박사

암줄기세포 표적치료를 통한 불치성 암의 치료적 접근법 = Targeting Cancer Stem Cells : Novel Therapeutic Approaches for Intractable Cancer

장규범 2016년
논문상세정보
' 암줄기세포 표적치료를 통한 불치성 암의 치료적 접근법 = Targeting Cancer Stem Cells : Novel Therapeutic Approaches for Intractable Cancer' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Cancer stem cell
  • Drug-resistance
  • Wnt/β-Catenin signaling
  • metastasis
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
285 0

0.0%

' 암줄기세포 표적치료를 통한 불치성 암의 치료적 접근법 = Targeting Cancer Stem Cells : Novel Therapeutic Approaches for Intractable Cancer' 의 참고문헌

  • van de Wetering, M., et al., Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res, 2001. 61(1): p. 278-84.
  • van Amerongen, R. and R. Nusse, Towards an integrated view of Wnt signaling in development. Development, 2009. 136(19): p. 3205-14.
  • gesen, T.H., et al., ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis. Gut, 2012. 61(11): p. 1560-1567.
  • de Sousa, E.M., et al., Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res, 2011. 17(4): p. 647-53.
  • de Beca, F.F., et al., Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol, 2013. 66(3): p. 187-91.
  • Zirn, B., et al., Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes Chromosomes Cancer, 2006. 45(6): p. 565-74.
  • Zhang, M. and J.M. Rosen, Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev, 2006. 16(1): p. 60-4.
  • Zhang, J., et al., Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis. Oncogene, 2010. 29(4): p. 539-49.
  • Zardawi, S.J., et al., Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol, 2009. 24(3): p. 385-98.
  • Yeh, C.T., et al., Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med, 2012. 186(11): p. 1180-8.
  • Ye, P., et al., beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Glia, 2010. 58(9): p. 1031-41.
  • Yang, S., J.J. Zhang, and X.Y. Huang, Mouse models for tumor metastasis. Methods Mol Biol, 2012. 928: p. 221-8.
  • Yamashita, Y., N. Nara, and N. Aoki, Antiproliferative and differentiative effect of granulocyte-macrophage colony-stimulating factor on a variant human small cell lung cancer cell line. Cancer Res, 1989. 49(19): p. 5334-8.
  • Yamaguchi, H. and J. Condeelis, Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 2007. 1773(5): p. 642-52.
  • Williams, M.E. and P.J. Quesenberry, Hematopoietic growth factors. Hematol Pathol, 1992. 6(3): p. 105-24.
  • White, B.D., A.J. Chien, and D.W. Dawson, Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology, 2012. 142(2): p. 219-32.
  • Wellner, U., et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 2009. 11(12): p. 1487-95.
  • Wang, L., Y.Y. Shao, and R.T. Ballock, Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of beta-catenin signaling. J Bone Miner Res, 2010. 25(5): p. 1138-46.
  • Visvader, J.E. and G.J. Lindeman, Cancer stem cells: current status and evolving complexities. Cell Stem Cell, 2012. 10(6): p. 717-28.
  • Vermeulen, L., et al., Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol, 2010. 12(5): p. 468-76.
  • Verlinden, I., et al., Microdissection and SAGE as a combined tool to reveal gene expression in ductal carcinoma in situ of the breast. Mol Carcinog, 2004. 41(4): p. 197-206.
  • Veeck, J., et al., Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene, 2006. 25(24): p. 3479-88.
  • Vanamala, J., et al., Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer, 2010. 10: p. 238.
  • Van Houdt, W.J., et al., Comparative proteomics of colon cancer stem cells and differentiated tumor cells identifies BIRC6 as a potential therapeutic target. Mol Cell Proteomics, 2011. 10(12): p. M111 011353.
  • Ugolini, F., et al., Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene, 1999. 18(10): p. 1903-10.
  • Todaro, M., et al., Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 2007. 1(4): p. 389-402.
  • Tanei, T., et al., Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res, 2009. 15(12): p. 4234-41.
  • Sussan, T.E., et al., Tumor suppressor in lung cancer 1 (TSLC1) alters tumorigenic growth properties and gene expression. Mol Cancer, 2005. 4: p. 28.
  • Surmacz, E., Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia, 2000. 5(1): p. 95-105.
  • Study quantifies risk of breast cancer recurrence. CA Cancer J Clin, 2008. 58(6): p. 322.
  • Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
  • Shtutman, M., et al., The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5522-7.
  • Shmelkov, S.V., et al., CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest, 2008. 118(6): p. 2111-20.
  • Sheridan, C., et al., CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res, 2006. 8(5): p. R59.
  • Ruff, M.R., W.L. Farrar, and C.B. Pert, Interferon gamma and granulocyte/macrophage colony-stimulating factor inhibit growth and induce antigens characteristic of myeloid differentiation in small-cell lung cancer cell lines. Proc Natl Acad Sci U S A, 1986. 83(17): p. 6613-7.
  • Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5.
  • Ricardo, S., et al., Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol, 2011. 64(11): p. 937-46.
  • Reya, T. and H. Clevers, Wnt signalling in stem cells and cancer. Nature, 2005. 434(7035): p. 843-50.
  • Rask, K., et al., Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer, 2003. 89(7): p. 1298-304.
  • Printz, C., Radiation treatment generates therapy-resistant cancer stem cells from less aggressive breast cancer cells. Cancer, 2012. 118(13): p. 3225.
  • Powell, S.M., et al., APC mutations occur early during colorectal tumorigenesis. Nature, 1992. 359(6392): p. 235-7.
  • Pollak, M.N., E.S. Schernhammer, and S.E. Hankinson, Insulin-like growth factors and neoplasia. Nat Rev Cancer, 2004. 4(7): p. 505-18.
  • Polakis, P., Wnt signaling in cancer. Cold Spring Harb Perspect Biol, 2012. 4(5).
  • Pei, X.H., et al., Granulocyte, granulocyte-macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells. Br J Cancer, 1999. 79(1): p. 40-6.
  • Parkin, D.M., et al., Global cancer statistics, 2002. CA Cancer J Clin, 2005. 55(2): p. 74-108.
  • Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 2003. 3(12): p. 895-902.
  • Pang, R., et al., A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell, 2010. 6(6): p. 603-15.
  • Pandit, T.S., et al., Lymphatic metastasis of breast cancer cells is associated with differential gene expression profiles that predict cancer stem cell-like properties and the ability to survive, establish and grow in a foreign environment. Int J Oncol, 2009. 35(2): p. 297-308.
  • Paik, S., Expression of IGF-I and IGF-II mRNA in breast tissue. Breast Cancer Res Treat, 1992. 22(1): p. 31-8.
  • Pacheco-Pinedo, E.C., et al., Wnt/beta-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J Clin Invest, 2011. 121(5): p. 1935-45.
  • Onetto, N., Extra hematopoietic effect of colony-stimulating factors. Blood, 1989. 74(4): p. 1446-7.
  • Ohashi, K., et al., Surgical excision combined with autologous whole tumor cell vaccination is an effective therapy for murine neuroblastoma. J Pediatr Surg, 2006. 41(8): p. 1361-8.
  • Obermueller, E., et al., Cooperative autocrine and paracrine functions of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor in the progression of skin carcinoma cells. Cancer Res, 2004. 64(21): p. 7801-12.
  • Nusse, R., Wnt signaling and stem cell control. Cell Res, 2008. 18(5): p. 523-7.
  • Nobes, C.D., et al., Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J Cell Sci, 1995. 108 ( Pt 1): p. 225-33.
  • Ninck, S., et al., Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int J Cancer, 2003. 106(1): p. 34-44.
  • Nam, J.S., et al., Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res, 2008. 68(10): p. 3915-23.
  • Nam, J.S., et al., Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res, 2006. 66(14): p. 7176-84.
  • Mueller, M.M., et al., Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol, 2001. 159(4): p. 1567-79.
  • Mueller, M.M., et al., Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am J Pathol, 1999. 155(5): p. 1557-67.
  • Mueller, M.M. and N.E. Fusenig, Constitutive expression of G-CSF and GM-CSF in human skin carcinoma cells with functional consequence for tumor progression. Int J Cancer, 1999. 83(6): p. 780-9.
  • Mroczko, B. and M. Szmitkowski, Hematopoietic cytokines as tumor markers. Clin Chem Lab Med, 2004. 42(12): p. 1347-54.
  • Monteiro, J., et al., Cancer stemness in Wnt-driven mammary tumorigenesis. Carcinogenesis, 2014. 35(1): p. 2-13.
  • Miyoshi, Y., et al., Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet, 1992. 1(4): p. 229-33.
  • Minn, A.J., et al., Genes that mediate breast cancer metastasis to lung. Nature, 2005. 436(7050): p. 518-24.
  • Metcalf, D., The colony-stimulating factors and cancer. Nat Rev Cancer, 2010. 10(6): p. 425-34.
  • Marshall, J.L., et al., Adjuvant Therapy for Stage II and III Colon Cancer: Consensus Report of the International Society of Gastrointestinal Oncology. Gastrointest Cancer Res, 2007. 1(4): p. 146-54.
  • Marisa, L., et al., Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med, 2013. 10(5): p. e1001453.
  • Mao, J., et al., Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis, 2014. 5: p. e1039.
  • Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15.
  • MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26.
  • Lopez-Knowles, E., et al., Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomarkers Prev, 2010. 19(1): p. 301-9.
  • Logan, C.Y. and R. Nusse, The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004. 20: p. 781-810.
  • Liu, H., et al., Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A, 2010. 107(42): p. 18115-20.
  • Li, X., et al., Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst, 2008. 100(9): p. 672-9.
  • Lee, Y.T., Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol, 1983. 23(3): p. 175-80.
  • Le, N.H., P. Franken, and R. Fodde, Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer, 2008. 98(12): p. 1886-93.
  • Korkaya, H., et al., Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol, 2009. 7(6): p. e1000121.
  • Kopetz, S., et al., Adjuvant chemotherapy for stage II colon cancer. Oncology (Williston Park), 2008. 22(3): p. 260-70; discussion 270, 273, 275.
  • Kobayashi, S., et al., LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. Stem Cells, 2012. 30(12): p. 2631-44.
  • Klopocki, E., et al., Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol, 2004. 25(3): p. 641-9.
  • Kim, S.Y., et al., Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal, 2013. 25(4): p. 961-9.
  • Kim, R.J., et al., High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2alpha. Cancer Lett, 2013. 333(1): p. 18-31.
  • Kang, Y., et al., A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003. 3(6): p. 537-49.
  • Kaler, P., et al., The NF-kappaB/AKT-dependent Induction of Wnt Signaling in Colon Cancer Cells by Macrophages and IL-1beta. Cancer Microenviron, 2009. 2(1): p. 69-80.
  • Kaler, P., et al., The NF-kappaB/AKT-dependent Induction of Wnt Signaling in Colon Cancer Cells by Macrophages and IL-1beta. Cancer Microenviron, 2009.
  • Jorissen, R.N., et al., Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clinical Cancer Research, 2009. 15(24): p. 7642-7651.
  • Jones, R.A., et al., Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene, 2007. 26(11): p. 1636-44.
  • Jamieson, C.H., Chronic myeloid leukemia stem cells. Hematology Am Soc Hematol Educ Program, 2008: p. 436-42.
  • Inaba, K., et al., Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992. 176(6): p. 1693-702.
  • Iglesias, D., et al., RIS1, a gene with trinucleotide repeats, is a target in the mutator pathway of colorectal carcinogenesis. Cancer Genet Cytogenet, 2006. 167(2): p. 138-44.
  • Huang, S.M., et al., Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 2009. 461(7264): p. 614-20.
  • Horst, D., et al., CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer, 2008. 99(8): p. 1285-9.
  • Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007. 1(3): p. 313-23.
  • He, B., et al., Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene, 2005. 24(18): p. 3054-8.
  • Hayes, M.J., et al., Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res, 2008. 14(13): p. 4038-44.
  • Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
  • Gutschalk, C.M., et al., Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor promote malignant growth of cells from head and neck squamous cell carcinomas in vivo. Cancer Res, 2006. 66(16): p. 8026-36.
  • Gupta, G.P., et al., ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19506-11.
  • Guo, W. and P.S. Frenette, Alternative CD44 splicing in intestinal stem cells and tumorigenesis. Oncogene, 2014. 33(5): p. 537-8.
  • Grimshaw, M.J., et al., Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res, 2008. 10(3): p. R52.
  • Grange, C., et al., Sca-1 identifies the tumor-initiating cells in mammary tumors of BALB-neuT transgenic mice. Neoplasia, 2008. 10(12): p. 1433-43.
  • Gramont, A., Adjuvant therapy of stage II and III colon cancer. Semin Oncol, 2005. 32(6 Suppl 8): p. 11-4.
  • Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 555-67.
  • Garza-Trevino, E.N., S.L. Said-Fernandez, and H.G. Martinez-Rodriguez, Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int, 2015. 15(1): p. 2.
  • Gangopadhyay, S., et al., Breast cancer stem cells: a novel therapeutic target. Clin Breast Cancer, 2013. 13(1): p. 7-15.
  • Gan, X.Q., et al., Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol, 2008. 180(6): p. 1087-100.
  • Galceran, J., S.C. Hsu, and R. Grosschedl, Rescue of a Wnt mutation by an activated form of LEF-1: regulation of maintenance but not initiation of Brachyury expression. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8668-73.
  • Furstenberger, G. and H.J. Senn, Insulin-like growth factors and cancer. Lancet Oncol, 2002. 3(5): p. 298-302.
  • Fukumoto, S., et al., Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem, 2001. 276(20): p. 17479-83.
  • Fillmore, C.M. and C. Kuperwasser, Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res, 2008. 10(2): p. R25.
  • Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893-917.
  • Emmink, B.L., et al., The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteomics, 2013. 91: p. 84-96.
  • Eaves, C.J. and R.K. Humphries, Acute myeloid leukemia and the Wnt pathway. N Engl J Med, 2010. 362(24): p. 2326-7.
  • Du, L., et al., CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res, 2008. 14(21): p. 6751-60.
  • Dong, H.J., et al., The Wnt/beta-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep, 2016. 6: p. 22966.
  • Dey, N., et al., Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer, 2013. 13: p. 537.
  • Dedhar, S., et al., Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Proc Natl Acad Sci U S A, 1988. 85(23): p. 9253-7.
  • De Dosso, S., C. Sessa, and P. Saletti, Adjuvant therapy for colon cancer: present and perspectives. Cancer Treat Rev, 2009. 35(2): p. 160-6.
  • Choi, E.S., et al., Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model. Cancer Lett, 2013. 328(1): p. 65-72.
  • Chen, Y., et al., Regulation of breast cancer-induced bone lesions by beta-catenin protein signaling. J Biol Chem, 2011. 286(49): p. 42575-84.
  • Chen, B., et al., Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol, 2009. 5(2): p. 100-7.
  • Charafe-Jauffret, E., et al., Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res, 2009. 69(4): p. 1302-13.
  • Charafe-Jauffret, E., et al., ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res, 2013. 73(24): p. 7290-300.
  • Cao, L., et al., Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol, 2011. 11: p. 71.
  • Cai, C. and X. Zhu, The Wnt/beta-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol Med Rep, 2012. 5(5): p. 1191-6.
  • Braun, B., et al., Expression of G-CSF and GM-CSF in human meningiomas correlates with increased tumor proliferation and vascularization. J Neurooncol, 2004. 68(2): p. 131-40.
  • Biava, P.M., et al., A systemic approach to cancer treatment: tumor cell reprogramming focused on endocrine-related cancers. Curr Med Chem, 2014. 21(9): p. 1072-81.
  • Berdel, W.E., et al., Various human hematopoietic growth factors (interleukin-3, GM-CSF, G-CSF) stimulate clonal growth of nonhematopoietic tumor cells. Blood, 1989. 73(1): p. 80-3.
  • Barradas, M., et al., Identification of a candidate tumor-suppressor gene specifically activated during Ras-induced senescence. Exp Cell Res, 2002. 273(2): p. 127-37.
  • Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-60.
  • Baldwin, G.C., et al., Nonhematopoietic tumor cells express functional GM-CSF receptors. Blood, 1989. 73(4): p. 1033-7.
  • Aslakson, C.J. and F.R. Miller, Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res, 1992. 52(6): p. 1399-405.
  • Anderson, E.C., et al., The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers (Basel), 2011. 3(1): p. 319-39.
  • Anastas, J.N. and R.T. Moon, WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer, 2013. 13(1): p. 11-26.
  • Anagnostopoulos, G.K., et al., Disseminated colon cancer with severe peripheral blood eosinophilia and elevated serum levels of interleukine-2, interleukine-3, interleukine-5, and GM-CSF. J Surg Oncol, 2005. 89(4): p. 273-5.
  • Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.