박사

Studies on self-humidifying membranes and electrochemical catalysts for low and high temperature proton exchange membrane fuel cells (PEMFC) : 저온 및 고온형 수소 연료전지용 자체가습 막과 전기화학 촉매에 관한 연구

양희나 2016년
논문상세정보
' Studies on self-humidifying membranes and electrochemical catalysts for low and high temperature proton exchange membrane fuel cells (PEMFC) : 저온 및 고온형 수소 연료전지용 자체가습 막과 전기화학 촉매에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • High-temperature PEMFC
  • Self-humidifying
  • composite membrane
  • dual catalyst electrode
  • electrochemical catalyst
  • pemfc
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
198 0

0.0%

' Studies on self-humidifying membranes and electrochemical catalysts for low and high temperature proton exchange membrane fuel cells (PEMFC) : 저온 및 고온형 수소 연료전지용 자체가습 막과 전기화학 촉매에 관한 연구' 의 참고문헌

  • Z.X. Yang, Y.D. Xia, R.J. Mokaya, Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials, Am. Chem. Soc., 129, 1673–1679, 2007.
  • Z.X. Ma, et al., Very High Surface Area Microporous Carbon with a Three- Dimensional Nano-Array Structure: Synthesis and Its Molecular Structure, Chem. Mater., 13, 4413–4415, 2001.
  • Z.R. Ismagilov et al. Development of active catalysts for low Pt loading cathodes of PEMFC by surface tailoring of nanocarbon materials, Catal. Today, 102- 103, 58–66, 2005.
  • Z.K. Nguyen, Advances in fuel cells 1, Elsevier, 2007.
  • Z. Tu, et al., Evaluation of 5 kW proton exchange membrane fuel cell stack operated at 95 C under ambient pressure, J. Power Sources, 222, 277-281, 2013.
  • Z. Ma, T. Kyotani, A. Tomita, Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y, Carbon, 40, 2367–2374, 2002.
  • Y.L. Ma, et al., Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, J. Electrochem. Soc., 151, A8-A16, 2004.
  • Y. Zhao, et al., Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes?, J. Amer. Chem. Soc., 135, 1201-1204, 2013.
  • Y. Wang, X. Feng, Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes, J. Electrochem. Soc., 155(12), B1289-B1295, 2008.
  • Y. Wang, C.Y. Wang, Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. J. Power Sources, 147(1-2), 148– 161, 2005.
  • Y. Wang, C.Y. Wang, Nonisothermal A. Two-phase model for polymer electrolyte fuel cells, J. Electrochem. Soc., 153(6), A1193–A1200, 2006.
  • Y. Wang, C.Y. Wang, Modeling polymer electrolyte fuel cells with large density and velocity changes, J. Electrochem. Soc. 152(2), A445-A453, 2005.
  • Y. Shao, et al., Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution, Electrochim Acta, 51, 5853-5857, 2006.
  • Y. Li, L. Tang, J. Li, Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochem. Commun., 11, 846-849, 2009.
  • Y. Chen, et al., High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes, Carbon, 49, 573-580, 2011.
  • X.D. Wang, et al., Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs, J. Power Sources, 175, 397-407, 2008.
  • X.D. Wang, et al., A determination of the optimal active area for proton exchange membrane fuel cells with parallel, interdigitated or serpentine designs, Int. J. Hydrogen Energy, 34, 3823-3832, 2009.
  • X. Xu, et al., Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media, Int. J. Hydrogen Energy, 39, 16043-16052, 2014.
  • X. Wang, et al., Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, J. Power Sources, 158, 154-159, 2006.
  • X. Li, Principles of fuel cells, Taylor and Francis, 2005.
  • W.Z. Li, et al., Studies on the anode catalysts of carbon nanotube for DMFC, Electrochim. Acta., 50, 791-794, 2004.
  • W.Z. Li, et al., Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell, Electrochim. Acta, 50, 791–794, 2004.
  • W.H. Lee, et al., Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell, Energy, 96, 314-324, 2016.
  • W. Vielstich, A. Lamm, H. Gasteiger, Handbook of Fuel cells Fundamentals, Technology and applications, Wiley, 2003.
  • W. Han, S.M. Kwan, K.L. Yeung, Zeolite applications in fuel cells: water management and proton conductivity, Chem. Eng. J., 187, 367-371, 2012.
  • V.D. Noto, et al., Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes, J. Phys. Chem. B, 110, 24972-24986, 2006.
  • V. P. McConnell, High-Temperature PEM Fuel Cell: Hotter, Simpler, Cheaper, Fuel Cell Bulletin, 12, 12-16, 2009.
  • U. Pasaogullari, C.Y. Wang, Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells, J. Electrochem. Soc., 151(3), A399–A406, 2004.
  • U. Pasaogullari, C.Y. Wang, Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 151, A399–A406, 2004.
  • T.V. Nguyen, et al., Measurements of two-phase flow properties of the porous media used in PEM fuel cells, ECS Trans., 3(1), 415–423, 2006.
  • T.V. Khai, et al., Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films, Chemical Engineering Journal, 15, 369-377, 2012.
  • T. Sancho, J. Soler, M.P. Pina, Conductivity in zeolite-polymer composite membranes for PEMFCs, J. Power sources, 169, 92-97, 2007.
  • T. Sakai, et al., Gas permeation properties of solid polymer electrolyte (SPE) membranes, J. Electrochem. Soc., 132, 1328-1382, 1985.
  • T. Kyotani, Z. Ma, A. Tomita, Template synthesis of novel porous carbons using various types of zeolites, Carbon, 41, 1451–1459, 2003.
  • T. Kojima, et al., Dilute solution properties of a polybenzimidazole. J. Polym. Sci. Part B: Polym. Phys., 18, 1673-1684, 1980.
  • T. Kojima, Studies of molecular aggregation of a polybenzimidazole in solution by fluorescence spectroscopy, J. Polym. Sci., 18, 1685-1695, 1980.
  • T. Kitahara, et al., Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity, J. Power sources, 234, 129-138, 2013.
  • T. Hyeon, et al., High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils, Angew. Chem. Int. Ed., 42, 4352–4356, 2003.
  • S.Y. Chen, et al., Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity, J. power sources, 171, 363-372, 2007.
  • S.S. Penner, Assessment of Research Needs for Advanced Fuel Cells, Pergamon Press, 1986.
  • S.R. Samms, S.Wasmus, R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments, J. Electrochem. Soc., 143, 1225–1232, 1996.
  • S.P. Dubey, et al., Synthesis of graphene-carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption application, Chem. Eng. J., 244, 160-167, 2014.
  • S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen energy, 35, 9349- 9384, 2010.
  • S.J. Park, et al., Aqueous suspension and characterization of chemically modified graphene sheets, Chem. Mater., 20, 6592-6594, 2008.
  • S.H. Cho, et al., Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell, J. Power Sources, 225, 200-206, 2013.
  • S.A. Vilekar, R. Datta, The effect of hydrogen crossover on open-circuit voltage in polymer electrolyte membrane fuel cells, J. Power Sources, 195, 2241- 2247, 2010.
  • S. Yin, et al., A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells, J. Power sources, 196, 7931–7936, 2011.
  • S. Swathirajan, Y.M. Mikhail, Electrochemical Oxidation of Methanol at Chemically Prepared Platinum‐Ruthenium Alloy Electrodes, J. Electrochem. Soc., 138, 1321-1326, 1991.
  • S. Srinivasan, Fuel cells from fundamentals to application, springer, 2006.
  • S. Park, et al., Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells, Electrochem. Commun., 13, 258–261, 2011.
  • S. Mazumder, J.V. Cole, Rigorous 3-D mathematical modeling of PEM fuel cells, J. Electrochem. Soc., 150(11), A1503-A1509, 2003.
  • S. Mass, et al., Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources, 176, 444–451, 2008.
  • S. Gottesfeld, T. Zawodzinski (Eds.), Advances in Electrochemical Science and Engineering, Wiley, 1997.
  • S. Gamburzev, A.J. Appleby, Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC), J. Power Sources, 107, 5–12, 2002.
  • S. Dutta, S. Shimpalee, J.W. Van Zee, Three-dimensional numerical simulation of straight channel PEM fuel cells, J. Appl. Electrochem, 30(2), 135-146, 2000.
  • S. Atkinson, Fuel cells for mobile devices, Membr. Tech., 12, 6-8, 2005.
  • S. Alvarez, et al., Electrochemical capacitor performance of mesoporous carbons obtained by templating technique, Carbon, 43, 866–870, 2005.
  • R.M. Silverstein, F.X. Webester, D.J. Kiemle, Spectrotrometric identification of organic compounds 7th ed, John Wiley & Son, 2005.
  • R.L. Borup, et al., PEM fuel cell electrocatalyst durability measurements, J. Power Sources, 163(1), 76-81, 2006.
  • R.G. Gonz lez-Huerta, J.A. Ch vez-Carvayar, O. Solorza-Feria, Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell, J. Power Sources, 153(1), 11-17, 2006.
  • R.F. Verner, C. Benvegnu, Handbook on fullerene: synthesis, properties and applications, NOVA publishers, 2012.
  • R. Ohayre, et al., Fuel cell fundamentals, Wiley, 2009.
  • R. Hammamia, et al., Elaboration and characterization of hybrid polymer electrolytes Nafion/TiO2 for PEMFCs, Int. J. hydrogen energy, 38, 11583-11590, 2013.
  • R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature, 443, 63–66, 2006.
  • Q. Zeng, et al., Binary oxide-doped Pt/RuO2–SiOx/C catalyst with high performance and self-humidification capability: The promotion of ruthenium oxide, J. Power Sources, 205, 201-206, 2012.
  • Q. Li, et al., PBI-based polymer membranes for high temperature fuel cellspreparation, characterization and fuel cell demonstration, Fuel Cells, 4, 147–159, 2004.
  • Q. Li, et al., High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci., 245), 449-477, 2009.
  • Q. Li, et al., High temperature proton exchange membranes based on polybenzimidazoles for fuel cell, Prog. Polym. Sci., 34, 449-477, 2009.
  • Q. Li, H.A. Hjuler, N.J. Bjerrum, Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications, J. Appl. Electrochem., 31, 773–779, 2001.
  • P.R. Bandaru, Electrical Properties and Applications of carbon nanotube structure, J. Nanosci. Nanotechnol. 7, 1239-1267, 2007.
  • P.M. Grant, Hydrogen Lifts off-with a heavy load- The dream of clean usable energy needs to reflect practical reality, Nature, 424, 129-130, 2003.
  • P.J. Ferreira, et al., Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells, J. Electrochem. Soc., 152(11), A2256–A2271, 2005.
  • P.C. Jennings, B.G. Pollet, R.L. Johnston, Electronic properties of PtTi nanoalloys and the effect on reactivity for use in PEMFCs, J. Phys. Chem. C, 116, 15241-15250, 2012.
  • P. Yu, M. Pemberton, P. Plasse, PtCo/C cathode catalyst for improved durability in PEMFCs, J. Power Sources, 144(1),11–20, 2005.
  • P. Wells, Preparation of Cr/Pt/C catalysts by the controlled surface modification of Pt/C using an organometallic precursor, In: 3rd European PEFC forum, Lucerne, 2005.
  • P. Sridhar, R. Perumal, N. Rajalakshmi, M. Raja, K.S. Dhathathreyan, Humidification studies on polymer electrolyte membrane fuel cell, J. Power Source, 101, 72-78, 2001.
  • P. Pharkya, A. Alfantazi, Z. Farhat, Fabrication using high-energy ball-milling technique and characterization of Pt–Co electrocatalysts for oxygen reduction in polymer electrolyte fuel cells, J. Fuel Cell Sci. Technol., 2, 171-177, 2005.
  • P. Costamagna, S. Srinvasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects, J. Power Sources, 102, 242–252, 2001.
  • O.J. Curnick, P.M. Mendes, B.G. Pollet, Enhanced durability of a Pt/C electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles, Electrochem. Comm., 12, 1017-1020, 2010.
  • O.E. Kongstein, et al., Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes, Energy, 32, 418-422, 2007.
  • O. Savadogo, Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications, J. Power Source, 127, 135-161, 2004.
  • O. Savadogo, Emerging membranes for electrochemical system-part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications, J. Power Sources, 127, 135-61, 2004.
  • N.W. Deluca, Y.A. Elabd, Polymer electrolyte membranes for direct methanol fuel cell: A review, J. Polym. Sci. Part B: Polym. Phys., 44, 2201-2225, 2006.
  • N. Travitsky, Nanometric platinum and platinum-alloy-supported catalysts for oxygen reduction in PEM fuel cells, In: 3rd European PEFC forum, Lucerne, 2005.
  • N. Sammes, Fuel cell technology reaching towards commercialization, springer, 2005.
  • N. Holmstrom, et al., The influence of the gas diffusion layer on water management in polymer electrolyte fuel cells, Fuel Cells, 7(4), 306-313, 2007.
  • M.S. Wilson, U. S. Patent 5,211,984, 1993.
  • M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes, Adv. Phys., 49, 705–814, 2000.
  • M.M. Nasef, H. Saidi, Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis, Appl. Surf. Sci., 252, 3073-3084, 2006.
  • M. Watanabe, et al., Self-humidifying polymer electrolyte membranes for fuel cells, J. Electrochem. Soc., 143, 3847-3852, 1996.
  • M. Watanabe, H. Uchida, M. Emori, Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells, J. Phys. Chem. B, 102, 3129-3137, 1998.
  • M. Watanabe H. Uchida, M. Emori, Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells, J. Electrochem. Soc., 145, 1137-1147, 1998.
  • M. Mathias, Handbook of fuel cells: fundamentals. In: Technology and applications, John Wiley &Sons, 2003.
  • M. Gao, G.P. Zhang, Z.Y. Lu, Electronic transport of a large scale system studied by renormalized transfer matrix method: Application to armchair graphene nanoribbons between quantum wires, Comput. Phys. Commun., 185, 856-861, 2014.
  • L.M. Kustov, et al., Investigation of the acidic properties of ZrO2 modofied by SO2 -4 anions, J.Catal., 150, 143–149, 1993.
  • L.C. Sim, et al., Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2, Appl. Surf. Sci., 358, 122-129, 2015.
  • L. Zhang, et al., Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions, J. Power Sources 156, 171–182, 2006.
  • L. Wang, et al., Pt/SiO2 catalyst as an addition to Nafion/PTFE self-humidifying composite membrane, J. Power Sources, 161, 61-67, 2006.
  • L. Sheng, et al., Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4,6-bis(4-carboxyphenoxy)benzene-1,3- disulfonate, J. Power Sources, 196, 3039-3047, 2011.
  • L. Li, Y. Xing, Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations, J. Electrochem. Soc., 153, A1823-A1828, 2006.
  • K.L. Huang, Y.C. Lai, C.H. Tsai, Effects of sputtering parameters on the performance of electrodes fabricated for proton exchange membrane fuel cells, J. Power Sources, 156, 224–231, 2006.
  • K.H. Lim, H.S. Oh, H. Kim, Use of a carbon nanocage as a catalyst support in polymer electrolyte membrane fuel cells, Electrochem. Commun., 11, 1131-1134, 2009.
  • K.H. Kim, et al., The effects of relative humidity on the performances of PEMFC MEAs with various Nafion ionomer contents, Int. J. Hydrogen Energy, 35, 13104-13110, 2010.
  • K.H. Kim, et al., The effects of Nafion ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method, Int. J. Hydrogen Energy, 35(5), 2119-2126, 2010.
  • K.D. Kreuer, et al., Transport in proton conductors for fuel cell applications: simulations, elementary reactions, and phenomenology, Chem. Rev., 104, 4637-3678, 2004.
  • K.D. Kreuer, A. Rabenau, W. Weppner, Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors, Angew Chem. Int. Ed. Engl., 21, 208-209, 1982.
  • K.A. Mauritz, R.B. Moore, State of understanding of Nafion, Chem. Rev., 104, 4535-4585, 2004.
  • K. Tuber, et al., A Polymer electrolyte membrane fuel cell system for powering portable computers, J. Power Source, 122, 1-8, 2003.
  • J.Y. Lee, et al., Synthesis of nano-sized Pt/C via zeolite-templating method and its application to the cathode catalyst in PEMFC, Micropor. Mesopor. Mater., 134, 1–7, 2010.
  • J.W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Amer. Chem. Soc., 80(6), 1339, 1958.
  • J.T. Gostick, et al., On the role of the microporous layer in PEMFC operation, Electrochem. Commun., 11(3), 576–579, 2009.
  • J.S. Yi, T.V. Nguyen, Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors, J. Electrochem. Soc., 146(1), 38-45, 1999.
  • J.L. Fernandez, D.A. Walsh, A.J. Bard, Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au), J. Am. Chem. Soc. 127(1), 357-365, 2004.
  • J.J. Hwang, Thermal-electrochemical modeling of a proton exchange membrane fuel cell, J. Electrochem. Soc., 153(2), A216-A224, 2006.
  • J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Transfer, 46(24), 4595–4611, 2003.
  • J.F. Wu, et al., A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, J.Power Sources, 184, 104-119, 2008.
  • J.D. Sole, M.W. Ellis, Determination of the relationship between capillary pressure and saturation in PEMFC gas diffusion media, ASME international conference on Fuel Cell Science, 2008.
  • J.D. Fairweather, et al., A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers, Electrochem. Commun., 9(9), 2340–2345, 2007.
  • J.B. Xu, et al., Electrooxidation of methanol on carbon nanotubes supported Pt–Fe alloy electrode, Electrochem. Commun., 8, 982-986, 2006.
  • J.B. Xu, et al., Electrochemical chlorine sensor with multi-walled carbon nanotubes as electrocatalysts, Electrochem. Commun., 8(10), 982–996, 2006.
  • J.B. Goodenough, et al., Methanol oxidation on unsupported and carbon supported Pt + Ru anodes, J. Electroanal. Chem., 240, 133-145, 1988.
  • J.A. Mader, B.C. Benicewicz, Synthesis and Properties of Segmented Block Copolymers of Functionalised Polybenzimidazoles for High-Temperature PEM Fuel Cells, Fuel Cells, 11, 222-237, 2011.
  • J.A. Mader, B.C. Benicewicz, Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells, Macromolecules, 43, 6706-6715.
  • J. Xie, et al., Durability of PEFCs at High Humidity Conditions, J. Electrochem. Soc., 152(1), A104-A113, 2005.
  • J. Wills, Imaging water in PEM fuel cells, Fuel Cell Review, 2, 27-29, 2005.
  • J. Surowiec, R. Bogoczek, Studies on the thermal stability of the perfluorinated carbon-exchange membrane Nafion-417, J. Therm. Ana., 33, 1097-1102, 1988.
  • J. Pavio, et al., Developing micro-fuel cells for wireless communications, Fuel Cell Bull., 4, 8-11, 2002.
  • J. Parrondo, F. Mijangos, B. Rambabu, Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell, J. Power Sources, 195, 3977-3983, 2010.
  • J. Park, et al., A review of the gas diffusion layer in proton exchange membrane fuel cells: durability and degradation, Appl. Energy, 155, 866-880, 2015.
  • J. Miyake, et al., Synthesis and properties of sulfonated blockpoly(arylene ether)s containing m-terphenyl groups as proton conductive membranes, J. Membr. Sci., 476, 156–161, 2015.
  • J. Lobato, et al., Synthesis and characterisation of poly[2,2-(m-phenylene)- 5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs, J. Membr. Sci., 280, 351–362, 2006.
  • J. Lobato, et al., Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC, Int. J. Hydrogen Energy, 35, 1347- 1355, 2010.
  • J. Lobato, et al., Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells, J. Appl. Electrochem., 38, 793-802, 2008.
  • J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery application , Acta. Biomater., 9, 9243-9257, 2013.
  • J. Larminie, A. Dicks, Fuel cell systems explained, Wiley, 2003.
  • J. Larminie, A. Dicks, Fuel cell systems explained, John Wiley & Sons, 2000.
  • J. Hirschenhofer, Status of fuel cell commercialization efforts, American Power Conference, 1993.
  • J. Benziger, et al., Water flow in the gas diffusion layer of PEM fuel cells, J. Membrane Sci., 261(1–2), 98–106, 2005.
  • I.D. Raistrick, Proceedings of the Symposium on Diaphragm, Separators, and Ion Exchange Membranes, The Electrochemical Society, 1986.
  • I. Choi, et al., Sonochemical synthesis of Pt-deposited SiO2 nanocomposite and its catalytic application for polymer electrolyte membrane fuel cell under lowhumidity conditions, Catalysis Com., 21, 86-90, 2012.
  • H.N. Yang, et al., Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC, J. Membr. sci., 443, 210-218, 2013.
  • H.N. Yang, et al., Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell, J. Membr. Sci., 504, 20-28, 2016.
  • H.N. Yang, et al., Platinum-boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell, Energy, 89, 500-510, 2015.
  • H.N. Yang, et al., Effect of functionalization for carbon molecular sieve(CMS) synthesized using zeolite template on the incorporation of Pt nanoparticle and performance of the electrodes in PEMFC, Micropor. Mesopor. Mat., 152, 148-156, 2012.
  • H.N. Yang, W.J. Kim, Effect of LiCl content on pore structure of catalyst layer and cell performance in high temperature polymer electrolyte membrane fuel cell, 90(2), 2038-2046, 2015.
  • H.N. Yang, S.H. Cho, W.J. Kim, The preparation of self-humidifying Nafion /various Pt-containing SiO2 composite membranes and their application in PEMFC, J. Membr. Sci., 421-422, 318-326, 2012.
  • H.N. Su, et al., Membrane electrode assembly with Pt/SiO2/C anode catalyst for proton exchange membrane fuel cell operation under low humidity conditions, Electrochim Acta, 55, 8894-8900, 2010.
  • H.L. Lin, et al., Preparation of PBI/PTFE composite membranes from PBI in N, N’-dimethyl acetamide solutions with various concentrations of LiCl, J. Power Sources, 181, 228-236, 2008.
  • H.K. Lee, et al., A study on self-humidifying PEMFC using Pt-ZrP-Nafion composite membrane, Electrochim. Acta, 50, 761-768, 2004.
  • H.J. Lee, et al., Demonstration of a 20 W class high-temperature polymer electrolyte fuel cell stack with novel fabrication of a membrane electrode assembly, Int. J. Hydrogen Energy, 36, 5521-5526, 2011.
  • H.C. Schniepp, et al., Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B, 110, 8535–8539, 2006.
  • H. Zhou, et al., Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance, Adv. Mater., 15, 2107–2111, 2003.
  • H. Zhang, P.K. Shen, Recent development of polymer electrolyte membranes for fuel cells, J. Am. Chem. Soc., 112, 2780–2832, 2012.
  • H. Zarrin, et al., Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C, 115, 20774-20781, 2011.
  • H. Yuan, et al., Electrochemical characters and structure changes of electrochemically treated Pt nanoparticles, Electrochem. Comm., 12, 14-17, 2010.
  • H. Tsuchiya, O. Kobayashi, Mass production cost of PEM fuel cell by learning curve, Int. J. Hydrogen Energy, 29, 985–990, 2004.
  • H. Tada, S. Ito, Conformational change restricted selectivity in the surface sulfonation of polypropylene with sulfuric acid, Langmuir, 13, 3982-3989, 1997.
  • H. Ohn, et al., Capillary pressure properties of gas diffusion materials used in PEM fuel cells, ECS Trans., 1(6), 481–489, 2006.
  • H. Nishihara, et al., A possible buckybowl-like structure of zeolite templated carbon, Carbon, 47, 1220–1230, 2009.
  • H. Meng, C-Y, Wang, Electron transport in PEFCs, J. Electrochem. Soc., 151(3), A358–A367, 2004.
  • H. Liu, et al., A review of anode catalysis in the direct methanol fuel cell, J. Power Sources 155, 95–110, 2006.
  • G.S. Kumar, M. Raja, S. Parthasarathy, High performance electrodes with very low platinum loading for polymer electrolyte fuel cells, Electrochim. Acta, 40, 285– 290, 1995.
  • G.S. Herman, et al., Experimental investigation of the interaction of water and methanol with anatase-TiO2(101), J. Phys. Chem. B, 107, 2788-2795, 2003.
  • G.S. Chai, I.S. Shin, J.S. Yu, Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells, Adv. Mater., 16, 2821–2831, 2004.
  • G.G. Kumar, et al., Synthesis and characterization of aligned SiO2 nanosphere arrays: spray method, Synth Met., 158, 684-687, 2008.
  • G.G. Kumar, et al., NafionTM membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC, Int. J. Hydrogen Energy, 34, 9788-9794, 2009.
  • G.G. Kumar, K.S. Nahm, R.N. Elizabeth, Electro chemical properties of porous PVDF-HFP membranes prepared with different nonsolvents, J. Membr. Sci., 325, 117-124, 2008.
  • G. Wang, P.P. Mukherjee, C.Y. Wang, Direct numerical simulation (DNS) modeling of PEFC electrodes: Part I. Regular microstructure, Electrochim Acta, 51(15), 3139-3150, 2006.
  • G. Sasi Kumar, M. Raja, S. Parthasarathy, High performance electrodes with very low platinum loading for polymer electrolyte fuel cells, Electrochimica Acta, 40, 285-290, 1995.
  • F. Su, et al., Template synthesis of microporous carbon for direct methanol fuel cell application, Carbon, 43, 2366–2377, 2005.
  • F. Su, et al., Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y, Carbon, 42, 2821–2831, 2004.
  • F. Seland, et al., Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte, J. Power Sources, 160, 27-36, 2006.
  • F. Kadirgan, et al., Oxidation of methanol on a platinum electrode in alkaline medium: Effect of metal ad-atoms on the electrocatalytic activity, J. Electroanal. Chem., 142, 171-190, 1982.
  • F. Barbir, PEM fuel cells: Theory and Practice, Elsevier, 2005.
  • E.I. Santiago, et al., Nafion–TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature, Electrochim. Acta, 54, 4111–4117, 2009.
  • E. Fitzer, W. Schafer, The effect of crosslinking on the formation of glasslike carbons from thermosetting resins, Carbon, 8, 353–364, 1970.
  • E. Birgersson, M. Noponen, M. Vynnycky, Analysis of a two-phase nonisothermal model for a PEFC, J. Electrochem. Soc., 152(5), A1021-A1034, 2005.
  • E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B, 88, 1–24, 2009.
  • D.R. Dreyer, et al., The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240, 2010.
  • D.L. Wood, I.R.L. Borup, Estimation of mass-transport overpotentials during long-term PEMFC operation, J. Electrochem. Soc. 157(8), B1251–B1262, 2010.
  • D.L. Wood, C. Rulison, R.L. Borup, Surface properties of PEMFC gas diffusion Layers, J. Electrochem. Soc., 157(2), B195–B206, 2010.
  • D.J. Jones, J. Roziere, Recent advances in the functionalization of polybenzimidazole and poly etherketone for fuel cell applications, J. Mem. Sci. 185, 41-58, 2001.
  • D.C. Marcano, et al., Improved synthesis of graphene oxide, ACS Nano., 4, 4806-4814, 2010.
  • D.C. Lee, et al., Self-humidifying Pt-graphene/SiO2 composite membrane for polymer electrolyte membrane fuel cell, J. Mem. Sci., 474, 254-262, 2015.
  • D.C. Lee, et al., Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell, J. Membr. Sci., 452, 20-28, 2014.
  • D. Wang, S. Lu, S.P. Jiang, Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells, Electrochim. Acta, 55, 2964–2971, 2010.
  • D. Staschewski, Internal humidifying of PEM fuel cells, Int. J. Hydrogen Energy, 21, 381-385, 1996.
  • D. Liu, et al., Insitusol–gel route to novel sulfonated polyimide SiO2 hybrid proton-exchange membranes for direct methanol fuel cells, Polym. Int., 59, 1578– 1585, 2010.
  • D. Fofana, et al., Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach, Energy, 64, 398-403, 2014.
  • C.R.K. Rao, D.C. Trivedi, Chemical and electrochemical depositions of platinum group metals and their applications, Coord. Chem. Rev., 249 (5-6), 613- 631, 2005.
  • C.H. Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties and applications, J. Membr. Sci., 20, 1-33, 1996.
  • C.H. Kim, D.K. Lee, T.J. Pinnavaia, Graphitic Mesostructured Carbon Prepared from Aromatic Precursors, Langmuir, 20, 5157–5159, 2004.
  • C.C. Ke, et al., Investigation on sulfuric acid dulfonation of in-situ-gel derived Nafion/SiO2 composite membrane, Int. J. Hydrogen Energy, 36, 3606-3613, 2011.
  • C.A. Bessel, et al., Graphite Nanofibers as an Electrode for Fuel Cell Applications, J. Phys. Chem. B, 105, 1115–1118, 2001.
  • C. Wannek, et al., Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 34, 9479-9485, 2009.
  • C. Pan, et al., Preparation and operation of gas diffusion electrodes for hightemperature proton exchange membrane fuel cells, J. Power Sources, 172, 278-286, 2007.
  • C. Lamy, et al., Do not forget the electrochemical characteristics of the membrane electrode assembly when designing a Proton Exchange Membrane Fuel Cell stack, Electrochim. Acta., 56, 10406-10423, 2011.
  • B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications-a review, J. Membr. Sci. 259, 10-26, 2005.
  • A.Z. Weber, J.B.R. Breslau, I.F. Miller, A hydrodynamic model for electroosmosis, Ind. Eng. Chem. Fundam, 10, 554-565, 1971.
  • A.Z. Weber, J. Newman, Effects of Microporous Layers in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 152, A677–A688, 2005.
  • A.S. Arico, et al., Performance and degradation of high temperature polymer electrolyte fuel cell catalysts, J. Power Sources, 178, 525-536, 2008.
  • A.B. Conciatori, C.L. Smart, Production of shaped PBI articles, US Patent 3,502,606, 1970.
  • A.A. Zakhidov, et al., Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths, Science, 282, 897–901, 1998.
  • A. kongkanand, et al., Single-Wall Carbon Nanotubes Supported Platinum Nanoparticles with Improved Electrocatalytic Activity for Oxygen Reduction Reaction, Langmuir, 22, 2392–2396, 2006.
  • A. Zana, et al., Core-shell TiO2@C: towards alternative supports as replacement for high surface area carbon for PEMFC catalysts, Electrochim. Acta, 139, 21-28, 2014.
  • A. Reiner, et al., Co-sputtering: a novel platinum–carbon catalyst preparation method, In: 3rd European PEFC forum, Lucerne, Poster 109, 2005.
  • A. Pozio, et al., Comparison of high surface Pt/C catalysts by cyclic voltammetry, J. Power Sources, 105, 13-19, 2002.
  • A. Kaniyoor, S. Ramaprabhu, A raman spectroscopic investigation of graphite oxide derived graphene, AIP Adv., 2, 032183-032196, 2012.
  • A. Hamnett, B.J. Kennedy, Bimetallic carbon supported anodes for the direct methanol-air fuel cell, Electrochim. Acta, 33, 1613-1618, 1988.
  • A. Guha, et al., Electrochemical properties of hybrid typed electrocatalyst using Pt/carbon molecular sieve synthesized by zeolite template and Pt carbon black, Carbon, 45, 1506–1517, 2007.
  • A. Fischer, J. Jindra, H. Wendt, Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells, J. Appl. Electrochem., 28, 277-282, 1998.
  • A. El-kharouf, B.G. Pollet, Chapter 4-gas diffusion media and their degradation,in: Polymer Electrolyte Fuel Cell Degradation, Academic Press, Boston, 215-247, 2012.
  • A. Aramata, I. Toyoshima, M. Enyo, Study of methanol electrooxidation on Rh Sn oxide, Pt Sn oxide, and Ir Sn oxide in comparison with that on the Pt metals, Electrochim. Acta, 37, 1317-1320, 1992.