박사

Prediction of tensile strength of unidirectional fiber composites considering interfacial shear strength = 계면전단강력을 고려한 일축 복합재료의 강력 예측

나원진 2016년
논문상세정보
' Prediction of tensile strength of unidirectional fiber composites considering interfacial shear strength = 계면전단강력을 고려한 일축 복합재료의 강력 예측' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • carbon fiber composite
  • fracture toughness
  • interfacialshearstrength
  • multiple fracture
  • tensile strength
  • unidirectional composite
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
739 0

0.0%

' Prediction of tensile strength of unidirectional fiber composites considering interfacial shear strength = 계면전단강력을 고려한 일축 복합재료의 강력 예측' 의 참고문헌

  • de Morais, A.B., Prediction of the longitudinal tensile strength of polymer matrix composites. Composites Science and Technology, 2006. 66(15): p. 2990-2996.
  • Zweben, C., Tensile failure of fiber composites. AIAA Journal, 1968. 6(12): p. 2325-2331.
  • Zweben, C. and B.W. Rosen, A statistical theory of material strength with application to composite materials. Journal of the Mechanics and Physics of Solids, 1970. 18(3): p. 189-206.
  • Zhou, X.F., J.A. Nairn, and H.D. Wagner, Fiber–matrix adhesion from the single-fiber composite test: nucleation of interfacial debonding. Composites Part A: Applied Science and Manufacturing, 1999. 30(12): p. 1387-1400.
  • Zhao, F.M. and N. Takeda, Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results. Composites Part A: Applied Science and Manufacturing, 2000. 31(11): p. 1203-1214.
  • Xia, Z., Y. Zhang, and F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures, 2003. 40(8): p. 1907-1921.
  • Xia, Z., T. Okabe, and W.A. Curtin, Shear-lag versus finite element models for stress transfer in fiber-reinforced composites. Composites Science and Technology, 2002. 62(9): p. 1141-1149.
  • Wongsto, A. and S. Li, Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse crosssection. Composites Part A: Applied Science and Manufacturing, 2005. 36(9): p. 1246-1266.
  • West, G.B., J.H. Brown, and B.J. Enquist, A General Model for the Origin of Allometric Scaling Laws in Biology. Science, 1997. 276(5309): p. 122- 126.
  • Van Den Heuvel, P.W.J., et al., Failure phenomena in two-dimensional multi-fibre model composites: 5. a finite element study. Composites Part A: Applied Science and Manufacturing, 1998. 29(9-10): p. 1121-1135.
  • Tvergaard, V. and J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1992. 40(6): p. 1377-1397.
  • Tattersall, H.G. and G. Tappin, The work of fracture and its measurement in metals, ceramics and other materials. Journal of Materials Science, 1966. 1(3): p. 296-301.
  • Swolfs, Y., et al., Stress concentrations in an impregnated fibre bundle with random fibre packing. Composites Science and Technology, 2013. 74: p. 113-120.
  • Suo, Z. and J.W. Hutchinson, Interface crack between two elastic layers. International Journal of Fracture, 1990. 43(1): p. 1-18.
  • Smith, R.L., The random variation of stress concentration factors in fibrous composites. Journal of Materials Science Letters, 1983. 2(8): p. 385-387.
  • Shioya, M., S. Yasui, and A. Takaku, Relation between interfacial shear strength and tensile strength of carbon fiber/resin composite strands. Composite Interfaces, 1998. 6(4): p. 305-323.
  • Segurado, J. and J. Llorca, A new three-dimensional interface finite element to simulate fracture in composites. International Journal of Solids and Structures, 2004. 41(11–12): p. 2977-2993.
  • Scott, A.E., et al., In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography. Composites Science and Technology, 2011. 71(12): p. 1471-1477.
  • Scott, A.E., et al., Damage accumulation in a carbon/epoxy composite: Comparison between a multiscale model and computed tomography experimental results. Composites Part A: Applied Science and Manufacturing, 2012. 43(9): p. 1514-1522.
  • Rosen, B.W., Tensile failure of fibrous composites. AIAA Journal, 1964. 2(11): p. 1985-1991.
  • Pinho, S.T., P. Robinson, and L. Iannucci, Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Composites Science and Technology, 2006. 66(13): p. 2069-2079.
  • Pinho, S.T., P. Robinson, and L. Iannucci, Developing a four point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites. Composites Science and Technology, 2009. 69(7–8): p. 1303-1309.
  • Pimenta, S. and S.T. Pinho, Hierarchical scaling law for the strength of composite fibre bundles. Journal of the Mechanics and Physics of Solids, 2013. 61(6): p. 1337-1356.
  • Pimenta, S. and S.T. Pinho, An analytical model for the translaminar fracture toughness of fibre composites with stochastic quasi-fractal fracture surfaces. Journal of the Mechanics and Physics of Solids, 2014. 66: p. 78- 102.
  • Piggott, M.R., Theoretical estimation of fracture toughness of fibrous composites. Journal of Materials Science, 1970. 5(8): p. 669-675.
  • Okabe, T., et al., A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites. Composites Science and Technology, 2001. 61(12): p. 1773-1787.
  • Oh, J.H., K.K. Jin, and S.K. Ha, Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers under Transverse Loading. Journal of Composite Materials, 2006. 40(9): p. 759- 778.
  • Ochiai, S., K. Schulte, and P.W.M. Peters, Strain concentration factors for fibers and matrix in unidirectional composites. Composites Science and Technology, 1991. 41(3): p. 237-256.
  • Nedele, M.R. and M.R. Wisnom, Three-dimensional finite element analysis of the stress concentration at a single fibre break. Composites Science and Technology, 1994. 51(4): p. 517-524.
  • Nedele, M.R. and M.R. Wisnom, Stress concentration factors around a broken fibre in a unidirectional carbon fibre-reinforced epoxy. Composites, 1994. 25(7): p. 549-557.
  • Nairn, J.A., Fracture Mechanics of Unidirectional Composites. Journal of Reinforced Plastics and Composites, 1990. 9(1): p. 91-101.
  • Nairn, J.A., Fracture Mechanics of Unidirectional Composites Using the Shear-Lag Model I: Theory. Journal of Composite Materials, 1988. 22(6): p. 561-588.
  • Morris, C.E.H.a.D.H., Fracture mechanics: Seventeenth Volume, ASTM STP905. 1986: p. 124-135.
  • Miserez, A., et al., The Transition from Stiff to Compliant Materials in Squid Beaks. Science, 2008. 319(5871): p. 1816-1819.
  • Michael Levitt, et al., PROTEIN FOLDING:The Endgame. Annual Review of Biochemistry, 1997. 66(1): p. 549-579.
  • Meyers, M.A., et al., Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008. 53(1): p. 1-206.
  • Marston, T.U., A.G. Atkins, and D.K. Felbeck, Interfacial fracture energy and the toughness of composites. Journal of Materials Science, 1974. 9(3): p. 447-455.
  • Marston, C., et al., Failure characteristics in carbon/epoxy composite tows. Composites Part A: Applied Science and Manufacturing, 1996. 27(12 PART A): p. 1183-1194.
  • Manders, P.W., M.G. Bader, and T.W. Chou, Monte Carlo simulation of the strength of composite fibre bundles. Fibre Science and Technology, 1982. 17(3): p. 183-204.
  • Manders, P., et al., Statistical analysis of multiple fracture in 0 /90 /0 glass fibre/epoxy resin laminates. Journal of Materials Science, 1983. 18(10): p. 2876-2889.
  • Madhukar, M.S. and L.T. Drzal, Fiber-Matrix Adhesion and Its Effect on Composite Mechanical Properties: II. Longitudinal (0 ) and Transverse (90 ) Tensile and Flexure Behavior of Graphite/Epoxy Composites. Journal of Composite Materials, 1991. 25(8): p. 958-991.
  • Lin, Y., Role of matrix resin in delamination onset and growth in composite laminates. Composites Science and Technology, 1988. 33(4): p. 257-277.
  • Li, Y., J. Yu, and Z.-X. Guo, The influence of silane treatment on nylon 6/nano-SiO2in situ polymerization. Journal of Applied Polymer Science, 2002. 84(4): p. 827-834.
  • Li, X., L. Tabil, and S. Panigrahi, Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 2007. 15(1): p. 25-33.
  • Laffan, M.J., et al., Translaminar fracture toughness testing of composites: A review. Polymer Testing, 2012. 31(3): p. 481-489.
  • Krauss, S., et al., Mechanical Function of a Complex Three-Dimensional Suture Joining the Bony Elements in the Shell of the Red-Eared Slider Turtle. Advanced Materials, 2009. 21(4): p. 407-412.
  • Kim, J.-K. and Y.-w. Mai, High strength, high fracture toughness fibre composites with interface control—A review. Composites Science and Technology, 1991. 41(4): p. 333-378.
  • Kim, B.W. and J.A. Nairn, Observations of Fiber Fracture and Interfacial Debonding Phenomena Using the Fragmentation Test in Single Fiber Composites. Journal of Composite Materials, 2002. 36(15): p. 1825-1858.
  • Kelly, A. and W.R. Tyson, Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 1965. 13(6): p. 329-350.
  • Jiang, M., et al., Scale and boundary conditions effects in elastic properties of random composites. Acta Mechanica, 2001. 148(1-4): p. 63-78.
  • Hull, D. and T.W. Clyne., An Introduction to Composite Materials. 1996: Cambridge University Press.
  • Hsu, C.-Y., et al., A study of stress concentration effect around penetrations on curved shell and failure modes for deep-diving submersible vehicle. Ocean Engineering, 2005. 32(8–9): p. 1098-1121.
  • Honjo, K., Fracture toughness of PAN-based carbon fibers estimated from strength–mirror size relation. Carbon, 2003. 41(5): p. 979-984.
  • Hollister, S.J. and N. Kikuchi, A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational Mechanics, 1992. 10(2): p. 73-95.
  • Hironobu, N. and N. Nao-Aki, Stress concentration of a strip with double edge notches under tension or in-plane bending. Engineering Fracture Mechanics, 1986. 23(6): p. 1051-1065.
  • Hedgepeth, J.M. and P. Van Dyke, Local Stress Concentrations in Imperfect Filamentary Composite Materials. Journal of Composite Materials, 1967. 1(3): p. 294-309.
  • Hatta, H., et al., Damage detection of C/C composites using ESPI and SQUID techniques. Composites Science and Technology, 2005. 65(7–8): p. 1098-1106.
  • Hatta, H., K. Goto, and T. Aoki, Strengths of C/C composites under tensile, shear, and compressive loading: Role of interfacial shear strength. Composites Science and Technology, 2005. 65(15–16): p. 2550-2562.
  • Gullerud, A.S., et al., Simulation of ductile crack growth using computational cells: numerical aspects. Engineering Fracture Mechanics, 2000. 66(1): p. 65-92.
  • Goda, K., The role of interfacial debonding in increasing the strength and reliability of unidirectional fibrous composites. Composites Science and Technology, 1999. 59(12): p. 1871-1879.
  • Goda, K. and H. Fukunaga, The evaluation of the strength distribution of silicon carbide and alumina fibres by a multi-modal Weibull distribution. Journal of Materials Science, 1986. 21(12): p. 4475-4480.
  • Garrett, K.W. and J.E. Bailey, Multiple transverse fracture in 90 cross-ply laminates of a glass fibre-reinforced polyester. Journal of Materials Science, 1977. 12(1): p. 157-168.
  • Garcia, E., D.C. Williamson, and A. Martinez-Richa, Effects of molecular geometry on liquid crystalline phase behaviour: isotropic-nematic transition. Molecular Physics, 2000. 98(3): p. 179-192.
  • Gao, H., Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials. International Journal of Fracture, 2006. 138(1-4): p. 101-137.
  • Fukuda, H., Stress concentration factors in unidirectional composites with random fiber spacing. Composites Science and Technology, 1985. 22(2): p. 153-163.
  • Frenkel, D., Perspective on “The effect of shape on the interaction of colloidal particles”. Theoretical Chemistry Accounts, 2000. 103(3-4): p. 212-213.
  • Fitz-Randolph, J., et al., The fracture energy and acoustic emission of a boron-epoxy composite. Journal of Materials Science, 1972. 7(3): p. 289- 294.
  • Drzal, L.T., et al., Adhesion of Graphite Fibers to Epoxy Matrices: II. The Effect of Fiber Finish. The Journal of Adhesion, 1983. 16(2): p. 133-152.
  • Cox, H.L., The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952. 3(3): p. 72-79.
  • Cooper, G.A., The fracture toughness of composites reinforced with weakened fibres. Journal of Materials Science, 1970. 5(8): p. 645-654.
  • Cooper, G.A. and J.M. Sillwood, Multiple fracture in a steel reinforced epoxy resin composite. Journal of Materials Science, 1972. 7(3): p. 325-333.
  • Cantwell, W.J. and J. Morton, The impact resistance of composite materials — a review. Composites, 1991. 22(5): p. 347-362.
  • Budiansky, B., J.W. Hutchinson, and A.G. Evans, Matrix fracture in fiberreinforced ceramics. Journal of the Mechanics and Physics of Solids, 1986. 34(2): p. 167-189.
  • Bisanda, E.T.N. and M.P. Ansell, The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Composites Science and Technology, 1991. 41(2): p. 165-178.
  • Beyerlein, I.J. and S.L. Phoenix, Stress concentrations around multiple fiber breaks in an elastic matrix with local yielding or debonding using quadratic influence superposition. Journal of the Mechanics and Physics of Solids, 1996. 44(12): p. 1997-2039.
  • Beyerlein, I.J. and C.M. Landis, Shear-lag model for failure simulations of unidirectional fiber composites including matrix stiffness. Mechanics of Materials, 1999. 31(5): p. 331-350.
  • Batdorf, S.B. and R. Ghaffarian, Size effect and strength variability of unidirectional composites. International Journal of Fracture, 1984. 26(2): p. 113-123.
  • Bader, M.G., Tensile Strength of Uniaxial Composites, in Science and Engineering of Composite Materials. 1988. p. 1.
  • Aveston, J. and A. Kelly, Theory of multiple fracture of fibrous composites. Journal of Materials Science, 1973. 8(3): p. 352-362.
  • Atkins, A.G., Intermittent bonding for high toughness/ high strength composites. Journal of Materials Science, 1975. 10(5): p. 819-832.
  • Arai, M., et al., Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 2008. 68(2): p. 516-525.
  • Allix, O., P. Ladev ze, and A. Corigliano, Damage analysis of interlaminar fracture specimens. Composite Structures, 1995. 31(1): p. 61-74.
  • Allix, O. and A. Corigliano, Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. International Journal of Fracture, 1996. 77(2): p. 111-140.
  • Al-Ostaz, A., A. Diwakar, and K. Alzebdeh, Statistical model for characterizing random microstructure of inclusion–matrix composites. Journal of Materials Science, 2007. 42(16): p. 7016-7030.
  • Al-Ostaz, A. and I. Jasiuk, Crack initiation and propagation in materials with randomly distributed holes. Engineering Fracture Mechanics, 1997. 58(5–6): p. 395-420.