박사

PDMS기반의 고원형 신경 접속 전극 구조 설계 및 구현

김준민 2016년
논문상세정보
' PDMS기반의 고원형 신경 접속 전극 구조 설계 및 구현' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • bci
  • pdms
  • 공기 갇힘
  • 다층 기판
  • 미세전극
  • 희생 기둥
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
4,844 0

0.0%

' PDMS기반의 고원형 신경 접속 전극 구조 설계 및 구현' 의 참고문헌

  • Y.-Y. Chen, H.-Y. Lai, S.-H. Lin, C.-W. Cho, W.-H. Chao, C.-H. Liao, S. Tsang, Y.-F. Chen, and S.-Y. Lin, “Design and fabrication of a polyimide-based microelectrode array: Application in neural recording and repeatable electrolytic lesion in rat brain,” Journal of Neuroscience Methods, vol. 182, no. 1, pp. 6–16, Aug. 2009.
  • Y.-H. Kim, C. Lee, K.-M. Ahn, M. Lee, and Y.-J. Kim, “Robust and real-time monitoring of nerve regeneration using implantable flexible microelectrode array,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 1883–1887, Mar. 2009.
  • Y. Zhong and R. V. Bellamkonda, “Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes,” Brain Research, vol. 1148, pp. 15–27, May 2007.
  • Y. Song, E. Lee, E. J.Woo, and J. K. Seo, “Optimal geometry toward uniform current density electrodes,” Inverse Problems, vol. 27, no. 7, p. 075 004, 2011.
  • Y. Nam, “Material considerations for in vitro neural interface technology,” MRS Bulletin, vol. 37, no. 6, pp. 566–572, Jun. 2012.
  • X. Cui, J. Wiler, M. Dzaman, R. A. Altschuler, and D. C. Martin, “In vivo studies of polypyrrole/peptide coated neural probes,” Biomaterials, vol. 24, no. 5, pp. 777–787, Feb. 2003.
  • W.-Y. Wu, X. Zhong, W. Wang, Q. Miao, and J.-J. Zhu, “Flexible PDMS-based three-electrode sensor,” Electrochemistry Communications, vol. 12, no. 11, pp. 1600–1604, Nov. 2010.
  • W. Wesselink, J. Holsheimer, H. B. Boom, et al., “Analysis of current density and related parameters in spinal cord stimulation,” Rehabilitation Engineering, IEEE Transactions on, vol. 6, no. 2, pp. 200– 207, 1998.
  • W. Longsine-Parker and A. Han, “Laser stenciling: A low-cost highresolution CO2 laser micromachining method,” Journal of Micromechanics and Microengineering, vol. 22, no. 1, p. 015 006, Jan. 1, 2012.
  • W. Lin, R.-W. Zhang, S.-S. Jang, C.-P.Wong, and J.-I. Hong, “- 128) * 64 + (‘ - 128)‰Organic Aqua Regia” - Powerful Liquids for Dissolving Noble Metals,” Angewandte Chemie International Edition, vol. 49, no. 43, pp. 7929–7932, 2010.
  • W. He, G. C. McConnell, T. M. Schneider, and R. V. Bellamkonda, “A Novel Anti-inflammatory Surface for Neural Electrodes,” en, Advanced Materials, vol. 19, no. 21, pp. 3529–3533, Nov. 2007.
  • W. Franks, I. Schenker, P. Schmutz, and A. Hierlemann, “Impedance characterization and modeling of electrodes for biomedical applications,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 7, pp. 1295–1302, Jul. 2005.
  • W. Chen, R. H. W. Lam, and J. Fu, “Photolithographic surface micromachining of polydimethylsiloxane (PDMS),” Lab Chip, vol. 12, no. 2, pp. 391–395, 2012.
  • W. B. Nelson, Ed., Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. Wiley, 2004, ISBN: 978-0-471-69736-7.
  • W. Agnew, D. McCreery, T. Yuen, and L. Bullara, “Local anaesthetic block protects against electrically-induced damage in peripheral nerve,” Journal of Biomedical Engineering, vol. 12, no. 4, pp. 301– 308, 1990.
  • V. Tsytsarev, M. Taketani, F. Schottler, S. Tanaka, and M. Hara, “A new planar multielectrode array: Recording from a rat auditory cortex,” en, Journal of Neural Engineering, vol. 3, no. 4, p. 293, Dec. 2006.
  • V. T. Krasteva and S. P. Papazov, “Estimation of current density distribution under electrodes for external defibrillation,” BIOMEDICAL Engineering OnLine, vol. 1, p. 7, Dec. 16, 2002.
  • V. S. Polikov, P. A. Tresco, and W. M. Reichert, “Response of brain tissue to chronically implanted neural electrodes,” Journal of Neuroscience Methods, vol. 148, no. 1, pp. 1–18, Oct. 2005.
  • V. Bucher, M. Graf, M. Stelzle, and W. Nisch, “Low-impedance thin-film polycrystalline silicon microelectrodes for extracellular stimulation and recording,” Biosensors and Bioelectronics, vol. 14, no. 7, pp. 639–649, Oct. 1999.
  • T. Stieglitz, H. Beutel, M. Schuettler, and J.-U. Meyer, “Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces,” en, Biomedical Microdevices, vol. 2, no. 4, pp. 283–294, Dec. 2000.
  • T. Adrega and S. P. Lacour, “Stretchable gold conductors embedded in PDMS and patterned by photolithography: Fabrication and electromechanical characterization,” en, Journal of Micromechanics and Microengineering, vol. 20, no. 5, p. 055 025, May 2010.
  • T. A. Green, “Gold etching for microfabrication,” Gold Bulletin, vol. 47, no. 3, pp. 205–216, Sep. 2014.
  • S. Suner, M. Fellows, C. Vargas-Irwin, G. Nakata, and J. Donoghue, “Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 4, pp. 524–541, Dec. 2005.
  • S. M. Bierer and D. J. Anderson, “Multi-channel spike detection and sorting using an array processing technique,” Neurocomputing, vol. 26–27, pp. 947–956, Jun. 1999.
  • S. Lacour, C. Tsay, S.Wagner, Z. Yu, and B. Morrison, “Stretchable micro-electrode arrays for dynamic neuronal recording of in vitro mechanically injured brain,” in 2005 IEEE Sensors, Oct. 2005.
  • S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, and J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, p. 095 010, Sep. 1, 2009.
  • S. H. Hall, G. W. Hall, and J. A. McCall, High speed digital system design: A handbook of interconnect theory and design practices. New York: Wiley, 2000, 347 pp., ISBN: 978-0-471-36090-2.
  • S. F. Cogan, “Neural stimulation and recording electrodes,” Annual Review of Biomedical Engineering, vol. 10, no. 1, pp. 275–309, 2008.
  • S. E. Lee, S. B. Jun, H. J. Lee, J. Kim, S.W. Lee, C. Im, H.-C. Shin, J. W. Chang, and S. J. Kim, “A flexible depth probe using liquid crystal polymer,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 7, pp. 2085–2094, Jul. 2012.
  • S. Boppart, B. Wheeler, and C. Wallace, “A flexible perforated microelectrode array for extended neural recordings,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 1, pp. 37–42, Jan. 1992.
  • S. Bhattacharya, A. Datta, J. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” Journal of Microelectromechanical Systems, vol. 14, no. 3, pp. 590– 597, Jun. 2005.
  • S. BeMent, K. Wise, D. Anderson, K. Najafi, and K. L. Drake, “Solid-State Electrodes for Multichannel Multiplexed Intracortical Neuronal Recording,” IEEE Transactions on Biomedical Engineering, vol. BME-33, no. 2, pp. 230–241, Feb. 1986.
  • S. B. K. T. C. Baynham, “Line stimulation parallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts,” Circulation Research, vol. 81, no. 2, pp. 229–241, Aug. 1, 1997.
  • R. M. Rothschild, “Neuroengineering tools/applications for bidirectional interfaces, brain–computer interfaces, and neuroprosthetic implants – a review of recent progress,” Frontiers in Neuroengineering, vol. 3, p. 112, 2010.
  • R. Kim and Y. Nam, “Novel platinum black electroplating technique improving mechanical stability,” in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, Jul. 2013, pp. 184–187.
  • R. Kim and Y. Nam, “Novel platinum black electroplating technique improving mechanical stability,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2013, pp. 184–187.
  • R. A. Green, T. Guenther, C. Jeschke, A. Jaillon, J. F. Yu, W. F. Dueck, W. W. Lim, W. C. Henderson, A. Vanhoestenberghe, N. H. Lovell, and G. J. Suaning, “Integrated electrode and high density feedthrough system for chip-scale implantable devices,” Biomaterials, vol. 34, no. 26, pp. 6109–6118, Aug. 2013.
  • P. Kuzyk and E. Schemitsch, “The science of electrical stimulation therapy for fracture healing,” Indian Journal of Orthopaedics, vol. 43, no. 2, pp. 127–131, 2009.
  • P. J. Rousche and R. A. Normann, “Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex,” Journal of Neuroscience Methods, vol. 82, no. 1, pp. 1–15, Jul. 1998.
  • P. Campbell, K. Jones, R. Huber, K. Horch, and R. Normann, “A silicon-based, three-dimensional neural interface: Manufacturing processes for an intracortical electrode array,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 8, pp. 758–768, Aug. 1991.
  • N. Qu, X. Chen, H. Li, and D. Zhu, “Fabrication of PDMS micro through-holes for electrochemical micromachining,” The International Journal of Advanced Manufacturing Technology, vol. 72, no. 1, pp. 487–494, Feb. 19, 2014.
  • N. G. Hatsopoulos and J. P. Donoghue, “The science of neural interface systems,” Annual review of neuroscience, vol. 32, pp. 249–266, 2009.
  • N. Chou, S. Yoo, and S. Kim, “A largely deformable surface type neural electrode array based on pdms,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 4, pp. 544– 553, Jul. 2013.
  • N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, “Nanomaterials for Neural Interfaces,” en, Advanced Materials, vol. 21, no. 40, pp. 3970–4004, Oct. 2009.
  • M. Wesche, M. H uske, A. Yakushenko, D. Br uggemann, D. Mayer, A. Offenh ausser, and B. Wolfrum, “A nanoporous alumina microelectrode array for functional cell–chip coupling,” en, Nanotechnology, vol. 23, no. 49, p. 495 303, Dec. 2012.
  • M. Thompson, L.-E. Cheran, and S. Sadeghi, Sensor Technology in Neuroscience, ser. RSC Detection Science. The Royal Society of Chemistry, 2012, P001–215, ISBN: 978-1-84973-379-3. DOI: 10. 1039/9781849735414.
  • M. Taketani and M. Baudry, Eds., Advances in network electrophysiology: Using multi-electrode arrays. New York, NY: Springer, 2006, ISBN: 978-0-387-25857-7.
  • M. Suesserman, F. Spelman, and J. Rubinstein, “In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 5, pp. 401–408, May 1991.
  • M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, and T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in 3rd International IEEE/EMBS Conference on Neural Engineering, 2007. CNE ’07, May 2007, pp. 53–56.
  • M. Pinsker, F. Amtage, M. Berger, G. Nikkhah, and L. T. Elst, “Psychiatric side-effects of bilateral deep brain stimulation for movement disorders,” in Stereotactic and Functional Neurosurgery, G. Nikkhah and M. Pinsker, Eds., Springer Vienna, 2013, pp. 47–51.
  • M. Ochoa, P. Wei, A. J. Wolley, K. J. Otto, and B. Ziaie, “A hybrid PDMS-parylene subdural multi-electrode array,” Biomedical Microdevices, vol. 15, no. 3, pp. 437–443, Jan. 19, 2013.
  • M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, vol. 114, no. 2, pp. 135–148, Mar. 2002.
  • M. K ohler, “Wet-chemical etching methods,” in Etching in Microsystem Technology. Wiley-VCH Verlag GmbH, 2007, pp. 29–110.
  • M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clinical neurophysiol- ogy : Official journal of the International Federation of Clinical Neurophysiology, vol. 120, no. 6, pp. 1033–1034, Jun. 2009.
  • M. A. McClain, I. P. Clements, R. H. Shafer, R. V. Bellamkonda, M. C. LaPlaca, and M. G. Allen, “Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS,” en, Biomedical Microdevices, vol. 13, no. 2, pp. 361–373, Jan. 2011.
  • L. Guo, K. Meacham, S. Hochman, and S. DeWeerth, “A PDMSBased Conical-Well Microelectrode Array for Surface Stimulation and Recording of Neural Tissues,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 10, pp. 2485–2494, Oct. 2010.
  • L. Guo and S. P. DeWeerth, “PDMS-based conformable microelectrode arrays with selectable novel 3-d microelectrode geometries for surface stimulation and recording,” in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, 2009, pp. 1623–1626.
  • L. Cau, P. Deplano, L. Marchio, M. L. Mercuri, L. Pilia, A. Serpe, and E. F. Trogu, “New powerful reagents based on dihalogen/n,n [prime or minute]-dimethylperhydrodiazepine-2,3-dithione adducts for gold dissolution: The ibr case,” Dalton Trans., pp. 1969–1974, 10 2003.
  • L. Berdondini, M. Chiappalone, P. D. van der Wal, K. Imfeld, N. F. de Rooij, M. Koudelka-Hep, M. Tedesco, S. Martinoia, J. van Pelt, G. Le Masson, and A. Garenne, “A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons,” Sensors and Actuators B: Chemical, vol. 114, no. 1, pp. 530–541, Mar. 2006.
  • K.Wise, J. Angell, and A. Starr, “An Integrated-Circuit Approach to Extracellular Microelectrodes,” IEEE Transactions on Biomedical Engineering, vol. BME-17, no. 3, pp. 238–247, Jul. 1970.
  • K. Wise and J. Angell, “A Low-Capacitance Multielectrode Probe for Use in Extracellular Neurophysiology,” IEEE Transactions on Biomedical Engineering, vol. BME-22, no. 3, pp. 212–219, May 1975.
  • K. Wang, A carbon nanotube microelectrode array for neural stimulation. Stanford University, 2006.
  • K. W. Meacham, R. J. Giuly, L. Guo, S. Hochman, and S. P. De- Weerth, “A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord,” en, Biomedical Microdevices, vol. 10, no. 2, pp. 259–269, Oct. 2007.
  • K. Najafi and K. Wise, “An implantable multielectrode array with on-chip signal processing,” IEEE Journal of Solid-State Circuits, vol. 21, no. 6, pp. 1035–1044, Dec. 1986.
  • K. M. Sami Myllymaa and R. Lappalainen, Eds., Flexible Implantable Thin Film Neural Electrodes: Recent Advances in Biomedical Engineering. InTech, 2009, ISBN: 978-953-307-004-9.
  • K. Cheung, K. Djupsund, Y. Dan, and L. P. Lee, “Implantable multichannel electrode array based on SOI technology,” Journal of Microelectromechanical Systems, vol. 12, no. 2, pp. 179–184, Apr. 2003.
  • K. C. Cheung, “Implantable microscale neural interfaces,” en, Biomedical Microdevices, vol. 9, no. 6, pp. 923–938, Jan. 2007.
  • K. C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, “Flexible polyimide microelectrode array for in vivo recordings and current source density analysis,” Biosensors and Bioelectronics, vol. 22, no. 8, pp. 1783–1790, Mar. 2007.
  • J.-S. Noh, “Cracked titanium film on an elastomeric substrate for highly flexible, transparent, and low-power strain sensors,” Nanoscale research letters, vol. 8, no. 1, pp. 1–7, 2013.
  • J.-M. Kim, D.-R. Oh, J. Sanchez, S.-H. Kim, and J.-M. Seo, “Fabrication of polydimethylsiloxane (PDMS)-based multielectrode array for neural interface,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2013, pp. 1716–1719.
  • J.-M. Kim and J.-M. Seo, “Fabrication of polydimethylsiloxane (PDMS)- based flexible electrode array for improving tissue contact,” en, in 6th European Conference of the International Federation for Medical and Biological Engineering, ser. IFMBE Proceedings 45, Springer International Publishing, 2015, pp. 341–344.
  • J. Wu, R. Wang, H. Yu, G. Li, K. Xu, N. C. Tien, R. C. Roberts, and D. Li, “Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems,” Lab Chip, vol. 15, no. 3, pp. 690–695, 2015.
  • J. Wang, C. Wu, N. Hu, J. Zhou, L. Du, and P. Wang, “Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro,” en, Biosensors, vol. 2, no. 2, pp. 127–170, Apr. 2012.
  • J. Troy, D. Cantrell, A. Taflove, and R. Ruoff, “Modeling the electrode- electrolyte interface for recording and stimulating electrodes,” in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS’06, Aug. 2006, pp. 879– 881.
  • J. Rubinstein, F. Spelman, M. Soma, and M. Suesserman, “Current density profiles of surface mounted and recessed electrodes for neural prostheses,” IEEE Transactions on Biomedical Engineering, vol. BME-34, no. 11, pp. 864–875, Nov. 1987.
  • J. Park, H. S. Kim, and A. Han, “Micropatterning of poly (dimethylsiloxane) using a photoresist lift-off technique for selective electrical insulation of microelectrode arrays,” Journal of micromechanics and microengineering : Structures, devices, and systems, vol. 19, p. 65 016, May 20, 2009.
  • J. P. Donoghue, “Bridging the brain to the world: A perspective on neural interface systems,” Neuron, vol. 60, no. 3, pp. 511–521, Nov. 6, 2008.
  • J. P. Donoghue, A. Nurmikko, M. Black, and L. R. Hochberg, “Assistive technology and robotic control using motor cortex ensemblebased neural interface systems in humans with tetraplegia,” The Journal of Physiology, vol. 579, no. 3, pp. 603–611, Mar. 15, 2007.
  • J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Analytical Chemistry, vol. 75, no. 23, pp. 6544–6554, Dec. 2003.
  • J. L. Sergiy Oleksandrov, “Fabrication of micro- and nano-scale gold patterns on glass by transfer printing,” Journal of nanoscience and nanotechnology, vol. 9, no. 12, pp. 7481–4, 2009.
  • J. L. Novak and B. C. Wheeler, “Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array,” vol. 23, no. 2, pp. 149–159, Mar. 1988.
  • J. Jeong, S. H. Bae, K. S. Min, J.-M. Seo, H. Chung, and S. J. Kim, “A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP),” IEEE Transactions on Biomedical Engineering, vol. 62, no. 3, pp. 982–989, Mar. 2015.
  • J. H. Ryoo, G. S. Jeong, E. Kang, and S. H. Lee, “Ultrathin, hyperelastic PDMS nano membrane: Fabrication and characterization,” in The 15th international conference on miniaturized systems for chemistry and life sciences.. Royal Society of Chemistry, Seattle, Washington, USA, 2011.
  • J. H. Koschwanez, R. H. Carlson, and D. R. Meldrum, “Thin PDMS films using long spin times or tert-butyl alcohol as a solvent,” PLOS ONE, vol. 4, no. 2, Feb. 24, 2009.
  • J. H. Huth, “Mixed boundary value problems in potential theory,” Journal of the Franklin Institute, vol. 257, no. 2, pp. 121–124, Feb. 1954.
  • J. H. Choi, H. Lee, H. K. Jin, J.-s. Bae, and G. M. Kim, “Micropatterning of neural stem cells and purkinje neurons using a polydimethylsiloxane (PDMS) stencil,” Lab on a Chip, vol. 12, no. 23, p. 5045, 2012.
  • J. Guimont and B. Ziaie, “A batch-manufacturable uniform current density metallic-shell hemispherical microelectrode,” in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004. IEMBS ’04, vol. 2, Sep. 2004, pp. 4149– 4152.
  • I. R. Minev, D. J. Chew, E. Delivopoulos, J. W. Fawcett, and S. P. Lacour, “High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: An acute in vivo validation,” en, Journal of Neural Engineering, vol. 9, no. 2, p. 026 005, Apr. 2012.
  • I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, “Mechanical characterization of bulk sylgard 184 for microfluidics and microengineering,” Journal of Micromechanics and Microengineering, vol. 24, no. 3, p. 035 017, 2014.
  • I. Byun, A. W. Coleman, and B. Kim, “Transfer of thin au films to polydimethylsiloxane (PDMS) with reliable bonding using (3- mercaptopropyl) trimethoxysilane (MPTMS) as a molecular adhesive,” Journal of Micromechanics and Microengineering, vol. 23, no. 8, p. 085 016, Aug. 1, 2013.
  • H.-Y. Chen, A. A. McClelland, Z. Chen, and J. Lahann, “Solventless adhesive bonding using reactive polymer coatings,” Analytical Chemistry, vol. 80, no. 11, pp. 4119–4124, Jun. 1, 2008.
  • H. Reucher, G. Rau, and J. Silny, “Spatial Filtering of Noninvasive Multielectrode EMG: Part I-Introduction to Measuring Technique and Applications,” IEEE Transactions on Biomedical Engineering, vol. BME-34, no. 2, pp. 98–105, Feb. 1987.
  • H. Lee, Fundamentals of Microelectronics Processing, ser. McGraw- Hill chemical engineering series. McGraw-Hill Education, 1990, ISBN: 9780071007962.
  • H. J. Lee, Y. Nam, C. S. Koh, C. Im, I. S. Seo, S. Choi, and H.-C. Shin, “Odor-dependent hemodynamic responses measured with NIRS in the main olfactory bulb of anesthetized rats,” Experimental Neurobiology, vol. 20, no. 4, p. 189, 2011.
  • H. Cong and T. Pan, “Photopatternable conductive PDMS materials for microfabrication,” Advanced Functional Materials, vol. 18, no. 13, pp. 1912–1921, Jul. 9, 2008.
  • G. W. Gross, E. Rieske, G. W. Kreutzberg, and A. Meyer, “A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro,” Neuroscience Letters, vol. 6, no. 2–3, pp. 101–105, Nov. 1977.
  • G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber bragg gratings,” Sensors and Actuators A: Physical, vol. 209, pp. 9–15, Mar. 2014.
  • G. Suaning, M. Schuettler, J. Ordonez, and N. Lovell, “Fabrication of multi-layer, high-density micro-electrode arrays for neural stimulation and bio-signal recording,” in Neural Engineering, 2007. CNE ’07. 3rd International IEEE/EMBS Conference on, May 2007, pp. 5–8.
  • G. A. Ascoli and J. L. Krichmar, “L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology,” Neurocomputing, vol. 32–33, pp. 1003–1011, 2000.
  • E. Delivopoulos, D. J. Chew, I. R. Minev, J. W. Fawcett, and S. P. Lacour, “Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array,” Lab on a Chip, vol. 12, no. 14, p. 2540, 2012.
  • E. Azemi, C. F. Lagenaur, and X. T. Cui, “The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface,” Biomaterials, vol. 32, no. 3, pp. 681–692, Jan. 2011.
  • D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Ka- plan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, and J. A. Rogers, “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” en, Nature Materials, vol. 9, no. 6, pp. 511–517, Jun. 2010.
  • D. S. Bodas and C. Khan-Malek, “Fabrication of long-term hydrophilic surfaces of poly(dimethyl siloxane) using 2-hydroxy ethyl methacrylate,” Sensors and Actuators B: Chemical, vol. 120, no. 2, pp. 719–723, Jan. 10, 2007.
  • D. Ksienski, “A minimum profile uniform current density electrode,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 7, pp. 682– 692, Jul. 1992.
  • D. C. Rodger, J. D. Weiland, M. S. Humayun, and Y.-C. Tai, “Scalable high lead-count parylene package for retinal prostheses,” Sensors and Actuators B: Chemical, vol. 117, no. 1, pp. 107–114, Sep. 2006.
  • D. C. Rodger, A. J. Fong, W. Li, H. Ameri, A. K. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. R. Menon, E. Meng, J.W. Burdick, R. R. Roy, V. R. Edgerton, J. D. Weiland, M. S. Humayun, and Y.-C. Tai, “Flexible parylene-based multielectrode array technology for highdensity neural stimulation and recording,” Sensors and Actuators B: Chemical, Transducers ’07/Eurosensors XXI The 14th International Conference on Solid-State Sensors, Actuators and Microsystems and the 21st European Conference on Solid-State Transducers, vol. 132, no. 2, pp. 449–460, Jun. 2008.
  • D. B. McCreery, W. F. Agnew, T. G. Yuen, and L. Bullara, “Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation,” Biomedical Engineering, IEEE Transactions on, vol. 37, no. 10, pp. 996–1001, 1990.
  • D. A.Wagenaar and S. M. Potter, “Real-time multi-channel stimulus artifact suppression by local curve fitting,” Journal of Neuroscience Methods, vol. 120, no. 2, pp. 113–120, Oct. 2002.
  • C. de Menezes Atayde and I. Doi, “Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments,” Physica status solidi (c), vol. 7, no. 2, pp. 189– 192, Feb. 1, 2010.
  • C. Mack, “Introduction to semiconductor lithography,” in Fundamental Principles of Optical Lithography. John Wiley & Sons, Ltd, 2007, pp. 1–28, ISBN: 9780470723876.
  • C. Gonz alez and M. Rodrıguez, “A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues,” Journal of Neuroscience Methods, vol. 72, no. 2, pp. 189– 195, Apr. 1997.
  • C. Disselhorst-Klug, J. Silny, and G. Rau, “Improvement of spatial resolution in surface-EMG: A theoretical and experimental comparison of different spatial filters,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 7, pp. 567–574, Jul. 1997.
  • C. Disselhorst-Klug, J. Bahm, V. Ramaekers, A. Trachterna, and G. Rau, “Non-invasive approach of motor unit recording during muscle contractions in humans,” en, European Journal of Applied Physiology, vol. 83, no. 2-3, pp. 144–150, Oct. 2000.
  • C. C. McIntyre and W. M. Grill, “Finite element analysis of the current-density and electric field generated by metal microelectrodes,” Annals of Biomedical Engineering, vol. 29, no. 3, pp. 227–235, Mar. 1, 2001.
  • C. A. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” Experimental Cell Research, vol. 74, no. 1, pp. 61–66, Sep. 1972.
  • C. A. Desoer and E. S. Kuh, Basic circuit theory. Tata McGraw-Hill Education, 2009.
  • B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, “A MEMS-based flexible multichannel ECoG-electrode array,” en, Journal of Neural Engineering, vol. 6, no. 3, p. 036 003, Jun. 2009.
  • B. Balakrisnan, S. Patil, and E. Smela, “Patterning PDMS using a combination of wet and dry etching,” Journal of Micromechanics and Microengineering, vol. 19, no. 4, p. 047 002, Apr. 1, 2009.
  • B. A. Wester, R. H. Lee, and M. C. LaPlaca, “Development and characterization of in vivo flexible electrodes compatible with large tissue displacements,” en, Journal of Neural Engineering, vol. 6, no. 2, p. 024 002, Apr. 2009.
  • A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, and H. Haemmerle, “Biological application of microelectrode arrays in drug discovery and basic research,” en, Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 486–495, Aug. 2003.
  • A. Serpe, L. Marchi`o, F. Artizzu, M. L. Mercuri, and P. Deplano, “Effective one-step gold dissolution using environmentally friendly low-cost reagents,” Chemistry – A European Journal, vol. 19, no. 31, pp. 10 111–10 114, 2013.
  • A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomedical Microdevices, vol. 7, no. 4, pp. 281–293, Dec. 2005.
  • A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” Journal of Neural Engineering, vol. 4, no. 3, S143, Sep. 1, 2007.
  • A. E. Grumet, J. L. Wyatt Jr., and J. F. Rizzo III, “Multi-electrode stimulation and recording in the isolated retina,” Journal of Neuroscience Methods, vol. 101, no. 1, pp. 31–42, Aug. 2000.
  • A. Cerf and C. Vieu, Soft Lithography, a Tool to Address Single- Objects Investigations. INTECH Open Access Publisher, 2010, ISBN: 978-953-307-064-3.
  • A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Advanced Materials, vol. 24, no. 39, pp. 5284– 5318, 2012.
  • A. Butterwick, A. Vankov, P. Huie, Y. Freyvert, and D. Palanker, “Tissue damage by pulsed electrical stimulation,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 12, pp. 2261–2267, Dec. 2007.
  • A. Bhagat, P. Jothimuthu, and I. Papautsky, “Photosensitive poly (dimethyl-siloxane) (photopdms) for rapid and simple polymer fabrication,” in Solid-State Sensors, Actuators and Microsystems Conference, Jun. 2007, pp. 537–540.
  • (). - 128) * 64 + (‘ - 128) 뀰우코닝 실리콘 - 다우코닝, [Online]
    Available: https://www.dowcorning.co.kr/ (visited on 12/28/ [2015]