박사

전기방사를 이용한 골 전도성 및 생분해성 부직포 제조

김인애 2016년
논문상세정보
' 전기방사를 이용한 골 전도성 및 생분해성 부직포 제조' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 외과의 다방면
  • PVA 전달체 시스템
  • 골전도성
  • 부직포
  • 생분해성
  • 저 결정성 탄산 아파타이트
  • 전기방사
  • 칼슘실리케이트
  • 칼슘실리케이트/고분자
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
2,300 0

0.0%

' 전기방사를 이용한 골 전도성 및 생분해성 부직포 제조' 의 참고문헌

  • 생체기능성 생분해성 고분자
    김상헌 김수현 Polymer Science and Technology, 18[5] 450-57 [2007]
  • 골형태 백질과 흡수성차폐막이 치 주조직 재생에 미치는 영향
    권영혁 박준봉 이만섭 임상철 대한치주과학회지, 30[4] 757-79 [2000]
  • Z. Ma, W. He, T. Yong, and S. Ramakrishna, "Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation", Tissue Eng, 11[7-8] 1149-58 (2005).
  • Z. Ma, M. Kotaki, T. Yong, W. He, and S. Ramakrishna, "Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering", Biomaterials, 26[15] 2527-36 (2005).
  • Y.-M. Kang, K.-H. Kim, Y.-J. Seol, and S.-H. Rhee, "Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method", Acta Biomater, 5[1] 462-69 (2009).
  • Y.-M. Kang, K.-H. Kim, Y. J. Seol, and S.-H. Rhee, "Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method", Acta Biomaterialia, In Press, Corrected Proof.
  • Y.-J. Seol, K.-H. Kim, Y. M. Kang, I. A. Kim, and S.-H. Rhee, "Bioactivity, pre-osteoblastic cell responses, and osteoconductivity evaluations of the electrospun non-woven SiO2-CaOgelfabrics",J Biomed Mater Res, 90B[2] 679-87 (2009).
  • Y.-J. Lee, J. S. Ko, and H.-M. Kim, "The role of cell signaling defects on the proliferation of osteoblasts on the calcium phosphate apatite thin film", Biomaterials, 27[20] 3738-44 (2006).
  • Y. Zhang, J. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. Lim, "Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering", Biomaterials, 29[32] 4314-22 (2008).
  • Y. Wu, L. L. Hench, J. Du, K. L. Choy, and G. J, "Preparation of hydroxyapatite fibers by electrospinning technique", J Am Ceram Soc, 87[10] 1988–91 (2004).
  • Y. Taguchi, T. Yamamuro, T. Nakamura, N. Nishimura, T. Kokubo, E. Takahata, and S. Yoshihara, "A bioactive glass powder-ammonium hydrogen phosphate composite for repairing bone defects", J Appl Biomater, 1[3] 217-23 (1990).
  • Y. Luu, K. Kim, B. Hsiao, B. Chu, and M. Hadjiargyrou, "Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers", J Control Release, 89[2] 341-53 (2003).
  • Y. J. Seol, Y. M. Kang, I. A. Kim, and S. H. Rhee, "Preparation of a bioactive poly(lactic-co-glycolic)acid and silica gel mixed non-woven fabric", Key Eng Mater, 361-363 519-22 (2008).
  • Y. Abe, T. Kokubo, and T. Yamamuro, "Apatite coating on ceramics, metals and polymers utilizing a biological process " J Mater Sci: Mater Med, 1[4] 233-38 (1990).
  • X. Zong, K. Kim, D. Fang, S. Ran, B. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes", Polymer, 43[16] 4403-12 (2002).
  • X. Mo, C. Xu, M. Kotaki, and S. Ramakrishna, "Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation", Biomaterials, 25[10] 1883-90 (2004).
  • W.-J. Li, R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan, "A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells", Biomaterials, 26[6] 599-609 (2005).
  • W. Lai, J. Garino, and P. Ducheyne, "Silicon excretion from bioactive glass implanted in rabbit bone", Biomaterials, 23[1] 213-17 (2002).
  • W. He, T. Yong, Z. Ma, R. Inai, W. Teo, and S. Ramakrishna, "Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells", Tissue Eng, 12[9] 2457-66 (2006).
  • W. Cui, X. Li, S. Zhou, and J. Weng, "In situ growth of hydroxyapatite within electrospun poly (DL-lactide) fibers", J Biomed Mater Res, 82A[4] 831 - 41 (2007).
  • V. Thomas, D. Dean, and Y. Vohra, "Nanostructured biomaterials for regenerative medicine", Curr Nanosci, 2[3] 155-77 (2006).
  • T. Taguchi, Y. Muraoka, H. Matsuyama, A. Kishida, and M. Akashi, "Apatite coating on hydrophilic polymer-grafted poly(ethylene) films using an alternate soaking process", Biomaterials, 22[1] 53-8 (2001).
  • T. Taguchi, A. Kishida, and M. Akashi, "Hydroxyapatite formation on/in poly(vinyl alcohol) hydrogel matrices using a novel alternate soaking process", Chem Lett, 27[8] 711-12 (1998).
  • T. Taguchi, A. Kishida, and M. Akashi, "Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation", J Biomater Sci -Polym Ed, 10[3] 331-9 (1999).
  • T. Sun, S. Mai, D. Norton, J. W. Haycock, A. J. Ryan, and S. Macneil, "Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds", Tissue Eng, 11[7-8] 1023-33 (2005).
  • T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, "Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W", J Biomed Mater Res, 24[3] 331-43 (1990).
  • T. Kokubo, M. Shigematsu, Y. Nagashima, T. Tashiro, T. Nakamura, T. Yamamuro, and S. Higashi, "Apatite- and wollastonite-containing glass ceramics for prosthetic application", Bull Inst Chem Res, Kyoto Univ, 60 260-68 (1982).
  • T. Kokubo, M. Hanakawa, M. Kawashita, M. Minoda, T. Beppu, T. Miyamoto, and T. Nakamura, "Apatite formation on non-woven fabric of carboxymethylated chitin in SBF", Biomaterials, 25[18] 4485-88 (2004).
  • T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W", J Biomed Mater Res, 24 721-34 (1990).
  • T. Kokubo, H. Kushitani, C. Ohtsuki, and S. Sakka, "Chemical reaction of bioactive glasses and glass-ceramics with a simulated body fluid", J Mater Sci: Mater Med, 3 79-83 (1992).
  • T. Kokubo, H. Kushitani, C. Ohtsuki, S. Sakka, and T. Yamamuro, "Effects of ions dissolved from bioactive glass-ceramic on surface apatite formation", J Mater Sci: Mater Med, 4[1] 1-4 (1993).
  • T. Kokubo, "Surface chemistry of bioactive glass-ceramics", J Non-Cryst Solids, 120 138-51 (1990).
  • T. Kitsugi, T. Yamamuro, T. Nakamura, and T. Kokubo, "Bone bonding behavior of MgO-CaO-SiO2-P2O5-CaF2 glass (mother glass of A W-glass-ceramics)", J Biomed Mater Res, 23[6] 631-48 (1989).
  • T. J. Sill and H. A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering", Biomaterials, 29[13] 1989-2006 (2008).
  • T. Hanawa, M. Kon, H. Ukai, K. Murakami, Y. Miyamoto, and K. Asaoka, "Surface modification of titanium in calcium-ion-containing solutions", J Biomed Mater Res, 34[3] 273-78 (1997).
  • T. Furuzono, T. Taguchi, A. Kishida, M. Akashi, and Y. Tamada, "Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process", J Biomed Mater Res, 50[3] 344-52 (2000).
  • S.-H. Rhee, Y.-K. Lee, and B.-S. Lim, "Bioactive non-woven silica fabric made through electro-spinning method", Key Eng Mater, 309-311 465-68 (2006).
  • S.-H. Rhee, Y.-K. Lee, B.-S. Lim, J. Yoo, and H. Kim, "Evaluation of a novel poly(ɛ-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute", Biomacromolecules, 5[4] 1575-79 (2004).
  • S.-H. Rhee, Y. Suetsugu, and J. Tanaka, "Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics", Biomaterials, 22[21] 2843-47 (2001).
  • S.-H. Rhee, I.-Y. Chung, Y.-K. Lee, B.-S. Lim, and Y.-J. Seol, "Apatite forming ability of a non-woven silica fabric containing calcium", Key Eng Mater, 330-332 699-702 (2007).
  • S.-H. Rhee, "Effect of molecular weight of poly(ɛ-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(ɛ-caprolactone)/silica nano-hybrid materials", Biomaterials, 24[10] 1721-27 (2003).
  • S.-H. Rhee, "Bone-like apatite-forming ability and mechanical properties of poly(ɛ-caprolactone)/silica hybrid as a function of poly(ɛ-caprolactone) content", Biomaterials, 25[7-8] 1167-75 (2004).
  • S.-H. Rhee and S. Lee, "Effect of acidic degradation products of poly(lactic-co-glycolic)acid on the apatite-forming ability of poly(lactic-co-glycolic)acid-siloxane nanohybrid material", J Biomed Mater Res, 83A[3] 799-805 (2007).
  • S. Sahoo, H. Ouyang, J. C. H. Goh, T. E. Tay, and S. L. Toh, "Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering", Tissue Eng, 12[1] 91-99 (2006).
  • S. S. Kim, M. S. Park, O. Jeon, C. Y. Choi, and B.-S. Kim, "Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering", Biomaterials, 27[8] 1399-409 (2006).
  • S. Rhee, S. Lee, and J. Tanaka, "Synergistic effect of silanol group and calcium ion in chitosan membrane on apatite forming ability in simulated body fluid", J Biomater Sci -Polym Ed, 17[3] 357-68 (2006).
  • S. Nojima, K. Hashizume, A. Rohadi, and S. Sasaki, "Crystallization of ɛ-caprolactone blocks within a crosslinked microdomain structure of poly(ɛ-caprolactone)-block-polybutadiene", Polymer, 38[11] 2711-18 (1997).
  • S. Mann, "Molecular recognition in biomineralization", Nature, 332 119-24 (1998).
  • S. Liao, W. Wang, M. Uo, S. Ohkawa, T. Akasaka, K. Tamura, F. Cui, and F. Watari, "A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration", Biomaterials, 26[36] 7564-71 (2005).
  • S. Jiang, X. Ji, L. An, and B. Jiang, "Crystallization behavior of PCL in hybrid confined environment", Polymer, 42[8] 3901-07 (2001).
  • S. J. Peter, L. Lu, D. J. Kim, and A. G. Mikos, "Marrow stromal osteoblast function on a poly(propylene fumarate)/b-tricalcium phosphate biodegradable orthopaedic composite", Biomaterials, 21[12] 1207-13 (2000).
  • S. H. Teng, E. J. Lee, P. Wang, D. S. Shin, and H. E. Kim, "Threelayered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration", Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87[1] 132-38 (2008).
  • S. H. Rhee, M. H. Hwang, H. J. Si, and J. Y. Choi, "Biological activities of osteoblasts on poly(methyl methacrylate)/silica hybrid containing calcium salt", Biomaterials, 24[6] 901-06 (2003).
  • S. H. Rhee, J. Y. Choi, and H. M. Kim, "Preparation of a bioactive and degradable poly(ɛ-caprolactone)/silica hybrid through a sol-gel method", Biomaterials, 23[24] 4915-21 (2002).
  • S. H. Rhee, "Effect of calcium salt content in the poly(ɛ-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer", J Biomed Mater Res, 67A[4] 1131-38 (2003).
  • S. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, and T. Nakamura, "Dependence of apatite formation on silica gel on its structure: effect of heat treatment", J Am Ceram Soc, 78 1769-74 (1995).
  • S. Catledge, W. Clem, N. Shrikishen, S. Chowdhury, A. Stanishevsky, M. Koopman, and Y. Vohra, "An electrospun triphasic nanofibrous scaffold for bone tissue engineering", Biomed Mater, 2[2] 142-50 (2007).
  • S. B. Cho, F. Miyaji, T. Kokubo, K. Nakanishi, N. Soga, and T. Nakamura, "Apatite-forming ability of silicate ion dissolved from silica gels", J Biomed Mater Res, 32[3] 375-81 (1996).
  • S. Adachi, K. Kawamura, and K. Takemoto, "A trial on the quantitative risk assessment of man-made mineral fibers by the rat intraperitoneal administration assay using the JFM standard fibrous samples", Ind Health, 39 168–74 (2001).
  • R. Silverstein, G. Bassler, and T. Morrill, "Spectrometric identification of organic compounds", pp. 103-20. John Wiley & Sons, Inc., New York, 1991.
  • R. Pontoriero, J. Lindhe, S. Nyman, T. Karring, E. Rosenberg, and F. Sanavi, "Guided tissue regeneration in degree II furcation-involved mandibular molars", Journal of Clinical Periodontology, 15[4] 247-54 (1988).
  • R. D. Rawlings, "Bioactive glasses and glass-ceramics", Clin Mater, 14[2] 155-79 (1993).
  • Q. Chen, N. Miyata, T. Kokubo, and T. Nakamura, "Effect of heat treatment on bioactivity and mechanical properties of PDMS-modified CaO-SiO2-TiO2 hybrids via sol-gel process", J Mater Sci: Mater Med, 12[6] 515-22 (2001).
  • Q. Chen, F. Miyaji, T. Kokubo, and T. Nakamura, "Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process", Biomaterials, 20[12] 1127-32 (1999).
  • P. Wutticharoenmongkol, P. Pavasant, and P. Supaphol, "Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles", Biomacromolecules, 8[8] 2602-10 (2007).
  • P. Romundstad, A. Andersen, and T. Haldorsen, "Cancer Incidence among workers in the Norwegian silicon carbide industry", Am J Epidemiol 153[10] 978-86 (2001).
  • P. Li, K. Nakanishi, T. Kokubo, and K. De Groot, "Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica", Biomaterials, 14[13] 963-68 (1993).
  • P. Li, I. Kangasniemi, K. Groot, and T. Kokubo, "Bonelike Hydroxyapatite Induction by a Gel-Derived Titania on a Titanium Substrate", Journal of the American Ceramic Society, 77[5] 1307-12 (1994).
  • P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, and T. Nakamura, "Apatite formation induced on silica gel in a simulated body fluid", J Am Ceram Soc, 75 2094–97 (1992).
  • O. Schneider, S. Loher, T. Brunner, L. Uebersax, M. Simonet, R. Grass, H. Merkle, and W. Stark, "Cotton wool-like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells", J Biomed Mater Res, 84B[2] 350-62 (2008).
  • O. D. Schneider, F. Weber, T. J. Brunner, S. Loher, M. Ehrbar, P. R. Schmidlin, and W. J. Stark, "In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects", Acta Biomater, 5[5] 1775-84 (2009).
  • O. Bostman, "Absorbable implants for the fixation of fractures.", J Bone Joint Surg Am, 73 148-53 (1991).
  • N. Miyata, K. I. Fuke, Q. Chen, M. Kawashita, T. Kokubo, and T. Nakamura, "Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing: Effect of CaO and PTMO contents", Biomaterials, 23[14] 3033-40 (2002).
  • N. Johnson and F. Hahn, "Induction of mesothelioma after intrapleural inoculation of F344 rats with silicon carbide whiskers or continuous ceramic filaments", Occup Environ Med, 53 813-16 (1996).
  • N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellom ki, and P. T m l , "Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites", Biomaterials, 23[7] 1579-85 (2002).
  • M. Uchida, H. M. Kim, T. Kokubo, F. Miyaji, and T. Nakamura, "Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions", Journal of the American Ceramic Society, 84[9] 2041-44 (2001).
  • M. Tanahashi, T. Yao, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura, and T. Yamamuro, "Apatite coating on organic polymers by a biomimetic process", J Am Ceram Soc, 77[11] 2805-08 (1994).
  • M. Tanahashi, T. Kokubo, and T. Matsuda, "Quantitative assessment of apatite formation via a biomimetic method using quartz crystal microbalance", J Biomed Mater Res, 31[2] 243-49 (1996).
  • M. Tanahashi, T. Kokubo, T. Nakamura, Y. Katsura, and M. Nagano, "Ultrastructural study of an apatite layer formed by a biomimetic process and its bonding to bone", Biomaterials, 17[1] 47-51 (1996).
  • M. Siebers, K. Matsuzaka, X. Walboomers, S. Leeuwenburgh, J. Wolke, and J. Jansen, "Osteoclastic resorption of calcium phosphate coatings applied with electrostatic spray deposition (ESD), in vitro", J Biomed Mater Res, 74A[4] 570-80 (2005).
  • M. S. Taylor, A. U. Daniels, K. P. Andriano, and J. Heller, "Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products", J Appl Biomater 5151-57 (1994).
  • M. S. Bae, S. I. Jeong, S. E. Kim, J. B. Lee, D. N. Heo, and I. K. Kwon, "Nanofiber scaffold for tissue regeneration using electrospinning method", TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 5[2] 196-203 (2008).
  • M. Ngiam, S. Liao, A. Patil, Z. Cheng, C. Chan, and S. Ramakrishna, "The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering", Bone, 45 4–16 (2009).
  • M. Neo, T. Nakamura, C. Ohtsuki, T. Kokubo, and T. Yamamuro, "Apatite formation on three kinds of bioactive material at an early stage in vivo: A comparative study by transmission electron microscopy", J Biomed Mater Res, 27[8] 999-1006 (1993).
  • M. Nagano, T. Kitsugi, T. Nakamura, T. Kokubo, and M. Tanahashi, "Bone bonding ability of an apatite-coated polymer produced using a biomimetic method: A mechanical and histological study in vivo", J Biomed Mater Res, 31[4] 487-94 (1996).
  • M. M. Bradford, "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding", Anal Biochem, 72 248-54 (1976).
  • M. Kikuchi, Y. Koyama, T. Yamada, Y. Imamura, T. Okada, N. Shirahama, K. Akita, K. Takakuda, and J. Tanaka, "Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly (L-lactide-co-glycolide-co-ε-caprolactone) composites", Biomaterials, 25[28] 5979-86 (2004).
  • M. Kikuchi, J. Tanaka, Y. Koyama, and K. Takakuda, "Cell culture test of TCP/CPLA composite", J Biomed Mater Res, 48[2] 108-10 (1999).
  • M. Kamitakahara, M. Kawashita, N. Miyata, T. Kokubo, and T. Nakamura, "Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different calcium contents", J Mater Sci: Mater Med, 13[11] 1015-20 (2002).
  • M. Kamitakahara, M. Kawashita, N. Miyata, T. Kokubo, and T. Nakamura, "Apatite-forming ability and mechanical properties of CaO-free poly(tetramethylene oxide) (PTMO)-TiO2 hybrids treated with hot water", Biomaterials, 24[8] 1357-63 (2003).
  • M. Kamitakahara, M. Kawashita, N. Miyata, T. Kokubo, and T. Nakamura, "Apatite formation on CaO-free polydimethylsiloxane (PDMS)-TiO2hybrids",J Mater Sci: Mater Med, 14[12] 1067-72 (2003).
  • M. J. Glimcher, "On the Form and Function of Bone: From Molecules to Organs", pp. 617-73. The Chemistry and Biology of Mineralized Connective Tissues. Edited, (1981).
  • M. J. G. D. D. Lee, "Three-Dimensional Spatial Relationship between the Collagen Fibrils and the Inorganic Calcium Phosphate Crystals of Pickerel (americanus americanus) and Herring (clupea harengus) Bone", Journal of Molecular Biology, 217[3] 487-501 (1991).
  • M. Hwang, Y.-K. Lee, B.-S. Lim, and S.-H. Rhee, "Osteoblast-like cell behaviors on non-woven silica fabric", Key Eng Mater, 309-311 469-72 (2006).
  • M. Helgeson and N. Wagner, "A correlation for the diameter of electrospun polymer nanofibers", AIChE J, 53[1] 51-55 (2007).
  • M. Hashimoto, H. Takadama, M. Mizuno, and T. Kokubo, "Mechanical properties and apatite forming ability of TiO2nano particles/high density polyethylene composite: Effect of filler content", J Mater Sci: Mater Med, 18[4] 661-68 (2007).
  • M. Carbone and C. W. M. Bedrossian, "The pathogenesis of mesothelioma", Semin Diagn Pathol, 23[1] 56-60 (2006).
  • L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee Jr., "Bonding mechanisms at the interface of ceramic prosthetic materials", J Biomed Mater Res, 2[1] 117-41 (1971).
  • L. L. Hench and J. Wilson, "Surface-active biomaterials", Science, 226[4675] 630-36 (1984).
  • K. Park, S. Jung, S. Lee, B.-M. Min, and W. Park, "Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers", Int J Biol Macromol, 38[3-5] 165-73 (2006).
  • K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura, and M. Oka, "Bone-bonding ability of P2O5 free CaO-SiO2 glasses", J Biomed Mater Res, 25[3] 357-65 (1991).
  • K. Kawanabe, J. Tamura, T. Yamamuro, T. Nakamura, T. Kokubo, and S. Yoshihara, "A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder", J Appl Biomater, 4[2] 135-41 (1993).
  • K. Hata, T. Kokubo, T. Nakamura, and T. Yamamuro, "Growth of a bonelike apatite layer on a substrate by a biomimetic process", J Am Ceram Soc, 78[4] 1049-53 (1995).
  • K. Fujihara, M. Kotaki, and S. Ramakrishna, "Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers", Biomaterials, 26[19] 4139-47 (2005).
  • J. Yoo, J. Lee, H. Kim, S.-J. Kim, J. Lim, S. Lee, J. Lee, Y.-K. Lee, B.-S. Lim, and S.-H. Rhee, "Comparative in vitro and in vivo studies using a bioactive poly(ɛ-caprolactone)-organosiloxane nanohybrid containing calcium salt", J Biomed Mater Res, 83B[1] 189-98 (2007).
  • J. Yao, S. Radin, P. S. Leboy, and P. Ducheyne, "The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering", Biomaterials, 26[14] 1935-43 (2005).
  • J. Venugopal, S. Low, A. T. Choon, A. B. Kumar, and S. Ramakrishna, "Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells", J Biomed Mater Res, 85A[2] 408-17 (2008).
  • J. Venugopal, S. Low, A. Choon, T. Sampath Kumar, and S. Ramakrishna, "Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers", J Mater Sci: Mater Med, 19[5] 2039-46 (2008).
  • J. Venugopal, S. Low, A. Choon, A. Kumar, and S. Ramakrishna, "Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration", Artif Organs 32[5] 388-97 (2008).
  • J. Venugopal, P. Vadgama, T. Kumar, and S. Ramakrishna, "Biocomposite nanofibres and osteoblasts for bone tissue engineering", Nanotechnology, 18[5] 55101-01 (2007).
  • J. Klompmaker, H. W. Jansen, R. P. Veth, J. H. de Groot, A. J. Nijenhuis, and A. J. Pennings, "Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs", Biomaterials 12 810-16 (1991).
  • J. J. Yoo and S. H. Rhee, "Evaluations of bioactivity and mechanical properties of poly (ɛ-caprolactone)/silica nanocomposite following heat treatment", J Biomed Mater Res, 68A[3] 401-10 (2004).
  • J. Gottlow, S. Nyman, J. Lindhe, T. Karring, and J. Wennstr m, "New attachment formation in the human periodontium by guided tissue regeneration Case reports", Journal of clinical periodontology, 13[6] 604-16 (1986).
  • J. C. Voegel and P. Garnier, "Biological apatite crystal dissolution", J Dent Res, 58(B) 852-56 (1979).
  • J. A. Jansen, J. E. de Ruijter, P.T.M. Janssen, and Y.G.C.J. Paquay, "Histological evaluation of a biodegradable polyactive /hydroxyapatite membrane", Biomaterials, 16[11] 819-27 (1995).
  • I. Magnusson, S. Nyman, T. Karring, and J. Egelberg, "Connective tissue attachment formation following exclusion of gingival connective tissue and epithelium during healing", Journal of periodontal research, 20[2] 201-08 (1985).
  • I. Kwon, S. Kidoaki, and T. Matsuda, "Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential", Biomaterials, 26[18] 3929-39 (2005).
  • H.-M. Kim, Y.-S. Kim, K.-M. Woo, S.-J. Park, C. Rey, Y. Kim, J. Kim, and J. Ko, "Dissolution of poorly crystalline apatite crystals by osteoclasts determined on artificial thin-film apatite", J Biomed Mater Res, 56[2] 250-56 (2001).
  • H.-M. Kim, Y. Kim, S.-J. Park, C. Rey, L. HyunMi, M. J. Glimcher, and J. Seung Ko, "Thin film of low-crystalline calcium phosphate apatite formed at low temperature", Biomaterials, 21[11] 1129-34 (2000).
  • H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, "A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering", Biomaterials, 24[12] 2077-82 (2003).
  • H. W. Kim, H. E. Kim, and J. C. Knowles, "Production and potential of bioactive glass nanofibers as a next-generation biomaterial", Adv Func Mater, 16[12] 1529-35 (2006).
  • H. W. Kim and H. E. Kim, "Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics", J Biomed Res Part B, 77B[2] 323-28 (2006).
  • H. Takadama, H. M. Kim, T. Kokubo, and T. Nakamura, "X-ray photoelectron spectroscopy study on the process of apatite formation on a sodium silicate glass in simulated body fluid", J Am Ceram Soc, 85[8] 1933-36 (2002).
  • H. Sun, L. Mei, C. Song, X. Cui, and P. Wang, "The in vivo degradation, absorption and excretion of PCL-based implant", Biomaterials, 27[9] 1735-40 (2006).
  • H. M. Kim, M. Uenoyama, T. Kokubo, M. Minoda, T. Miyamoto, and T. Nakamura, "Biomimetic apatite formation on polyethylene photografted with vinyltrimethoxysilane and hydrolyzed", Biomaterials, 22[18] 2489-94 (2001).
  • H. M. Kim, K. Kishimoto, F. Miyaji, T. Kokubo, T. Yao, Y. Suetsugu, J. Tanaka, and T. Nakamura, "Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products", J Biomed Mater Res, 46[2] 228-35 (1999).
  • H. M. Kim, K. Kishimoto, F. Miyaji, T. Kokubo, T. Yao, Y. Suetsugu, J. Tanaka, and T. Nakamura, "Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion", J Mater Sci: Mater Med, 11[7] 421-26 (2000).
  • H. M. Elgendy, M. E. Norman, A. R. Keaton, and C. T. Laurencin, "Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material", Biomaterials, 14[4] 263-69 (1993).
  • H. Lu, T. Zhang, X. P. Wang, and Q. F. Fang, "Electrospun submicron bioactive glass fibers for bone tissue scaffold", J Mater Sci: Mater Med, 20 793–98 (2009).
  • H. Kodama, Y. Amagai, H. Sudo, and S. Yamamoto, "Establishment of a clonal osteogenic cell line from newborn mouse calvaria", Jpn J Oral Biol, 23 899-901 (1981).
  • H. Drissi, Q. Luc, R. Shakoori, S. Chuva De Sousa Lopes, J. Y. Choi, A. Terry, M. Hu, S. Jones, J. C. Neil, J. B. Lian, J. L. Stein, A. J. Van Wijnen, and G. S. Stein, "Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene", Journal of cellular physiology, 184[3] 341-50 (2000).
  • G. Wei and P. X. Ma, "Structure and properties of nanohydroxyapatite/ polymer composite scaffolds for bone tissue engineering", Biomaterials, 25[19] 4749-57 (2004).
  • G. Taylor, "Electrically driven jets", pp. 453-75 in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 313.
  • G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, and S. Ryu, "Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration", J Biomed Mater Res, 82A[2] 445 - 54 (2007).
  • G. J. Liu, F. Miyaji, T. Kokubo, H. Takadama, T. Nakamura, and A. Murakami, "Apatite-organic polymer composites prepared by a biomimetic process: Improvement in adhesion of the apatite layer to the substrate by ultraviolet irradiation", J Mater Sci: Mater Med, 9[5] 285-90 (1998).
  • F. Yang, S. K. Both, X. Yang, X. F. Walboomers, and J. A. Jansen, "Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application", Acta biomaterialia, 5[9] 3295-304 (2009).
  • F. Yang, J. G. C. Wolke, and J. A. Jansen, "Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering", Chem Eng J, 137[1] 154-61 (2008).
  • F. Miyaji, M. Iwai, T. Kokubo, and T. Nakamura, "Chemical surface treatment of silicone for inducing its bioactivity", J Mater Sci: Mater Med, 9[2] 61-65 (1998).
  • F. Miyaji, H. M. Kim, S. Handa, T. Kokubo, and T. Nakamura, "Bonelike apatite coating on organic polymers: Novel nucleation process using sodium silicate solution", Biomaterials, 20[10] 913-19 (1999).
  • F. Balas, M. Kawashita, T. Nakamura, and T. Kokubo, "Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution", Biomaterials, 27[9] 1704-10 (2006).
  • F. Anton, "Process and apparatus for preparing artificial threads." in. Google Patents, 1934.
  • F. Anton, "Method and apparatus for spinning." in. Google Patents, 1939.
  • E.-R. Kenawy, G. Bowlin, K. Mansfield, J. Layman, D. Simpson, E. Sanders, and G. Wnek, "Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend", J Control Release, 81[1-2] 57-64 (2002).
  • D. Ou and A. Seddon, "Near- and mid-infrared spectroscopy of sol-gel derived ormosils: vinyl and phenyl silicates", J Non-Cryst Solids, 210 187-203 (1997).
  • D. Gupta, J. Venugopal, S. Mitra, V. Giri Dev, and S. Ramakrishna, "Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts", Biomaterials, 30[11] 2085-94 (2009).
  • D. Guan, Z. Chen, C. Huang, and Y. Lin, "Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds", Appl Surf Sci, 255[2] 324-27 (2008).
  • D. C. Clupper, L. L. Hench, and J. J. Mecholsky, "Strength and toughness of tape cast bioactive glass 45S5 following heat treatment", J Europ Ceram Soc, 24[10-11] 2929-34 (2004).
  • D. Annis, A. Bornat, R. Edwards, A. Higham, B. Loveday, and J. Wilson, "An elastomeric vascular prosthesis", ASAIO Journal, 24[1] 209-14 (1978).
  • C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, "Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering", Biomaterials, 25[5] 877-86 (2004).
  • C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, "Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering", Tissue Eng, 10[7-8] 1160-68 (2004).
  • C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, "Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering", Biomaterials, 25[5] 877-86 (2004).
  • C. Spadaccio, A. Rainer, M. Trombetta, G. Vadal , M. Chello, E. Covino, V. Denaro, Y. Toyoda, and J. Genovese, "Poly-l-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC", Ann Biomed Eng, 37[7] 1376-89 (2009).
  • C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, and S. J. Park, "Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning", Mater Lett, 57[9-10] 1579-84 (2003).
  • C. Ohtsuki, T. Miyazaki, and M. Tanihara, "Development of bioactive organic-inorganic hybrid for bone substitutes", Mater Sci and Eng: C, 22 27-34 (2002).
  • C. Ohtsuki, T. Kokubo, and T. Yamamuro, "Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid", J Non-Cryst Solids, 143 84–92 ( 1992).
  • C. Ohtsuki, T. Kokubo, and T. Yamamuro, "Mechanism of apatite formation on CaO-SiO2-P2O4 glasses in a simulated body fluid", J Non-Cryst Solids, 143 84-92 (1992).
  • C. Erisken, D. Kalyon, and H. Wang, "Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications", Biomaterials, 29[30] 4065-73 (2008).
  • C. Erisken, D. Kalyon, and H. Wang, "A hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibres", Nanotechnology, 19[16] 165302 (2008).
  • C. Du, F. Z. Cui, X. D. Zhu, and K. de Groot, "Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture", J Biomed Mater Res, 44[4] 407-15 (1999).
  • B. Wopenka and J. D. Pasteris, "A mineralogical perspective on the apatite in bone", Materials Science and Engineering: C, 25[2] 131-43 (2005).
  • B. T. Mossman and J. E. Craighead, "Mechanisms of Asbestos Carcinogenesis", Environ Res, 25[2] 269-80 (1981).
  • A. Stanishevsky, S. Chowdhury, P. Chinoda, and V. Thomas, "Hydroxyapatite nano particle loaded collagen fiber composites: Micro -architecture and nano-indentation study", J Biomed Mater Res, 86A[4] 873 - 82 (2008).
  • A. Piattelli, M. Franco, G. Ferronato, M. T. Santello, R. Martinetti, and A. Scarano, "Resorption of composite polymer-hydroxyapatite membranes: a time-course study in rabbit", Biomaterials, 18[8] 629-33 (1997).
  • A. Oyane, M. Minoda, T. Miyamoto, R. Takahashi, K. Nakanishi, H. M. Kim, T. Kokubo, and T. Nakamura, "Apatite formation on ethylene-vinyl alcohol copolymer modified with silanol groups", J Biomed Mater Res, 47[3] 367-73 (1999).
  • A. Oyane, M. Kawashita, K. Nakanishi, T. Kokubo, M. Minoda, T. Miyamoto, and T. Nakamura, "Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions", Biomaterials, 24[10] 1729-35 (2003).
  • A. Oyane, K. Nakanishi, H. M. Kim, F. Miyaji, T. Kokubo, N. Soga, and T. Nakamura, "Sol-gel modification of silicone to induce apatite-forming ability", Biomaterials, 20[1] 79-84 (1999).
  • A. Oliveira, S. Costa, R. Sousa, and R. Reis, "Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: Effect of static and dynamic coating conditions", Acta Biomater, 5[5] 1626-38 (2009).
  • A. Bishop, C. Bala si, J. H. C. Yang, and P.-I. Gouma, "Biopolymer-hydroxyapatite composite coatings prepared by electrospinning", Polym Adv Technol, 17[11-12] 902-06 (2006).
  • "생체활성 유 무기 복합체의 개발과 응용"
    이상훈 이재도 세라미스 트, 3[3] 47-57 [2000]