박사

Synthesis and Opto-electronic Properties of Nanocubic and Nanowire CH3NH3PbI3 for High Efficiency Perovskite Solar Cells

임정혁 2016년
논문상세정보
' Synthesis and Opto-electronic Properties of Nanocubic and Nanowire CH3NH3PbI3 for High Efficiency Perovskite Solar Cells' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Cuboid perovskite
  • Nanowire perovskite
  • morphology
  • organic-inorganic
  • perovskite
  • perovskite solar cell
  • quantum dot
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
601 0

0.0%

' Synthesis and Opto-electronic Properties of Nanocubic and Nanowire CH3NH3PbI3 for High Efficiency Perovskite Solar Cells' 의 참고문헌

  • Zhumekenov, A. A. et al. Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Lett. 1, 32–37 (2016).
  • Zhu, K., Jang, S. R. & Frank, A. J. Impact of high charge-collection efficiencies and dark energy-loss processes on transport, recombination, and photovoltaic properties of dye-sensitized solar cells. J. Phys. Chem. Lett. 2, 1070–1076 (2011).
  • Zhou, J. S. & Goodenough, J. B. Universal octahedral-site distortion in orthorhombic perovskite oxides. Phys. Rev. Lett. 94, 18–21 (2005).
  • Zhao, Y., Nardes, A. M. & Zhu, K. Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. J. Phys. Chem. Lett. 5, 490-494 (2014).
  • Zhang, Q., Dandeneau, C. S., Zhou, X. & Cao, G. ZnO Nanostructures for Dye- Sensitized Solar Cells. Adv. Mater. 21, 4087–4108 (2009).
  • Zaban A., Greenshtein M., Bisquert J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage dcay measurements, ChemPhysChem 4, 859–864 (2003).
  • Yuan, D.-X., Gorka, A., Xu, M.-F., Wang, Z.-K. & Liao, L.-S. Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing. Phys. Chem. Chem. Phys. 17, 19745–19750 (2015).
  • Yu, H. et al. The role of chlorine in the formation process of ‘CH3NH3PbI3-xClx’ perovskite. Adv. Funct. Mater. 24, 7102–7108 (2014).
  • You, J. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674–80 (2014).
  • Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–33 (2010).
  • Yang, S.Y. et al, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234-1237 (2015)
  • Xing, G. et al. Long-Range Balanced Electronand Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 6960, 498–500 (2013).
  • Xing, G. et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 342, 344–347 (2013).
  • Xi, J. et al. Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale 7, 10699–10707 (2015).
  • Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A. & Snaith, H. J. Sub-150 oC processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142–1147 (2014).
  • Williams, S. T. et al. Role of chloride in the morphological evolution of organolead halide perovskite thin films. ACS Nano 8, 10640–10654 (2014).
  • Weber, D. CH3NH3SnBrxI3-x (x=0-3), a Sn(II)-System with the Cubic Perovskite Structure. Zeitschrift f r Naturforsch. 33b, 862–865 (1978).
  • Weber, D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur. Zeitschrift fur Naturforsch. - Sect. B J. Chem. Sci. 33, 1443–1445 (1978).
  • Wang, S., Mitzi, D. B., Feild, C. a. & Guloys, A. Synthesis and Characterization of [NH2C(I)=NH2]3MI5 (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single (110) Perovskite Sheets. J. Am. Chem. Soc. 117, 5297–5302 (1995).
  • Unger, E. L. et al. Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014).
  • Suarez, B. et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5, 1628–1635 (2014).
  • Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding. Science 342, 341–344 (2014).
  • Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341–344 (2014).
  • Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic. Inorg. Chem. 52, 9019–9038 (2013).
  • Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).
  • Steitz, R., Jaeger, W. & Klitzing, R. V. Influence of charge density and ionic strength on the multilayer formation of strong polyelectrolytes. Langmuir 17, 4471–4474 (2001).
  • Son, D., Im, J., Kim, H. & Park, N. 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. J. Phys. Chem. C 118, 16567-16573 (2014).
  • Snaith, H. J. et al. Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 17, 1511-1515 (2014).
  • Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High- Efficiency Solar Cells. J. Phys. Chem. Lett 4, 3623−3630 (2013).
  • Snaith, H. J. & Ducati, C. SnO 2 -Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett. 10, 1259–1265 (2010).
  • Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chemie - Int. Ed. 53, 11232–11235 (2014).
  • Shirane, G., Danner, H. & Pepinsky, R. Neutron diffraction study of orthorhombic BaTio3. Phys. Rev. 105, 856–860 (1957).
  • Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).
  • Seo, J. et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7, 2642 (2014).
  • Ryu, S. et al. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. J. Mater. Chem. A 3, 3271–3275 (2015).
  • Roldan-Carmona, C. et al. High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8, 3550–3556 (2015).
  • Repins, I. et al. 19.9 %-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2 % Fill Factor. Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
  • Puurunen, R. L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, (2005).
  • Protesescu, L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15, 3692–3696 (2015).
  • Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, (2007).
  • Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chemie - Int. Ed. 53, 3151–3157 (2014).
  • Park, N.-G., van de Lagemaat, J. & Frank, A. J. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. J. Phys. Chem. B 104, 8989–8994 (2000).
  • Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency lowcost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).
  • Papavassiliou, G. C., Mousdis, G. a & Koutselas, I. B. Some New Organic – Inorganic Hybrid Semiconductors Based on Metal Halide Units : Structural , Optical and Related Properties. Adv. Mater. Opt. Electron. 9, 265–271 (1999).
  • Ogomi, Y. et al. CH3NH3SnxPb(1– x )I3 Perovskite Solar Cells Covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).
  • Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. Il. Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells. Nano Lett. 13, 1764-1769 (2013).
  • Niu, G., Guo, X. & Wang, L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. J. Mater. Chem. A 2, Advance (2015).
  • Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59, 374–380 (1999).
  • Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalt. Trans. 1–12 (2001).
  • Michael M. Lee. et al. Efficient Hybrid Solar Cells Based on Meso- Superstructured Organometal Halide Perovskites. Science 338, 643–647 (2012).
  • Mei, A. et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).
  • Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242– 247 (2014).
  • Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition_web. Nature 501, 395–398 (2013).
  • Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2014).
  • Liang, P. W. et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014).
  • Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. 4756, 403–411 (2013).
  • Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D. & Snaith, H. J. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J. Phys. Chem. Lett. 5, 1096–1102 (2014).
  • Lee, K., Park, S. W., Ko, M. J., Kim, K. & Park, N.-G. Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nat. Mater. 8, 665–71 (2009).
  • Lee, J. W., Seol, D. J., Cho, A. N. & Park, N. G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991– 4998 (2014).
  • Kulkarni, S. a. et al. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221 (2014).
  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
  • Koh, T. M. et al. Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014).
  • Kim, H.-S. et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013).
  • Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
  • Kim, H. S., Im, S. H. & Park, N. Organolead halide perovskite: new horizons in solar cell research. J. Phys. Chem. C 118, 5615-5625 (2014).
  • Kim, H. S. et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013).
  • Kelly, P. J. & Arnell, R. D. Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000).
  • Kazim, S., Nazeeruddin, M. K., Gr tzel, M. & Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chemie - Int. Ed. 53, 2812– 2824 (2014).
  • Kagan, C. R. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science (80-. ). 286, 945–947 (1999).
  • Juska, G., Arlauskas, K.,Viliunas, M. & Kocka J. Extraction Current Transients : New Method of Study of Charge Transport in Microcrystalline Silicon. Phys, Rev, Lett. 84, 4946-4949 (2000).
  • Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 1–7 (2014).
  • Jeng, J.-Y. et al. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 25, 3727–3732 (2013).
  • Jackson, P. et al. New world record efficiency for Cu(In,Ga )Se2 thin-film solar cells beyond 20 %. Prog. Photovolt: Res. Appl. 19, 894–897 (2011).
  • Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011).
  • Im, J.-H., Jang, I.-H., Pellet, N., Gr tzel, M. & Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014).
  • Im, J.-H., Chung, J., Kim, S.-J. & Park, N.-G. Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res. Lett. 7, 353 (2012).
  • Im, J. H., Kim, H. S. & Park, N. G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2, 081510 1-8 (2014).
  • Howard, C. J. & Stokes, H. T. Group-Theoretical Analysis of Octahedral Tilting in Perovskites. Acta Crystallogr. Sect. B Struct. Sci. 54, 782–789 (1998).
  • Horv th, E. et al. Nanowires of Methylammonium Lead Iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014).
  • Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. & Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015).
  • Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Phot. 7, 486–491 (2013).
  • Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A. P. & Gudmundsson, J. T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513, 1–24 (2006).
  • Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Leadfree solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).
  • Halme, J., Vahermaa, P., Miettunen, K. & Lund, P. Device physics of dye solar cells. Adv. Mater. 22, E210-E234 (2010).
  • Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).
  • Gonzalez-Pedro, V. et al. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 14, 888–893 (2014).
  • George, S. M. Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010).
  • Garnett, E. & Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010).
  • Fraas, L. M. Basic grain-boundary effects in polycrystalline heterostructure solar cells. J. Appl. Phys. 49, 871–875 (1978).
  • Fabregat-Santiago, F. et al. Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009).
  • Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014).
  • Edri, E., Kirmayer, S., Kulbak, M., Hodes, G. & Cahen, D. Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5, 429–433 (2014).
  • Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897–902 (2013).
  • Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).
  • Dongqin Bi. et al. J. Efficient luminescent solar cells based on tailored mixedcation perovskites. Sci. Adv. 2, 1-7 (2016).
  • Dong, X. et al. Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015).
  • Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013).
  • Dar, M. I. et al. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett. 14, 6991–6996 (2014).
  • Coleman, C. C., Goldwhite, H. & Tikkanen, W. A review of intercalation in heavy metal iodides. Chem. Mater. 10, 2794–2800 (1998).
  • Colella, S. et al. The Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 5, 140929105305006 (2014).
  • Colella, S. et al. MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chem. Mater. 25, 4613–4618 (2013).
  • Chung B He., JQ Chang., RPH Kanatzidis. & MG, I. L. All-solid-state dyesensitized solar cells with high efficiency. Nature 485, U94 (2012).
  • Choi, H. et al. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6, 7348 (2015).
  • Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).
  • Brian O'Regan & Michael Gr tzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–739 (1991).
  • Boix, P. P., Nonomura, K., Mathews, N. & Mhaisalkar, S. G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17, 16–23 (2014).
  • Bi, D. et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3, 18762 (2013).
  • Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013).
  • Article, E., Kieslich, G., Sun, S. & Cheetham, A. K. Chemical Science Solidstate principles applied to organic – inorganic perovskites : new tricks for an old dog †. Chem. Sci. 5, 4712–4715 (2014).
  • Algora, C. et al. A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Trans. Electron Devices 48, 840–844 (2001).
  • Ahn, N. et al. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015).