박사

리포좀, 폴리머 기반 암세포 표적 치료용 전달체 합성 및 활성분석 : Synthesis and Characterization of Lipo/polymersomal nanoformulations for targeted/organelle specific delivery of therapeutic molecules to cancer cells

논문상세정보
' 리포좀, 폴리머 기반 암세포 표적 치료용 전달체 합성 및 활성분석 : Synthesis and Characterization of Lipo/polymersomal nanoformulations for targeted/organelle specific delivery of therapeutic molecules to cancer cells' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • CD44 receoptor
  • Liposome
  • Polymer
  • antimycin A
  • curcumin
  • drug delivery
  • gene delivery
  • mitochondria targeting
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
290 0

0.0%

' 리포좀, 폴리머 기반 암세포 표적 치료용 전달체 합성 및 활성분석 : Synthesis and Characterization of Lipo/polymersomal nanoformulations for targeted/organelle specific delivery of therapeutic molecules to cancer cells' 의 참고문헌

  • de Gramont, A.; Watson, S.; Ellis, L. M.; Rodon, J.; Tabernero, J.; de Gramont, A.; Hamilton, S. R., Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat Rev Clin Oncol 2015, 12, (4), 197-212.
  • Zong W.-X., Thompson C., Necrotic death as a cell fate. Genes & Development 2006, 20, 1-15
  • Zanta, M. A., Belguise-Valladier, P., and Behr, J. P. (1999) Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. 96, 91-96.
  • Yu, J.; Chu, X.; Hou, Y. L., Stimuli-responsive cancer therapy based on nanoparticles. Chemical Communications 2014, 50, (79), 11614-11630.
  • Yu, J. M.; Li, Y. H.; Qiu, L. Y.; Jin, Y., Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: Preparation, characterization, and preliminary assessment as a new drug delivery carrier. Eur Polym J 2008, 44, (3), 555- 565.
  • Yu, G.; Han, J.; Ko, K.; Choi, J., Cationic oligopeptide-conjugated mitochondria targeting sequence as a novel carrier system for mitochondria. Macromol. Res. 2014, 22, (1), 42-46.
  • Yu, G. S.; Han, J.; Ko, K. S.; Choi, J. S., Cationic oligopeptide-conjugated mitochondria targeting sequence as a novel carrier system for mitochondria. Macromol Res 2014, 22, (1), 42-46.
  • Yeh, C. T.; Su, C. L.; Huang, C. Y. F.; Lin, J. K. Y.; Lee, W. H.; Chang, P. M. H.; Kuo, Y. L.; Liu, Y. W.; Wang, L. S.; Wu, C. H.; Shieh, Y. S.; Jan, Y. H.; Chuang, Y. J.; Hsiao, M.; Wu, A. T. H., A Preclinical Evaluation of Antimycin A as a Potential Antilung Cancer Stem Cell Agent. Evid-Based Compl Alt 2013.
  • Yang, S. Y.; Miah, A.; Pabari, A.; Winslet, M., Growth Factors and their receptors in cancer metastases. Frontiers in Bioscience-Landmark 2011, 16, 531-U427.
  • Weissig, V., DQAsomes as the Prototype of Mitochondria-Targeted Pharmaceutical Nanocarriers: Preparation, Characterization, and Use. In Mitochondrial Medicine, Weissig, V.; Edeas, M., Eds. Springer New York: 2015; Vol. 1265, pp 1-11.
  • Wang, X.; Oldani, M. J.; Zhao, X.; Huang, X.; Qian, D., A review of cancer risk prediction models with genetic variants. Cancer Inform 2014, 13, (Suppl 2), 19-28.
  • Wang, X.-H.; Peng, H.-S.; Yang, L.; You, F.-T.; Teng, F.; Tang, A.-W.; Zhang, F.-J.; Li, X.-H., Poly-l-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. Journal of Materials Chemistry B 2013, 1, (38), 5143-5152.
  • Wang, X. H.; Peng, H. S.; Yang, L.; You, F. T.; Teng, F.; Tang, A. W.; Zhang, F. J.; Li, X. H., Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. J Mater Chem B 2013, 1, (38), 5143- 5152.
  • Wang, Q. L.; Zhuang, X. Y.; Mu, J. Y.; Deng, Z. B.; Jiang, H.; Zhang, L. F.; Xiang, X. Y.; Wang, B. M.; Yan, J.; Miller, D.; Zhang, H. G., Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids (vol 4, pg 1867, 2013). Nat Commun 2016, 7.
  • Wang, F.; Ogasawara, M. A.; Huang, P., Small mitochondria-targeting molecules as anti-cancer agents. Mol Aspects Med 2010, 31, (1), 75-92.
  • Viscomi, C.; Bottani, E.; Zeviani, M., Emerging concepts in the therapy of mitochondrial disease. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847, (6–7), 544-557.
  • Toy, R.; Bauer, L.; Hoimes, C.; Ghaghada, K. B.; Karathanasis, E., Targeted nanotechnology for cancer imaging. Advanced Drug Delivery Reviews 2014, 76, 79-97.
  • Toh, Y. C., Zhang, C., Zhang, J., Khong, Y. M., Chang, S., Samper, V. D., van Noort, D., Hutmacher, D. W., and Yu, H. (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab chip 7, 302-309.
  • Takeuchi, K., and Ito, F. (2011) Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull. 34, 1774-1780.
  • Taetz, S.; Bochot, A.; Surace, C.; Arpicco, S.; Renoir, J. M.; Schaefer, U. F.; Marsaud, V.; Kerdine-Roemer, S.; Lehr, C. M.; Fattal, E., Hyaluronic Acid-Modified DOTAP/DOPE Liposomes for the Targeted Delivery of Anti-Telomerase siRNA to CD44-Expressing Lung Cancer Cells. Oligonucleotides 2009, 19, (2), 103-115.
  • Suresh, S., Biomechanics and biophysics of cancer cells. Acta Materialia 2007, 55, (12), 3989-4014.
  • Sudhakar, A., History of Cancer, Ancient and Modern Treatment Methods. J Cancer Sci Ther 2009, 1, (2), 1-4.
  • Srinivasarao, M.; Galliford, C. V.; Low, P. S., Principles in the design of ligandtargeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015, 14, (3), 203-219.
  • Srinivas, P. R.; Barker, P.; Srivastava, S., Nanotechnology in Early Detection of Cancer. Lab Invest 0000, 82, (5), 657-662.
  • Soussi, T., and Lozano, G. (2005) p53 mutation heterogeneity in cancer. Biochem. Biophys. Res. Commun. 331, 834-842.
  • Slater, E. C., The mechanism of action of the respiratory inhibitor, antimycin. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 1973, 301, (2), 129- 154.
  • Sivitz, W. I.; Yorek, M. A., Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxidants & redox signaling 2010, 12, (4), 537-77.
  • Sivitz, W. I.; Yorek, M. A., Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities. Antioxidants & Redox Signaling 2010, 12, (4), 537-577.
  • Singh, S.; Khar, A., Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anti-cancer agents in medicinal chemistry 2006, 6, (3), 259-70.
  • Sharma, S.; Chopra, K.; Kulkarni, S. K., Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytotherapy Research 2007, 21, (3), 278-283.
  • Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G., Treating metastatic cancer with nanotechnology. Nature reviews. Cancer 2012, 12, (1), 39-50.
  • Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G., Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012, 12, (1), 39-50.
  • Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., and Garrido, C. (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J. Leukocyte Biol. 81, 15-27.
  • Sanna, V.; Pala, N.; Sechi, M., Targeted therapy using nanotechnology: focus on cancer. International Journal of Nanomedicine 2014, 9, 467-483.
  • Sancho, P.; Galeano, E.; Nieto, E.; Delgado, M. D.; Garcia-Perez, A. I., Dequalinium induces cell death in human leukemia cells by early mitochondrial alterations which enhance ROS production. Leukemia Research 2007, 31, (7), 969-978.
  • Reddy, C. A.; Somepalli, V.; Golakoti, T.; Kanugula, A. K.; Karnewar, S.; Rajendiran, K.; Vasagiri, N.; Prabhakar, S.; Kuppusamy, P.; Kotamraju, S.; Kutala, V. K., Mitochondrial-Targeted Curcuminoids: A Strategy to Enhance Bioavailability and Anticancer Efficacy of Curcumin. Plos One 2014, 9, (3).
  • Pathak, R. K.; Kolishetti, N.; Dhar, S., Targeted nanoparticles in mitochondrial medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2015, 7, (3), 315-329.
  • Park, J. H.; Kwon, S.; Nam, J. O.; Park, R. W.; Chung, H.; Seo, S. B.; Kim, I. S.; Kwon, I. C.; Jeong, S. Y., Self-assembled nanoparticles based on glycol chitosan bearing 5beta-cholanic acid for RGD peptide delivery. Journal of controlled release : official journal of the Controlled Release Society 2004, 95, (3), 579-88.
  • Park, J. H.; Kwon, S.; Lee, M.; Chung, H.; Kim, J. H.; Kim, Y. S.; Park, R. W.; Kim, I. S.; Seo, S. B.; Kwon, I. C.; Jeong, S. Y., Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials 2006, 27, (1), 119-126.
  • Park, J. H., Cho, H. J., Yoon, H. Y., Yoon, I. S., Ko, S. H., Shim, J. S., Cho, J. H., Park, J. H., Kim, K., Kwon, I. C., and Kim, D. D. (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. of controlled release 174, 98-108.
  • Oh, E. J., Park, K., Kim, K. S., Kim, J., Yang, J.-A., Kong, J.-H., Lee, M. Y., Hoffman, A. S., and Hahn, S. K. (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Controlled Release 141, 2-12.
  • Nam, H. Y.; Kwon, S. M.; Chung, H.; Lee, S. Y.; Kwon, S. H.; Jeon, H.; Kim, Y.; Park, J. H.; Kim, J.; Her, S.; Oh, Y. K.; Kwon, I. C.; Kim, K.; Jeong, S. Y., Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. Journal of Controlled Release 2009, 135, (3), 259-267.
  • Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., Smith, M. R., Kwak, E. L., Digumarthy, S., Muzikansky, A., Ryan, P., Balis, U. J., Tompkins, R. G., Haber, D. A., and Toner, M. (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235-1239.
  • Murphy, M. P., Targeting lipophilic cations to mitochondria. Bba-Bioenergetics 2008, 1777, (7-8), 1028-1031.
  • Mishra, S.; Palanivelu, K., The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Annals of Indian Academy of Neurology 2008, 11, (1), 13-9.
  • Mintzer, M. A., and Simanek, E. E. (2009) Nonviral vectors for gene delivery. Chem. Rev. 109, 259-302.
  • Mallick, S., and Choi, J. S. (2014) Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J. Nanosci. Nanotechnol. 14, 755-65.
  • Lyrawati, D.; Trounson, A.; Cram, D., Expression of GFP in the Mitochondrial Compartment Using DQAsome-Mediated Delivery of an Artificial Mini-mitochondrial Genome. Pharm Res 2011, 28, (11), 2848-2862.
  • Low, P. S., Henne, W. A., and Doorneweerd, D. D. (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41, 120-129.
  • Lin, M. T.; Beal, M. F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, (7113), 787-795.
  • Li, S. D.; Huang, L., Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 0000, 13, (18), 1313-1319.
  • Li, J.; Ma, X.; Yu, W.; Lou, Z.; Mu, D.; Wang, Y.; Shen, B.; Qi, S., Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats. PloS one 2012, 7, (9), e46498.
  • Li, J.; Ma, X. S.; Yu, W.; Lou, Z. Q.; Mu, D. L.; Wang, Y.; Shen, B. Z.; Qi, S. H., Reperfusion Promotes Mitochondrial Dysfunction following Focal Cerebral Ischemia in Rats. Plos One 2012, 7, (9).
  • Lee, S. J.; Kim, E. A.; Song, K. S.; Kim, M. J.; Lee, D. H.; Kwon, T. K.; Lee, T. J., Antimycin A sensitizes cells to TRAIL-induced apoptosis through upregulation of DR5 and downregulation of c-FLIP and Bcl-2. Int J Oncol 2012, 41, (4), 1425-1430.
  • Kroemer, G.; Galluzzi, L.; Brenner, C., Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007, 87, (1), 99-163.
  • Kroemer, G., Mitochondria in cancer. Oncogene 0000, 25, (34), 4630-4632.
  • Kraft, J. C., Freeling, J. P., Wang, Z., and Ho, R. J. Y. (2014) Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. J. Pharm. Sci. 103, 29-52.
  • Koomen, J. M., Haura, E. B., Bepler, G., Sutphen, R., Remily-Wood, E. R., Benson, K., Hussein, M., Hazlehurst, L. A., Yeatman, T. J., Hildreth, L. T., Sellers, T. A., Jacobsen, P. B., Fenstermacher, D. A., and Dalton, W. S. (2008) Proteomic contributions to personalized cancer care. Mol. Cell Proteomics 7, 1780-1794.
  • Kim, T.-H.; Seo, H.; Han, J.; Ko, K.; Choi, J., Polyethylenimine-grafted polyamidoamine conjugates for gene delivery with high efficiency and low cytotoxicity. Macromol. Res. 2014, 22, (7), 757-764.
  • Kawasaki, E. S., and Player, A. (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed. Nanotech. Biol. Med. 1, 101-109.
  • Jiang, L.; Li, L.; He, X.; Yi, Q.; He, B.; Cao, J.; Pan, W.; Gu, Z., Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 2015, 52, 126-139.
  • Ikeda, Y., and Nagasaki, Y. (2012) PEGylation Technology in Nanomedicine, Adv. Polym. Sci. 247, 115-140.
  • Hyung Park, J.; Kwon, S.; Lee, M.; Chung, H.; Kim, J.-H.; Kim, Y.-S.; Park, R.- W.; Kim, I.-S.; Bong Seo, S.; Kwon, I. C.; Young Jeong, S., Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials 2006, 27, (1), 119-126.
  • Hynes, N. E.; Lane, H. A., ERBB receptors and cancer: The complexity of targeted inhibitors. Nature Reviews Cancer 2005, 5, (5), 341-354.
  • Horton, K. L.; Stewart, K. M.; Fonseca, S. B.; Guo, Q.; Kelley, S. O., Mitochondria-penetrating peptides. Chem Biol 2008, 15, (4), 375-382.
  • Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991) p53 mutations in human cancers. Science 253, 49-53.
  • Hoffman, R. M. (1984) Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim. Biophys. Acta 738, 49-87.
  • Heath, J. R., Davis, M. E., and Hood, L. (2009) Nanomedicine targets cancer. Sci. Am. 300, 44-51.
  • Hail, N., Jr., Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis : an international journal on programmed cell death 2005, 10, (4), 687-705.
  • Hail, N., Jr., Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis 2005, 10, (4), 687-705.
  • Greish, K. (2010) Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting. Cancer Nanotechnol. 624, 25-37.
  • Garman, K. S., Nevins, J. R., and Potti, A. (2007) Genomic strategies for personalized cancer therapy. Hum. Mol. Genet. 16, 226-232.
  • Galeano, E.; Nieto, E.; Garc a-P rez, A. I.; Delgado, M. D.; Pinilla, M.; Sancho, P., Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines: Mitochondrial implication in cell death. Leukemia Research 2005, 29, (10), 1201-1211.
  • Frangioni, J. V., New technologies for human cancer imaging. J Clin Oncol 2008, 26, (24), 4012-21.
  • Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nature reviews. Cancer 2005, 5, (3), 161-71.
  • Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005, 5, (3), 161-171.
  • El-Aneed, A. (2004) An overview of current delivery systems in cancer gene therapy. J. Controlled Release 94, 1-14.
  • Deshayes, S., Morris, M. C., Divita, G., and Heitz, F. (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839-1849.
  • Dean, M., and Lou, H. (2013) Genetics and genomics of prostate cancer. Asian J. Androl. 15, 309-313.
  • D'Souza, G. G. M.; Rammohan, R.; Cheng, S. M.; Torchilin, V. P.; Weissig, V., DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. Journal of Controlled Release 2003, 92, (1-2), 189-197.
  • Clarke, H. J.; Chambers, J. E.; Liniker, E.; Marciniak, S. J., Endoplasmic reticulum stress in malignancy. Cancer cell 2014, 25, (5), 563-73.
  • Chow, E. K., and Ho, D. (2013) Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5, 216.
  • Choi, K. Y., Saravanakumar, G., Park, J. H., and Park, K. (2012) Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloid Surface B 99, 82-94.
  • Choi, J. S.; Lee, E. J.; Jang, H. S.; Park, J. S., New Cationic Liposomes for Gene Transfer into Mammalian Cells with High Efficiency and Low Toxicity. Bioconjugate Chemistry 2001, 12, (1), 108-113.
  • Cho, H.-J., Yoon, H. Y., Koo, H., Ko, S.-H., Shim, J.-S., Lee, J.-H., Kim, K., Chan Kwon, I., and Kim, D.-D. (2011) Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic for tumor-targeted delivery of docetaxel. Biomaterials 32, 7181-7190.
  • Cho, H. J., Yoon, I. S., Yoon, H. Y., Koo, H., Jin, Y. J., Ko, S. H., Shim, J. S., Kim, K., Kwon, I. C., and Kim, D. D. (2012) Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33, 1190-1200.
  • Cho, H. J., Yoon, H. Y., Koo, H., Ko, S. H., Shim, J. S., Cho, J. H., Park, J. H., Kim, K., Kwon, I. C., and Kim, D. D. (2012) Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J. controlled release 162, 111-118.
  • Cho, D. Y.; Cho, H.; Kwon, K.; Yu, M.; Lee, E.; Huh, K. M.; Lee, D. H.; Kang, H. C., Triphenylphosphonium-Conjugated Poly(ε-caprolactone)-Based Self-Assembled Nanostructures as Nanosized Drugs and Drug Delivery Carriers for Mitochondria- Targeting Synergistic Anticancer Drug Delivery. Advanced Functional Materials 2015, 25, (34), 5479-5491.
  • Chamberlain, G. R.; Tulumello, D. V.; Kelley, S. O., Targeted Delivery of Doxorubicin to Mitochondria. Acs Chem Biol 2013, 8, (7), 1389-1395.
  • Biswas, S.; Dodwadkar, N. S.; Piroyan, A.; Torchilin, V. P., Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012, 33, (18), 4773-4782.
  • Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2-25.
  • Arsianti, A.; Tanimoto, H.; Morimoto, T.; Bahtiar, A.; Takeya, T.; Kakiuchi, K., Synthesis and anticancer activity of polyhydroxylated 18-membered analogue of antimycin A3. Tetrahedron 2012, 68, (13), 2884-2891.
  • Antonicelli, A., Cafarotti, S., Indini, A., Galli, A., Russo, A., Cesario, A., Lococo, F. M., Russo, P., Mainini, A. F., Bonifati, L. G., Nosotti, M., Santambrogio, L., Margaritora, S., Granone, P. M., and Dutly, A. E. (2013) EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation. Int. J. Med. Sci. 10, 320-330.
  • Alam, M. A.; Rahman, M. M., Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. Journal of diabetes and metabolic disorders 2014, 13, 60.
  • Alam, M. A.; Rahman, M. M., Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. Journal of Diabetes & Metabolic Disorders 2014, 13, (1), 1-11.
  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., and Nejati-Koshki, K. (2013) Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102.
  • Aggarwal, B. B.; Harikumar, K. B., Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell B 2009, 41, (1), 40- 59.
  • Abdul, M.; Santo, A.; Hoosein, N., Activity of potassium channel-blockers in breast cancer. Anticancer research 2003, 23, (4), 3347-51.