박사

Wood Qualities and Potential Utilizations for Bioenergy and Nanotechnology of Paulownia tomentosa

Yue Qi 2016년
논문상세정보
' Wood Qualities and Potential Utilizations for Bioenergy and Nanotechnology of Paulownia tomentosa' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Carbonization
  • Wood qualities
  • bioenergy
  • nano-cellulose
  • paulownia tomentosa
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
109 0

0.0%

' Wood Qualities and Potential Utilizations for Bioenergy and Nanotechnology of Paulownia tomentosa' 의 참고문헌

  • 1. Alexander LE (1969) X-ray diffraction in polymer science. Wiley-Intersciene, Amsterdam. pp: 23-424.
  • Yano H, Sugiyama J, Nakagaito AN (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Advance. Materials. 17 (2):31.
  • Yang H, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788.
  • Yadav NK, Vaidya BN, Henderson K, Lee JF, Stewart WM, Dhekney SA, Joshee N (2013) A Review of Paulownia Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree. American Journal of Plant Sciences (4): 2070-2082.
  • White RH (1987) Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci 19(4):446-52.
  • Wardrop AB (1964) The reaction anatomy of arborescent angiosperms. Academic press, New York London, pp: 405-456.
  • Von Aufsess BH (1973) Microscopic scope of lignification by staining methods. HolzRoh Werkst 31: 24-33.
  • Tsoumis GT (1991) Science and technology of wood. Van Nostrand Reinhold, New York, 111-160.
  • Todaro L, Rita A, Cetera P, D’Auria M (2015) Thermal treatment modifies the calorific value and ash content in some wood species. Fuel 140:1-3.
  • Todaro L, Dichicco P, Moretti N, D’Auria M. (2013) Effect of combined steam and heat treatments on extractives and lignin in sapwood and heartwood of turkey oak (Quercus cerris L.) wood. Bioresources 8(2): 1718-1730.
  • Timell, TE (1986) Compression wood in gymnosperms. Springer, Heidelberg.
  • Tarmian A, Azadfallah, M (2009) Variation of cell features and chemical composition in spruce consisting of opposite, normal and compression wood. BioResources 4(1): 194-204.
  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibers. Polym. Inter. 47:291-294.
  • TAPPI Test Methods (1992) Technical Association for Paper and Pulp Industries (TAPPI) Publication, Atlanta (USA).
  • Stokke DD, Manwiller FG (1994) Proportions of wood elements in stem, branch, and root wood of black oak (Quercus velutina). IAWA Journal 15(3): 301-310.
  • Somerville M, Jahanshahi S (2015) The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy 80: 471-478.
  • Slocum DH, McGinnes EAJ, Beall FC (1973) Charcoal yield, shrinkage, and density changes during carbonization of oak and hickory woods. Wood Sci 11:
  • Slocum DH, McGinnes EAJ, Beall FC (1973) Charcoal yield, shrinkage, and density changes during carbonization of oak and hickory woods.
  • Senelwa K, Sims REH (1999) Fuel characteristics of short rotation forest biomass. Biomass and Bioenergy 17: 127-144.
  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research Journal 29: 786-794.
  • Schuldt B, Leuschner C, Brock N, Horna V (2013) Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiology 33: 161-174.
  • Saxena, RC, Adhikari, DK, Goyal., HB (2009) Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews (13): 167-178.
  • Samir MASA, Alloin F, Dufresn A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612-626.
  • Saiki H (1982) The structure of domestic and imported woods in Japan. Japan Forest Technical Association, Tokyo, Japan.
  • Rao RV, Sharma B, Dayal R (1989) Anatomy of aerial root wood of Sonneratia caseolaris (L.) Engler (Sonneratioideae). IAWA Bull.n.s 10(4): 374-378.
  • Qi Y, Jang JH, Park SH, Kim NH (2014) Anatomical and Physical Characteristics of Korean Paulownia (Paulownia coreana) Branch Wood. Journal of Korean Wood science and technology 42(5): 510-515.
  • Qi Y, Jang JH, Hidayat W, Lee AH, Lee SH, Chae HM (2016) Carbonization of reaction wood from Paulownia tomentosa and Pinus densiflora branch woods. Wood Sci Technol pp: 1-15.
  • Qi Y, Jang JH, Hidayat W, Lee AH, Kim NH (2016) The physical and anatomical characteristics of Paulownia tomentosa grown in Korea. Journal of Korean Wood Sci Technol 44(2): 157-165.
  • Pramod S, Rao SK, Sundberg A (2013) Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul (Leucaena leucocephala (lam.) De wit.). Wood Sci Tech 47: 777-794.
  • Poorter L, McDonaldM I, Alarcon A, Fichtler E, Licona JC, PenaClaros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist 185: 481-492.
  • Phan AN, Ryu C, Sharifi VN, Swithenbank J (2008) Characterisation of slow pyrolysis products from segregated wastes for energy production. J Anal Appl Pyrolysis 81: 65-71
  • Patel RN (1971) Anatomy of stem and root wood of Pinus radiata D. Don. New Zealand Journal of Forest Science 11: 37-49.
  • Pandey MP, Kim CS (2011) Lignin depolymerizaton and conversion: a review of thermochemical methods. Chemical Engineering Technol 34: 29-41.
  • Palhares D, de Paula JE, Rodringues Pereira LA, dos Santos Silveira CE (2007) Comparative wood anatomy of stem, root and xylopodium of Brosimum gaudichaudii (Moraceae). IAWA Journal 28(1): 83-94.
  • Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technol 100: 1413-1418.
  • Muller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60: 474-479.
  • Medeiros ES, Mattoso LHC, Ito EN, Gregorski KS, Robertson HS, Offeman RD, Wood DF, Orts WJ, Imam SH (2008) Electrospun nanofibers of poly(vinyl alcohol) reinforced with Cellulose nanofibrils. J. Biobased Mater. and Bioenergy 2:1-12.
  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46.
  • McGinness EAJ, Harlow CA, Beall FC (1976) Use of scanning electron microscopy and image processing in wood charcoal studies. IITRI/SEM.
  • McGinnes EAJ, Kandeel SA, Szopa PS (1971) Some structure changes observed in the transformation of wood into charcoal. Wood Fiber 3:77-83.
  • Matsumura J, Butterfield BG (2001) Microfibril angles in the root wood of Pinus radiata and Pinus nigra. IAWA Journal 22: 57-62.
  • Liu ZJ, Fei BH, Jiang ZH, Liu XE (2014) Combustion characteristics of bamboo biochars. Bioresource Technol 167: 94-99.
  • Liu JY, Wu SB, Guo YL (2008) Analysis on pyrolysis products from black–liquor solid and technical lignin. Chemistry and Industry of Forest Products 28: 65-70.
  • Liodakis S, Katsigiannis W, Kakali G (2005) Ash properties of some dominant Greek forest species. Thermochimica Acta 437: 158-167.
  • Lilie RD (1977) Conn’s Biological Stains. Williams and Wilkins Co., Baltimore.
  • Lee WY, Kim NH (1993) Crystal structure of tension wood by X- ray diffraction method. J Korean Wood Sci Tech. 21(4): 65-73.
  • Lee WY (1997) The structure of Korean woods. -An Atlas of Scanning Electron Micrographs- Hyangmunsa, Seoul, Republic of Korea.
  • Lee SW, Inoue S, Teramoto Y, Endo T (2010) Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: Effect of hotcompressed water treatment", Bioresource Technology 101(24): 9645-9649.
  • Lee SW, Hwang WJ, Kim NH (1997) Some anatomical characteristics in tension and opposite woods of Quercus mongolica Fisher. J Korean Wood Sci Tech. 25(3): 43-49.
  • Lee PW (1994) The structures of Korean domestic woods. -Microscopic anatomy- JeongMinSa, Seoul, Republic of Korea.
  • Lee MR, Eom YG (2011) Comparative wood anatomy of stem and root in Koreangrown Yellow-poplar (Liriodendron tulipipfera L.). J Korean Wood Sci Tech 39(5): 406-419.
  • Lautner S, Zollfrank C, Fromm J (2012) Microfibril angle distribution of poplar tension wood. IAWA J 33: 431-439.
  • L pez F, P rez A, Zamudio MAM, De Alva HE, Garc a JC (2012) Paulownia as raw material for solid biofuel and cellulose pulp. Biomass and Bioenergy 45: 77-86.
  • Kwon SM, Jang JH, Kim NH (2014) Dimensional change of carbonized woods at low temperatures. J For Env Sci 30: 1-7.
  • Kwon SM (2010) Transition characteristics of the wood cell walls during carbonization. Ph.D theis, Kangwon National University, Republic of Korea Kwon SM, Jang JH, Kim NH (2014) Dimensional change of carbonized woods at low temperatures. J For Env Sci 30: 1-7.
  • Kumar R, Hu F, Hubbell CA, Ragauskas A, Wyman CE (2013) Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour. Technol. 130: 372-381.
  • Kumar R, Chandrashekar N, Pandey KK (2009) Fuel properties and combustion characteristics of Lantana camara and Eupatorium spp. Current Science 97.
  • Kumar R, Chandrashekar N (2013) Study on chemical, elemental and combustion characteristics of Lantana camara wood charcoal. J Indian Acad Wood Sci 10: 134- 139.
  • Kumar M, Gupta RC (1995) Scanning electron microscopic study of Acacia and Eucalyptus wood chars. J Mater Sci 30: 544-551.
  • Kown M (2008) Tension wood as a model system to explore to carbon partitioning between lignin and cellulose biosynthesis in woody plants. J Appl Biol Chem 51(3): 83-87.
  • Korean standards association (2004) KS F 2198, KS F 2203, KS F 2206 and KS F 2209.
  • Kondo T (2005) Nano-pulverization of native cellulose fibers by counter collision in water. Cellulose Commun. 12(4):189-192.
  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41: 990-1000.
  • Kim SK, Cho SB, Moon HI (2010) Neuroprotective effects of a sesquiterpene lactone and flavanones from Paulownia tomentosa Steud. against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Phytother. Res. pp: 1898-1900.
  • Kim NH, Hanna RB (2006) Morphological characteristics of Quercus variabilis charcoal prepared at different temperatures. Wood Sci Technol 40: 392-401.
  • Kim JH, Jang JH, Ryu JY, Hwang WH, Febraianto F, Kim NH (2013) Comparison of anatomical characteristics of White Jabon and Red Jabon grown in Indonesia. Journal of Korean Wood science and technology 41(4): 327-336.
  • Kim JH, Jang JH, Kwon SM, Febraianto F, Kim NH (2012) Anatomical properties of major planted and promising species growing in Indonesia. J Korean Wood Sci Tech 40(4): 244-256.
  • Kataki R, Konwer D (2001) Fuelwood characteristics of some indigenous woody species of north-east India. Biomass and Bioenergy. 20: 17-23.
  • Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energy from biomass. Fundamentals, techniques and procedures. 2nd ed. Springer, Berlin.
  • Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55: 250-257.
  • Kai T, Yamamoto S, Ishihara S (2000) The effect of carbonization temperature on the properties of wood charcoal. Resources Processing 47: 132–139.
  • KS E ISO562 (2012) Hard coal and coke-Determination of volatile matter. Korean standards association.
  • KS E ISO1171 (2012) Solid mineral fuels-Determination of ash content. Korean standards association.
  • KS E 3707 (2011) Determination of calorific of coal and coke. Korean standards association.
  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stem of Poplar ( Populus euramericana cv ‘Ghjoy’). IAWA J 22: 133-157.
  • Jo TS, Lee OK, Choi JW, Kim SK (2009) Changes of chemical bond in woody charcoal from different carbonization temperatures. J Korean Wood Sci Technol 37: 87-93.
  • Jim nez L, Rodriguez A, Ferrer JL, P rez A, Angulo V (2005) “Paulownia, a Fast Growing Plant, as a Raw Material for Paper Manufacturing,” Afinidad, (62): 100-105.
  • Jeong SH, Park BS (2008) Wood properties of the useful tree species grown in Korea. Korea Forest Research Institute 29: 348-368.
  • Jang JH, Lee SH, Endo T, Kim NH (2013) Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology 47: 925-937.
  • Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007a) Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. Journal of Ecology 95: 171-183.
  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3: 71-85.
  • IAWA Committee (1989) IAWA List of microscopic features for Hardwood identification. IAWA Bulletin n.s. 10(3): 219-332.
  • Haykırı-A ma H (2003) Combustion characteristics of different biomass materials. Energy Convers Manag 44: 155-162.
  • Hassan ML, Mathew AP, Hassan EA, Oksman K (2010) Effect of pretreatment of bagasse pulp on properties of isolated nanofibers and nanopaper sheets. Wood and Fiber Science 42(3):362-376.
  • Harada H, Goto T (1982) The structure of cellulose microfibrils in Volonia. “cellulose of other natural polymer systems”. Malcolm Brown, Jr., Eds., Plenum press: 383-401.
  • Han GS, Kim BR (2006) Characteristics of charcoal from wood pellet. J Korean Wood Sci Technol 34: 15-21.
  • Goto T, Harada H, Saiki H (1978) Fine structure of cellulose microfibrils in poplar gelatinous layer and valonia. Wood Science and Technology 12: 223-231.
  • Gindl W (2002) Comparing mechanical properties of normal and compression wood Norway spruce: the role of lignin in compression parallel to the grain. Holzforschung 56: 395-401.
  • Fuwape JA, Akindele SO (1997) Biomass yield and energy value of some fastgrowing multipurpose trees in Nigeria. Biomass and bioenergy 2: 101–106.
  • Furuno T, Saiki H, Harada H (1969) Ultrastructural feature of compression wood tracheids stressed to tensile failure. Mokuzai Gakkaishi 15: 104–108.
  • Fortunel C, Ruelle R, Beauchene J, Fine PVA, Baraloto C (2014) Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients. New Phytologist 202: 79-94.
  • Flynn H, Holder C (2001) Useful wood of the world. Forest Products Society 2nd Ed, Madison, WI, p.618
  • Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architechture. Bot Gaz 142: 82-95.
  • Elyounssi K, Halim M (2014) An investigation on the texture and microstructure of carbonized charcoals produced by two-step pyrolysis. J Anal Appl Pyrolysis 109: 258–265.
  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito N, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: Current international research into cellulose nanofibers and nanocomposites. J. Mater. Sci. 45:1-33.
  • Deniz F, Saygideger SD (2010) Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent. Bioresource Technology 101: 5137-5143.
  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 33–61.
  • Demirbas A (2003) Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convers Manag 44: 1481–1486.
  • Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42: 183–188.
  • Dadswell HE, Wardrop AB (1955) The structure and properties of tension wood. Holzforschung 9: 97-104.
  • Dadswell HE, Wardrop AB (1949) What is reaction wood? Aust For 13: 22-33.
  • Cutter BE, McGinnes EA (1981) A note on density change patterens in charred wood. Wood Fiber 13: 39-44.
  • Cutter BE, Cumbie BG, McGinnes EA (1980) SEM and shrinkage analyses of southern pine wood following pyrolysis. Wood Sci Technol 14: 115-130.
  • Clarir B, Ruelle J, Beauchene J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rainforest species about the presence of G-layer. IAWA J 27: 329-338.
  • Clarir B, Almeras T, Sugiyama J (2006) Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann For Sci 63: 507-510.
  • Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, Park KH (2013) Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem. 21: 3051-3057.
  • Chang F, Lee SH, Toba K, Nagatani A, Endo T (2012) Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci. Technol. 46:393-403.
  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose micriofibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102- 107.
  • Bridgewater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51: 3-22.
  • Bao FC, Jiang ZH, Lu XX, Luo XQ, Zhang SY (2001) Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci Technol 35: 363-375.
  • Ates S, Ni YH, Akg l M, Tozluoglu A (2008) Characterization and Evaluation of Paulownia elongata as a Raw Material for Paper Production. African J Biotech 7 (22): 4153- 4158.
  • Akyildiz MH, Kol HS (2010) Some technological properties anduses of paulownia (Paulownia tomentosa Steud.) wood. J Environ Biol31: 315-355.