007, 388, 206-213.
  • Lewis, S.; Lynch, A.; Bachas, L.; Hampson, S.; Ormsbee, L.; Bhattacharyya, D. Chelatemodified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phases systems. Environ. Eng. Sci. 2009, 26, 849-859.
  • Leonard, A. W.; Hyne, R. V.; Lim, R. P.; Leigh, K. A.; Le, J.; Beckett, R. Fate and toxicity of endosulfan in Namoi River water and bottom sediment. J. Environ. Qual. 2001, 30, 750-759.
  • Legind, C. N.; Rein, A.; Serre, J.; Brochier, V.; Haudin, C.-S.; Cambier, P.; Houot, S.; Trapp, S. Simultaneous simulations of uptake in plants and leaching to groundwater of cadmium and lead for arable land amended with compost or farmyard manure. Plos One 2012, 7, e47002.
  • Lee, Y. M.; Bae, S. J.; Lee, W. J. Degradation of carbon tetrachloride in modified Fenton reaction. Korean J. Chem. Eng. 2012, 29, 769-774.
  • Lee, K. H.; Kim, T. H.; Kim, J. E. Oxidative degradation of the herbicide dicamba induced by zerovalent iron. Kor. J. Environ. Agric. 2008, 27, 86-91.
  • Lee, J. B.; Sohn, H. Y.; Shin, K. S.; Jo, M. S.; Kim, J. E.; Lee, S. W.; Shin, J. W.; Kum, E. J.; Kwon, G. S. Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J. Agric. Food Chem. 2006, 54, 8824-8828.
  • Kwan, W. P.; Voelker, B. M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol. 2003, 37, 1150-1158.
  • Kumar, M.; Philip, L. Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioremediat. J. 2006b, 10, 179-190.
  • Kumar, M.; Philip, L. Bioremediation of endosulfan contaminated soil and water ‒ Optimization of operating conditions in laboratory scale reactors. J. Hazard. Mater. 2006a, B136, 354-364.
  • Kumar, M.; Philip, L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere 2006, 62, 1064-1077.
  • Kopf, S. H.; Henny, C.; Newman, D. K. Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments. Environ. Sci. Technol. 2013, 47, 2602-2611.
  • Kleier, D. A. Phloem mobility of xenobiotics. Plant Physiol. 1988, 86, 803-810.
  • Kim, J. E.; Hong, J. W. The adsorption of N-methylcarbamate insecticides on soils. J. Kor. Agric. Chem. Soc. 1985, 28, 124-130.
  • Kim, H. Y.; Jeon, Y. H.; Hwang, J. I.; Kim, J. H.; Ahn, J. W.; Jeong, D. H.; Kim, J. E. Monitoring of pesticide residue and risk assessment for cereals and leafy vegetables of certificated and general agricultural products. Kor. J. Environ. Agric. 2011, 30, 440-445.
  • Kaur, I.; Mathur, R. P.; Tandon, S. N.; Dureja, P. Persistence of endosulfan (technical) in water and soil. Environ. Technol. 1998, 19, 115-119.
  • Katsumata, H.; Kaneco, S.; Suzuki, T.; Ohta, K.; Yobiko, Y. Photo-Fenton degradation of alachlor in the presence of citrate solution. J. Photoch. Photobio. A 2006, 180, 38- 45.
  • KHIDI (Korea Health Industry Development Institute). National food and nutrition statics: based on 2012 Korea national health and nutrition examination survey; KHIDI: Cheongju, Republic of Korea, 2012; pp. 1-1876.
  • Juraske, R.; Vivas, C. S. M.; Vel squez, A. E.; Santos, G. G.; Moreno, M. B. B.; Gomez, J. D.; Binder, C. R.; Hellweg, S.; Dallos, J. A. G. Pesticide uptake in potatoes: Model and field experiments. Environ. Sci. Technol. 2011, 45, 651-657.
  • Juraske, R.; Fantke, P.; Ram rez, A. C. R.; Gonz lez, A. Pesticide residue dynamics in passion fruits: Comparing field trial and modelling results. Chemosphere 2012, 89, 850-855.
  • Juraske, R.; Fantke, P.; Ram rez, A. C. R.; Gonz lez, A. Pesticide residue dynamics in passion fruits: Comparing field trial and modeling results. Chemosphere 2012, 89, 850-855.
  • Juraske, R.; Castells, F.; Vijay, A.; Mu oz, P.; Ant n, A. Uptake and persistence of pesticides in plants: Measurements and model estimates for imidacloprid after foliar and soil application. J. Hazard. Mater. 2009, 165, 683-689.
  • Juraske, R.; Ant n, A.; Castells, F. Estimating half-lives of pesticides in/on vegetation for use in multimedia fate and exposure models. Chemosphere 2008, 70, 1748-1755.
  • Jung, Y. S.; Lim, W. T.; Park, J. Y.; Kim, Y. H. Effect of pH on Fenton and Fenton-like oxidation. Environ. Technol. 2009, 30, 183-190.
  • Jeon, S. O.; Hwang, J. I.; Lee, S. H.; Kim, J. E. Uptake of boscalid and chlorfenapyr residues in soil into Korean cabbage. Kor. J. Pestic. Sci. 2014, 18, 314-320.
  • Jeffries, J.; Martin, I. Updated technical background to the CLEA model. Document: Science Report SC050021/SR3; Environment Agency: Bristol, U. K., 2008; available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/2910 14/scho0508bnqw-e-e.pdf.
  • IUPAC (International Union of Pure and Applied Chemistry). IUPAC agrochemical information. URL (http://sitem.herts.ac.uk/aeru/iupac/154.htm) (April 1, 2015).
  • Hwang, J. I.; Lee, S. E.; Kim, J. E. Interpretation and estimation for dynamic mobility of chlorpyrifos in soils containing different organic matters. Environ. Geochem. Health. 2015, 37, 1017-1027.
  • Hwang, J. I.; Kim, J. E. Residual patterns of acaricides, etoxazole and flufenoxuron in apples. Kor. J. Pestic. Sci. 2014, 18, 61-68.
  • Hwang, J. I.; Jeon, S. O.; Lee, S. H.; Lee, S. E.; Hur, J. H.; Kim, K. R.; Kim, J. E. Distribution patterns of organophosphorous insecticide chlorpyrifos absorbed from soil into cucumber. Kor. J. Pestic. Sci. 2014, 18, 148-155.
  • Hui, T. J.; Ariffin, M. M.; Tahir, N. M. Adsorption of formulated chlorpyrifos on selected agricultural soils of Terengganu. Malaysian Journal of Analytical Sciences 2010, 14, 76-81.
  • Hsieh, Y. –H. P.; Hsieh, Y. P. Kinetics of Fe(III) reduction by ascorbic acid in aqueous solutions. J. Agric. Chem. 2000, 48, 1569-1573.
  • Hou, X.; Huang, X.; Ai, Z.; Zhao, J.; Zhang, L. Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants. J. Hazard. Mater. 2016, 310, 170-178.
  • Harvey, A. E.; Smart, J. A.; Amis, E. S. Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Anal. Chem. 1955, 27, 26-29.
  • Hammami, H.; Mohassel, M. H. R.; Persa, M.; Bannayan-Aval, M.; Zand, E.; Hassanzadeh-Khayyat, M.; Nassirli, H. Photochemical behavior of sethoxidim in the presence of vegetable oils. J. Agric. Food Chem. 2014, 62, 6263-6268.
  • Guerin, T. F. The anaerobic degradation of endosulfan by indigenous microorganisms from low-oxygen soils and sediments. Environ. Pollut. 1999, 106, 13-21.
  • Giles, C. H.; Macewan, T. H.; Nakhwa, S. N.; Smith, D. Studies in adsorption part ΧΙ. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 111, 3973-3993.
  • Fjordb ge, A. S.; Baun, A.; Vastrup, T.; Kjeldsen, P. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater. Chemosphere 2013, 90, 627-633.
  • Felizeter, S.; McLachlan, M. S.; Voogt, P. D. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ. Sci. Technol. 2012, 46, 11735-11743.
  • Fantke, P.; Juraske, R. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol. 2013, 47, 3548-3562.
  • FAO (Food and Agriculture Organization) and WHO (World Health Organization). Chapter 6, Dietary exposure assessment of chemicals in food. In Principles and methods for the risk assessment of chemicals in food; Wissenchaftliche Verlagsgesellschaft mbH: Stuttgart, Germany, 2009; pp. 1-42.
  • Esteve-Turrillas, F.; Scott, W. C.; Pastor, A.; Dean, J. R. Uptake and bioavailability of persistent organic pollutants by plants grown contaminated soil. J. Environ. Monitor. 2005, 7, 1093-1098.
  • EFSA (European Food Safety Authority). The EFSA comprehensive European food consumption database. URL (http://www.efsa.europa.eu/en/foodconsumption/ comprehensive-database) (March 10, 2016).
  • EC (European Commission). EU pesticides database. URL (http://ec.europa.eu/food/plant/pesticides/eu-pesticidesdatabase/ public/?event=pesticide.residue.selection&language=EN) (April 13, 2016).
  • Deng, Y. Effect of pH on the reductive dissolution rates of iron(III) hydroxide by ascorbate. Langmuir 1997, 13, 1835-1839.
  • Coquet, Y. Variation of pesticide sorption isotherm in soli at the catchment scale. Pest Manag. Sci. 2002, 58, 69-78.
  • Cong, L.; Guo, J.; Liu, J.; Shi, H.; Wang, M. Rapid degradation of endosulfan by zerovalent zinc in water and soil. J. Environ. Manag. 2015, 150, 451-455.
  • Collins, C.; Fryer, M.; Grosso, A. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 2006, 40, 45-52.
  • Chen, Z. X.; Ni, H. G.; Jing, X.; Chang, W. J.; Sun, J. L.; Zeng, H. Plant uptake, translocation, and return of polycyclic aromatic hydrocarbons via fine root branch orders in a subtropical forest ecosystem. Chemosphere 2015, 131, 192-200.
  • Charles, R. Modelling pesticides residues. Thesis no. 3123, Ec le Polytechnique F d rale de Lausanne, Switzerland, 2004. <library.epfl.ch/theses/?nr=3123>.
  • Chaplain, V.; Mamy, L.; Vieubl -Gonod, L.; Mougin, C.; Benoit, P.; Barriuso, P.; N lieu, S. Fate of pesticides in soils: Toward an integrated approach of influential factors. In Pesticide in the modern world - Risks and benefits; Stoytcheva, M. (Ed.); In Tech: Rijeka, Croatia, 2011; pp 535-560.
  • Carter, L. J.; Harris, E.; Williams, M.; Ryan, J. J.; Kookana, R. S.; Boxall, A. B. A. Fate and uptake of pharmaceuticals in soil-plant system. J. Agric. Food Chem. 2014, 62, 816-825.
  • Carr, A.; Frei, B. Does vitamin C act as a pro-oxidant under physiological conditions?. FASEB. J. 1999, 13, 1007-1024.
  • Cao, M.; Wang, L.; Ai, Z.; Zhang, L. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment. J. Hazard. Mater. 2015, 292, 27-33.
  • Calvelo-Pereira, R.; Camps-Arbestain, M.; Rodr uez-Garrido, B.; Mac as, F.; Monterroso, C. Behaviour of α-, β-, γ-, and δ-hexachlorocyclohexane in the soil-plant sysyem of a contaminated site. Environ. Pollut. 2006, 144, 210-217.
  • Burbano, A. A.; Dionysiou, D. D.; Suidan, M. T. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent. Water Res. 2008, 42, 3225-3239.
  • Brillas, E.; Sir s, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570- 6631.
  • Briggs, G. G.; Bromilow, R. H.; Evans, A. A. Relationship between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 1982, 13, 495-504.
  • Bovin, A.; Cherrier, R.; Schiavon, M. A comparison of five pesticide adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 2005, 61, 668- 676.
  • Bolobajev, J.; Trapido, M.; Goi, A. Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid. Chem. Eng. J. 2015, 281, 566-574.
  • Bezbaruah, A. N.; Thompson, J. M.; Chisholm, B. J. Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J. Environ. Sci. Heal. B 2009, 44, 518-524.
  • Begal, M. V.; Gogate, P. R. Sonochemical degradation of alachlor in the presence of process intensifying additives. Sep. Purif. Technol. 2012, 90, 92-100.
  • Barriada-Pereira, M.; Gonz lez-Castro, M. J.; Muniategui-Lorenzo, S.; L pez-Mah a, P.; Prada-Rodr guez, D.; Fern ndez-Fern ndez, E. Organochlorine pesticides accumulation and degradation products in vegetation samples of a contaminated area in Galicia (NW Spain). Chemosphere 2005, 58, 1571-1578.
  • Bakouri, H. E.; Quassini, A.; Agudo, J. M.; Garcia, J. U. Endosuflan sulfate mobility in soil columns and pesticide pollution of groundwater in northwest Morocco. Water Environ. Res. 2007, 79, 2578-2584.
  • Awasthi, N.; Ahuja, R.; Kurmar, A. Factors influencing the degradation of soil-applied endosulfan isomers. Soil Biol. Biochem. 2000, 32, 1697-1705.
  • Atasoy, A. D.; Mermut, A. R.; Kumbur, H.; Ince, F.; Arslan, H.; Avci, E. D. Sorption of alpha and beta hydrophobic endosulfan in a vertisol from southeast region of Turkey. Chemosphere 2009, 74, 1450-1456.
  • Anderson, J. J.; Bookhart, S. W.; Clark, J. M.; Jernberg, K. M.; Kingston, C. K.; Snyder, N.; Wallick, K.; Watson, L. J. Uptake of cyantraniliprole into tomato fruit and foliage under hydroponic condition: Application to calibration of a plant/soil uptake model. J. Agric. Food Chem. 2013, 61, 9027-9035.
  • Ai, Z.; Mei, T.; Liu, J.; Li, J.; Jia, F.; Zhang, L.; Qiu, J. Fe@Fe2O3 core−shell nanowires as iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system. J. Phys. Chem. C 2007c, 111, 14799-14803.
  • Ai, Z.; Lu, L.; Li, J.; Zhang, L.; Qiu, J.; Wu, M. Fe@Fe2O3 core−shell nanowires as iron reagent. 2. An efficient and reusable sono-Fenton system working at neutral pH. J. Phys. Chem. C 2007b, 111, 7430-7436.
  • Ai, Z.; Lu, L.; Li, J.; Zhang, L.; Qiu, J.; Wu, M. Fe@Fe2O3 core−shell nanowires as iron reagent. 1. Efficient degradation of rhodamine B by a novel sono-Fenton process. J. Phys. Chem. C 2007a, 111, 4087-4093.
  • Ai, Z.; Gao, Z.; Zhang, L.; He, W.; Yin, J. J. Core-shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol. Environ. Sci. Technol. 2013, 47, 5344-5352.
  • Ahn, J. W.; Jeon, Y. H.; Hwang, J. I.; Kim, H. Y.; Kim, J. H.; Jeong, D. H.; Kim, J. E. Monitoring of pesticide residue and risk assessment for fruit vegetables and root vegetables of environment-friendly certificated and general agricultural products. Kor. J. Environ. Agric. 2012, 31, 164-169.
  • ATSDR (Agency for Toxic Substances and Disease Registry). Production, import/export, use, and disposal. In Toxicological profile for chlorpyrifos; Risher, J. F., Navarro, H. A. (Eds.); ATSDR publications: Atlanta, GA, 1997; p. 109.