박사

Mass spectrometry based omics studies for colorectal disease markers discovery

한나영 2016년
논문상세정보
' Mass spectrometry based omics studies for colorectal disease markers discovery' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Colorectal disease
  • Label free quantification
  • Lipidomics
  • Mass spectrometry
  • Metabolomics
  • Proteomics
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
203 0

0.0%

' Mass spectrometry based omics studies for colorectal disease markers discovery' 의 참고문헌

  • de Leoz, M. L. A. et al. High-mannose glycans are elevated during breast cancer progression. Mol. Cell. Proteomics MCP 10, M110.002717 (2011).
  • Zhu, J., Shi, Z., Wang, J. & Zhang, B. Empowering biologists with multi-omics data: colorectal cancer as a paradigm. Bioinformatics 31, 1436–1443 (2015).
  • Yamaguchi, N. et al. Concentrations of - and -defensins in plasma of patients with inflammatory bowel disease. Inflamm. Res. 58, 192–197 (2009).
  • Yamaguchi, H. & Uchida, M. A chaperone-like function of intramolecular high-mannose chains in the oxidative refolding of bovine pancreatic RNase B. J. Biochem. (Tokyo) 120, 474–477 (1996).
  • Westbrook, J. A., Noirel, J., Brown, J. E., Wright, P. C. & Evans, C. A. Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin. Appl. 9, 295–300 (2015).
  • Wenk, M. R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005).
  • Wei, C.-C., Guo, D.-F., Zhang, S.-L., Ingelfinger,J. R. & Chan, J. S. D. Heterogenous nuclear ribonucleoprotein F modulates angiotensinogen gene expression in rat kidney proximal tubular cells. J. Am. Soc. Nephrol. JASN 16, 616–628 (2005).
  • Wang, J. et al. Quantitative proteomic analysis of okadaic acid treated mouse small intestines reveals differentially expressed proteins involved in diarrhetic shellfish poisoning. J. Proteomics 75, 2038–2052 (2012).
  • Theis, V. S., Sripadam, R., Ramani, V. & Lal, S. Chronic radiation enteritis. Clin. Oncol. R. Coll. Radiol. G. B. 22, 70–83 (2010).
  • Taylor, E. B. & Rutter, J. Mitochondrial quality control by the ubiquitin-proteasome system. Biochem. Soc. Trans. 39, 1509–1513 (2011).
  • Sugi, K. et al. Antineutrophil cytoplasmic antibodies in Japanese patients with inflammatory bowel disease: prevalence and recognition of putative antigens. Am. J. Gastroenterol. 94, 1304–1312 (1999).
  • Steglich, G., Neupert, W. & Langer, T. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol. Cell. Biol. 19, 3435–3442 (1999).
  • Spiller, R. C. Overlap between irritable bowel syndrome and inflammatory bowel disease. Dig. Dis. Basel Switz. 27 Suppl 1, 48–54 (2009).
  • Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).
  • Shkoda, A. et al. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J. Proteome Res. 6, 1114–1125 (2007).
  • Sena, A. et al. Dysregulation of Anti-Inflammatory Annexin A1 Expression in Progressive Crohns Disease. PLOS ONE 8, e76969 (2013).
  • Schoepfer, A. M., Trummler, M., Seeholzer, P., Seibold-Schmid, B. & Seibold, F. Discriminating IBD from IBS: comparison of the test performance of fecal markers, blood leukocytes, CRP, and IBD antibodies. Inflamm. Bowel Dis. 14, 32–39 (2008).
  • Scaldaferri, F. Mucosal biomarkers in inflammatory bowel disease: Key pathogenic players or disease predictors? World J. Gastroenterol. 16, 2616 (2010).
  • Savouret, J. F., Misrahi, M. & Milgrom, E. Molecular action of progesterone. Int. J. Biochem. 22, 579–594 (1990).
  • Sato, Y., Kimura, M. & Endo, T. Comparison of lectin-binding patterns between young adults and older rat glycoproteins in the brain. Glycoconj. J. 15, 1133–1140 (1998).
  • Saitoh, O. et al. Fecal eosinophil granule-derived proteins reflect disease activity in inflammatory bowel disease. Am. J. Gastroenterol. 94, 3513–3520 (1999).
  • S mont, A. et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 17, 952–961 (2010).
  • Romani, L. et al. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance. Ann. N. Y. Acad. Sci. 1112,326–338 (2007).
  • Rembacken, B. J. et al. Flat and depressed colonic neoplasms: a prospective study of 1000 colonoscopies in the UK. Lancet Lond. Engl. 355, 1211–1214 (2000).
  • Potten, C. S. Radiation, the ideal cytotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat. Res. 161, 123–136 (2004).
  • Pedersen, N. EHealth: self-management in inflammatory bowel disease and in irritable bowel syndrome using novel constant-care web applications. EHealth by constant-care in IBD and IBS. Dan. Med. J. 62,B5168 (2015).
  • Papp, M., Norman, G. L., Altorjay, I. & Lakatos, P. L. Utility of serological markers in inflammatory bowel diseases: gadget or magic? World J. Gastroenterol. WJG 13, 2028–2036 (2007).
  • Pan, Y. F. The ulcerative colitis marker protein WAFL interacts with accessory proteins in endocytosis. Int. J. Biol. Sci. 163 (2010). doi:10.7150/ijbs.6.163
  • OSTF1 - Osteoclast-stimulating factor 1 - human protein (Expression). Available at: http://www.nextprot.org/db/entry/NX_Q92882/expression. (Accessed: 28th June 2016)
  • Neumann, H., Vieth, M., Langner, C., Neurath, M. F. & Mudter, J. Cancer risk in IBD: How to diagnose and how to manage DALM and ALM. World J. Gastroenterol. WJG 17, 3184–3191 (2011).
  • Nambiar, P. R., Gupta, R. R. & Misra, V. An ‘Omics’ based survey of human colon cancer. Mutat. Res. 693, 3–18 (2010).
  • Moritake, T. et al. ESR spin trapping of hydroxyl radicals in aqueous solution irradiated with high-LET carbon-ion beams. Radiat. Res. 159, 670–675 (2003).
  • Meuwis, M.-A. et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem. Pharmacol. 73, 1422–1433 (2007).
  • Merkwirth, C. & Langer, T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta 1793, 27–32 (2009).
  • Manolakis, A., Kapsoritakis, A., Tiaka, E. & Potamianos, S. Calprotectin, Calgranulin C, and Other Members of the S100 Protein Family in Inflammatory Bowel Disease. Dig. Dis. Sci. 56, 1601–1611 (2011).
  • Lorenzi, B. et al. Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis. Colon Rectum 51, 411–420 (2008).
  • Lin, J. H. et al. Estrogen and progesterone-related gene variants and colorectal cancer risk in women. BMC Med. Genet. 12, 78 (2011).
  • Lands, B. Consequences of essential fatty acids. Nutrients 4, 1338–1357 (2012).
  • Lai, M.-D. & Xu, J. Ribosomal proteins and colorectal cancer. Curr. Genomics 8, 43–49 (2007).
  • Kwiecien, S. et al. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress - induced gastric injury. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 65, 613–622 (2014).
  • Kuo, B. et al. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PloS One 10,e0123861 (2015).
  • Kudo, K. et al. Transplantation of mesenchymal stem cells to prevent radiation-induced intestinal injury in mice. J. Radiat. Res. (Tokyo) 51, 73–79 (2010).
  • Kobayashi, K. et al. Detection of Fcgamma binding protein antigen in human sera and its relation with autoimmune diseases. Immunol. Lett. 79, 229–235 (2001).
  • Kim, E. S. & Kim, W. H. Inflammatory Bowel Disease in Korea: Epidemiological, Genomic, Clinical, and Therapeutic Characteristics. Gut Liver 4, 1 (2010).
  • Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001).
  • Keohane, J. et al. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation? Am. J. Gastroenterol. 105, 1788, 1789–1794; quiz 1795 (2010).
  • Kaul, G., Pattan, G. & Rafeequi, T. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem. Funct. 29, 227–234 (2011).
  • Jones, S. L., Wang, J., Turck, C. W. & Brown, E. J. A role for the actin-bundling protein l-plastin in the regulation of leukocyte integrin function. Proc. Natl. Acad. Sci. U. S. A. 95, 9331–9336 (1998).
  • Johnson, R. K., Inouye, T., Goldin, A. & Stark, G. R. Antitumor activity of N-(phosphonacetyl)-L-aspartic acid, a transition-state inhibitor of aspartate transcarbamylase. Cancer Res. 36, 2720–2725 (1976).
  • Johns, T. G. et al. The antitumor monoclonal antibody 806 recognizes a high-mannose form of the EGF receptor that reaches the cell surface when cells over-express the receptor. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 19, 780–782 (2005).
  • Izumi, Y., Yamamoto, S., Fujii, K. & Yokoya, A. Secondary Structure Alterations of Histones H2A and H2B in X-Irradiated Human Cancer Cells: Altered Histones Persist in Cells for at Least 24 Hours. Radiat. Res. 184, 554–558 (2015).
  • Iaccarino, L. et al. Anti-annexins autoantibodies: Their role as biomarkers of autoimmune diseases. Autoimmun. Rev. 10, 553–558 (2011).
  • Hosokawa, Y. et al. Radiation-induced apoptosis is independent of caspase-8 but dependent on cytochrome c and the caspase-9 cascade in human leukemia HL60 cells. J. Radiat. Res. (Tokyo) 46, 293–303 (2005).
  • Holloszy, J. O., Oscai, L. B., Don, I. J. & Mol , P. A. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40, 1368–1373 (1970).
  • Hollborn, M. et al. Early activation of inflammation- and immune response-related genes after experimental detachment of the porcine retina. Invest. Ophthalmol. Vis. Sci. 49, 1262–1273 (2008).
  • Hehnly, H. & Mark Stamnes. Regulating cytoskeleton-based vesicle motility. FEBS Lett. 581, 2112–2118 (2007).
  • Halpin, S. J. & Ford, A. C. Prevalence of symptoms meeting criteria for irritable bowel syndrome in inflammatory bowel disease: systematic review and meta-analysis. Am. J. Gastroenterol. 107, 1474–1482 (2012).
  • Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).
  • Guan, S.-S., Sheu, M.-L., Wu, C.-T., Chiang, C.-K. & Liu, S.-H. ATP synthase subunit- down-regulation aggravates diabetic nephropathy. Sci. Rep. 5, 14561 (2015).
  • Goetz, J. A., Mechref, Y., Kang, P., Jeng, M.-H. & Novotny, M. V. Glycomic profiling of invasive and non-invasive breast cancer cells. Glycoconj. J. 26, 117–131 (2009).
  • Gisbert, J. P. & McNicholl, A. G. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 41, 56–66 (2009).
  • Gil-Ad, I. et al. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol. 33, 277–286 (2008).
  • Gassler, N., Klaus, C., Kaemmerer, E. & Reinartz, A. Modifier-concept of colorectal carcinogenesis: Lipidomics as a technical tool in pathway analysis. World J. Gastroenterol. WJG 16, 1820–1827 (2010).
  • Garneau, D., Revil, T., Fisette, J.-F. & Chabot, B. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J. Biol. Chem. 280, 22641–22650 (2005).
  • Gao, Z. et al. Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotherapy 14, 267–273 (2012).
  • Gaberman, E. et al. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells. PloS One 8,e66549 (2013).
  • Franco, R., Schoneveld, O. J., Pappa, A. & Panayiotidis, M. I. The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem. 113, 234–258 (2007).
  • Fort Gasia, M., Ghosh, S. & Iacucci, M. Colorectal polyps in ulcerative colitis and Crohn’s colitis. Minerva Gastroenterol. Dietol. 61, 215–222 (2015).
  • Filip, S., Zoidakis, J., Vlahou, A. & Mischak, H. Advances in urinary proteome analysis and applications in systems biology. Bioanalysis 6, 2549–2569 (2014).
  • Ekbom, A., Helmick, C., Zack, M. & Adami, H.-O. Ulcerative Colitis and Colorectal Cancer. N. Engl. J. Med. 323, 1228–1233 (1990).
  • Drossman, D. A. The Functional Gastrointestinal Disorders and the Rome III Process. Gastroenterology 130, 1377–1390 (2006).
  • Dooley, T. P. et al. Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm. Bowel Dis. 10, 1–14 (2004).
  • Ding, Y. et al. Proteomic analysis of colonic mucosa in a rat model of irritable bowel syndrome. Proteomics 10, 2620–2630 (2010).
  • Diederen, K. et al. The prevalence of irritable bowel syndrome-type symptoms in paediatric inflammatory bowel disease, and the relationship with biochemical markers of disease activity. Aliment. Pharmacol. Ther. (2016). doi:10.1111/apt.13636
  • Dennis, J. W., Granovsky, M. & Warren, C. E. Protein glycosylation in development and disease. BioEssays News Rev. Mol. Cell. Dev. Biol. 21, 412–421 (1999).
  • Del Boccio, P. et al. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. Proteomics Clin. Appl. 10, 470–484 (2016).
  • Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent Mediated Interactions in the Structure of the Nucleosome Core Particle at 1.9 Resolution†. J. Mol. Biol. 319, 1097–1113 (2002).
  • Danese, S. et al. Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am. J. Gastroenterol. 102, 174–186 (2007).
  • Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics MCP 13, 2513–2526 (2014).
  • Chisanga, D. et al. Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Res. 44, D969–D974 (2016).
  • Chetrite, G. S., Cortes-Prieto, J., Philippe, J. C., Wright, F. & Pasqualini, J. R. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J. Steroid Biochem. Mol. Biol. 72, 23–27 (2000).
  • Chen, X., Wei, S., Ji, Y., Guo, X. & Yang, F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics 15, 3175–3192 (2015).
  • Chapel, A. Mesenchymal stromal cell therapy to repair radiation-induced intestinal damage: implications for treatment of abdominopelvic malignancy. Cytotherapy 14, 1157–1158 (2012).
  • Chahrour, O., Cobice, D. & Malone, J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J. Pharm. Biomed. Anal. 113, 2–20 (2015).
  • Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5, 675–679 (2003).
  • Card, T. R., Siffledeen, J. & Fleming, K. M. Are IBD patients more likely to have a prior diagnosis of irritable bowel syndrome? Report of a case-control study in the General Practice Research Database. United Eur. Gastroenterol. J. 2, 505–512 (2014).
  • Capetanaki, Y. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc. Med. 12, 339–348 (2002).
  • Calabrese, P., Tavar , S. & Shibata, D. Pretumor progression: clonal evolution of human stem cell populations. Am. J. Pathol. 164, 1337–1346 (2004).
  • Brusniak, M.-Y. et al. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics 9, 542 (2008).
  • Bismar, M. M. & Sinicrope, F. A. Radiation enteritis. Curr. Gastroenterol. Rep. 4, 361–365 (2002).
  • Bhattacharjee, S., Rana, T. & Sengupta, A. Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pac. J. Cancer Prev. APJCP 8, 578–582 (2007).
  • Beaugerie, L. & Itzkowitz, S. H. Cancers Complicating Inflammatory Bowel Disease. N. Engl. J. Med. 372, 1441–1452 (2015).
  • Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut (2016). doi:10.1136/gutjnl-2015-310912
  • Andoh, A. et al. Elevated serum anti-carbonic anhydrase II antibodies in patients with ulcerative colitis. Int. J. Mol. Med. 9, 499–502 (2002).
  • Anderle, M., Roy, S., Lin, H., Becker, C. & Joho, K. Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum. Bioinforma. Oxf. Engl. 20, 3575–3582 (2004).
  • Adams, R. A., Schachtrup, C., Davalos, D., Tsigelny, I. & Akassoglou, K. Fibrinogen signal transduction as a mediator and therapeutic target in inflammation: lessons from multiple sclerosis. Curr. Med. Chem. 14, 2925–2936 (2007).
  • Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).