박사

Experimental Study of Local Scouring at the Downstream of River Bed Protection = 하천 하상보호구조물 하류부에서 국부세굴에 관한 실험적 연구

논문상세정보
' Experimental Study of Local Scouring at the Downstream of River Bed Protection = 하천 하상보호구조물 하류부에서 국부세굴에 관한 실험적 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 토목 공학
  • Bed Shear Stress
  • Depth-averaged Relative Turbulence Intensity
  • Maximum Scour Depth
  • Mesh Grid Genereated Turbulent Flow
  • River Bed Protection
  • Turbulence Shear Layer
  • localscouring
  • 국부세굴
  • 실험적 연구
  • 하천 하상보호구조물
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
387 0

0.0%

' Experimental Study of Local Scouring at the Downstream of River Bed Protection = 하천 하상보호구조물 하류부에서 국부세굴에 관한 실험적 연구' 의 참고문헌

  • ul Haque, A., Yamada, F. A. S., and Chaudhry, S. (2007). “Assessment of turbulence models for turbulent flow over backward facing step”, Proceedings of the World Congress on Engineering II.
  • Van der Meulen, T. and Vinj , J. J. (1975). “Three-Dimensional Local Scour in Non-cohesive Sediments”, Proceedings of 16th IAHR-congress, san Paulo, Brasil.
  • USBR. (1987). Hydraulic Laboratory Techniques, A Water Resources Technical Publication, Bureau of Reclamation, U.S. Department of the Interior, USA.
  • USBR. (1987). Design of Small Dams, A Water Resources Technical Publication, Bureau of Reclamation, U.S. Department of the Interior, USA.
  • USBR. (1984). Hydraulic Design of Stilling Basins and Energy Dissipators, A Water Resources Technical Publication, Bureau of Reclamation, U.S. Department of the Interior, USA.
  • USACE. (2006). Hydraulic Design of Navigation Locks, Engineering Manual, U.S. Army Corps of Engineers, USA.
  • USACE. (1987). Hydraulic Design of Navigation Dams, Engineering Manual, U.S. Army Corps of Engineers, USA.
  • Tritton, D.J. (1988). Physical Fluid Dynamics, 2nd Edition, Oxford University Press.
  • Termini, D. (2011). “Bed Scouring Downstream of Hydraulic Structures Under Steady Flow Conditions: Experimental Analysis of Space and Time Scales and Implications for Mathematical Modeling”, Catena, Vol. 84, pp. 125-135.
  • Tachie, M., Bergstrom, D., and Balachandar, R. (2000). “Rough wall turbulent boundary layers in shallow open channel flow”, Journal of Fluids Engineering, Vol. 122, pp. 533-541.
  • TSI Inc. (2004). Insight3G user's manual.
  • Stella, A., Guj, G. Kompenhans, J., Raffel, M., and Richard, H. (2001). “Application of particle velocimetry to combusting flows: design considerations and uncertainty assessment”, Exp Fluids, 30, 167-180.
  • Sim es, F. J. M. (2014). “Shear velocity criterion for incipient motion of sediment”, Water Science and Engineering, Vol. 7, No. 2, pp. 183-193.
  • Shields, A. (1936) Application of Similarity Principles and Turbulence Research to Bedload Movement. Berlin: Wasserbau Schiffbau.
  • Schultz, M. P., and Flack, K. A. (2003). “Turbulent boundary layers over surfaces smoothed by sanding”, ASME, Journal of Fluids Engineering, Vol. 125, pp. 863- 870.
  • Rashid, S. M. H. (2010). “Effectiveness of Widely Used Crtical Velocity and Bed Shear Stress Equations for Different Types of Sediment Beds”, MsD. Thesis, Washinton State University.
  • Rani, H. P., Sheun, T. W. H., and Tsai, E. S. F. (2007). “Eddy structures in a transitional backward-facing step flow”, Journal of Fluid Mechanics, Vol. 588, pp. 45-58.
  • Raffel, M., Gharib, M., Ronneberger, O., and Kompenhans, J. (1998). Particle Image Velocimetry- A Practical Guide, Springer.
  • O’Neill, P. L., Honnery, N. D., and Soria, J. (2004). “Autocorrelation Functions and the Determination of Integral Length with Reference to Experimental and Numerical Data”, Proceedings of 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, pp. 13-17.
  • Nortek (2009). User Guide of Vectrino Velocimeter.
  • Nikora, V., and Goring, D. (2000). “Flow turbulence over fixed and weakly mobile gravel beds”, Journal of Hydraulic Engineering, Vol. 126, pp. 679-690.
  • Nezu, I, and Nakagawa, H. (1993). Turbulence in Open-Channel Flows, IAHR Monograph.
  • Neumann, J., and Wengle, H. (2003). “DNS and LES of passively controlled turbulent backwardfacing step flow”, Flow, Turbulence and Combustion, Vol. 71, pp. 297-310.
  • Nakagawa, H., and Nezu, I. (1987). “Experimental investigation on turbulent structure of a backward facing step flow in an open channel”, Journal of Hydraulic Research, Vol. 25, pp. 67-88.
  • Malley, K. O., Fitt, A. D., Jones, T. V., Ockendon, J. R., and Wilmott, P. (1991). “Models for high-Reynolds-number flow down a step”, Journal of Fluid Mechanics, Vol. 222, pp. 139-155.
  • Lee, T., and Mateescu, D. (1998). “Experimental and numerical investigation of 2-D backward facing step flow”, Journal of Fluids and Structures, Vol. 12, pp. 703-716.
  • Lee, D. H. and Son, M. (2012). “Investigation on Mean Diameter of Bed Material and Relationship with Tractive Force in Korean Rivers”, Journal of the Korean Geomorphological Association, Vol. 18, No. 1, pp. 1-11 (in Korean).
  • Le, H., Moin, P., and Kim, J. (1997). “Direct numerical simulation of turbulent flow over a backward-facing step”, Journal of Fluid Dynamics, Vol. 330, pp. 349- 373.
  • Kundu, P. K., and Cohen, I. M. (2008). Fluid Mechanics (4th revised edition), Academic Press
  • Kim, J., Kline, S. J., and Johnston, J. P. (1985). “Investigation of a reattaching turbulent shear layer: flow over a backward-facing step”, Journal of Fluids Engineering, Vol. 102, pp. 302-308.
  • Keirsbulck, L., Labraga, L., Mazouz, A., and Tournier, C. (2002). “Surface roughness effects on turbulent boundary layer structures”, Journal of Fluids Engineering, Vol. 124, pp. 127-135.
  • Katul, G.G., and Parlange, M.B. (1995). “Analysis of Land Surface Heat Fluxes using the Orthonormal Wavelet Approach”, Water Resource Research, Vol. 31, pp. 2743-2749.
  • Kasagi, N., and Matsunaga, A. (1995). “Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow”, International Journal of Heat and Fluid Flow, Vol. 16, pp. 477-485.
  • KWRA. (2009). Design Criteria of the Hydraulic Structures and River Managements in Rivers, KWRA.
  • Jovic, S., and Driver, D., (1995). “Reynolds number effect on the skin friction in separated flows behind a backward-facing step”, Experimental Fluids, Vol. 18, pp. 464-467.
  • Jovic, S. (1996). “An Experimental Study of a Separated/Reattached Flow Behind a Backward-facing Step”, NASA Technical Memorandum 110384.
  • Jimenez, J. (2004). “Turbulent flows over rough walls”, Annual Review of Fluid Mechics, Vol. 36, pp. 173-96.
  • Hurther, D., and Lemmin, U. (2000). “Shear stress statistics and wall similarity analysis in turbulent boundary layers using a high resolution 3-D acoustic Doppler velocimetry profiler”, Joural of Oceanic Engineering, Vol. 25, pp. 446-457.
  • Hoffmans, G. J. C. M., and Verheij, H. J. (1997). Scour Manual, Taylor and Francis Group.
  • Hoffmans, G. J. C. M., and Pilarczyk, K. W. (1995). “Local Scour Downstream of Hydraulic Structures”, Journal of Hydraulic Engineering, ASCE, Vol. 121 (4), pp. 326-340.
  • Graf, W. H., and T. Song. (1995). “Sediment Transport in Unsteady Flow”, Proceedings of 26th Congress, IAHR, Vol. 1. London.
  • Graf, W. H. and Song, T. (2010). “Bed-shear stress in non-uniform and unsteady open-channel flows”, Journal of Hydraulic Research, Vol. 33, no. 5, pp. 699-704
  • Goring, D. G., and Nikora, V. I. (2002). “Despiking Acoustic Doppler Velocimeter Data”, Journal of Hydraulic Engineering, Vol. 128, No. 1, pp. 117-126
  • Gartling, D. K. (1990). A test problem for outflow boundary conditions - flow over a backwardfacing step”, International Journal of Numerical Methods in Fluids, Vol. 11, 953-967.
  • Garc a, C. M., Cantero, M. I., Niňo, Y., and Garc a, M. H. (2005). “Turbulence Measurements with Acoustic Doppler Velocimeters”, Journal of Hydraulic Engineering, ASCE, Vol. 131, No. 12, pp. 1062-1073.
  • Fessler, J. R., and Eaton, J. K. (1999). “Turbulence modifiaction by particles in a backward-facing flow”, Journal of Fluid Mechanics, Vol. 394, pp. 97-117.
  • Chiang, T. P., and Sheu, T. W. H. (1999). “A numerical revisit of backward-facing step flow problem”, Physics of Fluids, Vol. 11, No. 4, pp. 862-874.
  • CIRIA, (2007). The Rock Manual: the use of rock in hydraulic engineering, CIRIA C638.
  • Buchko, M., Kolkman, P., Pilarczyk, K. (1987). “Investigation of local scour in cohesionless sediments using a tunnel-model”, IAHR-congress, Lausanne; Topics in hydraulic modeling, pp. 233-239.
  • Breusers, H. N. C. (1967). “Time Scale of two-dimensional local scour”, Proceedings of 12th IAHR-congress, Fort Collins, Colorado, pp. 275-282.
  • Bligh, W. G. (1916). Dams and Weirs: An Analytical and Practical Treatise on Gravity Dams and Weian Analytical and Practical Treatise on Gravity Dams and Weirs, Arch and Buttress Dams, Submerged Weirs and Barrages, Kessinger Publishing.
  • Barkley, D., Gabriela, M., Gomes, M., and Henderson, R. D. (2002). “Threedimensional instability in flow over a backward-facing step”, Journal of Fluid Mechanics, Vol. 473, pp. 167-190.
  • Balachandar, R., and Patel, V. (2002). “Rough wall boundary layer on plates in open channels”, Journal Hydraulic Engineering, Vol. 128, pp. 947-951.
  • Balachandar, R. and Kells, J. A. (1997). “Local Channel Scour in Uniformly graded sediments: the time-scale problem”, Canadian Journal of Civil Engineering, Vol. 24, pp. 799-807.
  • Armaly, B. F., Durst, F., Pereira, J. C. F., and Schonung, B. (1983). “Experimental and theoretical investigation of backward-facing step flow”, Journal of Fluid Mechanics, Vol. 127, pp. 473-496.
  • Akselvoll, K., and Moin, P., (1996). “Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward facing step”, Journal of Fluid Dynamics, Vol. 315, pp. 387-411.
  • Adrian, R. J., and Jerry, W. (2010). Particle Image Velocimetry, Cambridge University Press.