박사

Osteogenic potential and reaction to human gingival fibroblasts of (Y, Nb)-Zirconia = (Y, Nb)-지르코니아의 골형성능 및 치은세포 반응에 관한 연구

신지철 2016년
논문상세정보
' Osteogenic potential and reaction to human gingival fibroblasts of (Y, Nb)-Zirconia = (Y, Nb)-지르코니아의 골형성능 및 치은세포 반응에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 외과의 다방면
  • dental implant
  • human gingival fibroblasts(HGFs)
  • ltd
  • mucosal sealing
  • niobium
  • osteogenic potential
  • titanium
  • zirconia
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
2,490 0

0.0%

' Osteogenic potential and reaction to human gingival fibroblasts of (Y, Nb)-Zirconia = (Y, Nb)-지르코니아의 골형성능 및 치은세포 반응에 관한 연구' 의 참고문헌

  • Zhao, B.; van der Mei, H.C.; Subbiahdoss, G.; de Vries, J.; Rustema-Abbing, M.; Kuijer, R.; Busscher, H.J.; Ren, Y. Soft tissue integration versus early biofilm formation on different dental implant materials. Dent. Mater. 2014, 30, 716-727.
  • Yamano, S.; Ma, A.K.; Shanti, R.M.; Kim, S.W.; Wada, K.; Sukotjo, C. The influence of different implant materials on human gingival fibroblast morphology, proliferation, and gene expression. Int. J. Oral Maxillofac. Implant. 2011, 26,1247-1255.
  • Xiao, X.F.; Liu, R.F.; Zheng, Y.Z. Hydrothermal-electrochemical codeposited hydoxyapatite/yttria-stabilized zirconia composite coating. J. Mater. Sci. 2006, 41, 3417-3424.
  • Xiao, F.X.B.; Liu, R.F.; Zheng, Y.Z. Hydoxyapatite/titanium composite coating prepared by hydrothermal-electrochemical technique. Mater. Lett. 2005, 59, 1660-1664.
  • United States Food and Drug Administration. Recall of zirconia ceramic femoral heads for hip implants. Am. Ceram. Soc. Bull. 2001, 80, 14-15.
  • Tete, S.; Mastrangelo, F.; Bianchi, A.; Zizzari, V.; Scarano, A. Collagen fiber orientation around machined titanium and zirconia dental implant necks: An animal study. Int. J. Oral Maxillofac. Implant. 2009, 24,52-58.
  • Steinemann SG. Titanium--the material of choice? Periodontol 2000 1998;17:7-21.
  • Siddiqi, A.; Payne, A.G.; de Silva, R.K.; Duncan, W.J. Titanium allergy: Could it affect dental implant integration? Clin. Oral Implant. Res. 2011, 22, 673-680.
  • Shalabi, M.M.; Gortemaker, A.; Van't Hof, M.A.; Jansen, I.A.; Creugers, N.H. Implant surface roughness and bone healing: A systematic review. J. Dent. Res. 2006, 85, 496-500.
  • Sennerby, L.; Dasmah, A.; Larsson, B.; Iverhed, M. Bone tissue responses to surfacemodified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin. Implant. Dent. Relat. Res. 2005, 7, Sl3-S20.
  • Schmalz, G.; Arenholt-Bindslev, D. Biocompatibility of dental materials. Dent. Clin. N. Am. 2007, 51, 747-760.
  • Sailer I, Zembic A, Jung RE, Hammerle CH, Mattiola A. Single-tooth implant reconstructions: esthetic factors influencing the decision between titanium and zirconia abutments in anterior regions. Eur J Esthet Dent 2007;2:296-310.
  • Rompen, E.; Domken, O.; Degidi, M.; Pontes, A.E.; Piattelli, A. The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin. Oral Implant. Res. 2006, 17, 55-67.
  • Riikonen, T.; Westermarck, J.; Koivisto, L.; Broberg, A.; Kahari, V.M.; Heino, J. Integrin α2β1 is a positive regulator of collagenase (MMP-1) and collagen α 1 (I) gene expression. J. Biol. Chem. 1995, 270, 13548-13552.
  • Ray, J.C.; Panda, A.B.; Saha, C.R.; Pramanik, P. Synthesis of niobium(v)-stabilized tetragonal zirconia nanocrystalline powders. J. Am. Ceram. Soc. 2003, 86, 514-516.
  • Ray, J.C.; Panda, A.B.; Pramanik, P. Chemical synthesis of nanocrystals of tantalum ion-doped tetragonal zirconia. Mater. Lett. 2002, 53, 145-150.
  • Raghavan, S.; Wang, H.; Porter, W.D.; Dinwiddie, R.B.; Mayo, M.J. Thermal properties of zirconia co-doped with trivalent and pentavalent oxides. Acta Mater. 2001, 49, 169-179.
  • Quirynen, M.; De Soete, M.; Van Steenberghe, D. Infectious risks for oral implants: A review of the literature. Clin. Oral Implant. Res. 2002, 13, 1-19.
  • Pivodova, V.; Frankova, J.; Ulrichova, J. Osteoblast and gingival fibroblast markers in dental implant studies. Biomed. Pap. Med. Fae. Univ. Palacky Olomouc Czech. Repub. 2011, 155, 109-116.
  • Pigatto, P.D.; Guzzi, G.; Brambilla, L.; Sforza, C. Titanium allergy associated with dental implant failure. Clin. Oral Implant. Res. 2009, 20, 857.
  • Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25.
  • Palaiologou,A.A.; Yukna,R.A.;Moses,R. ;Lallier, T.E. Gingival, dermal, and periodontal ligament fibroblasts express different extracellular matrix receptors. J. Periodontal. 2001, 72, 798-807.
  • Orsini, G.; Assenza, B.; Scarano, A.; Piattelli, M.; Piattelli, A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int. J. Oral Maxillofac. Implant. 2000, 15, 779-784.
  • Ong, J.L.; Cardenas, H.L.; Cavin, R.; Carnes, D.L., Jr. Osteoblast responses to bmp-2- treated titanium in vitro. Int. J. Oral Maxillofac. Implant. 1997, 12, 649-654.
  • Oates, T.W.; Maller, S.C.; West, J.; Steffensen, B. Human gingival fibroblast integrin subunit expression on titanium implant surfaces. J. Periodontal. 2005, 76, 1743-1750.
  • Nakamura, K.; Kanno, T.; Milleding, P.; Ortengren, U. Zirconia as a dental implant abutment material: A systematic review. Int. J. Prosthodont. 2010, 23, 299-309.
  • Mustafa, K.; Wroblewski, J.; Lopez, B.S.; Wennerberg, A.; Hultenby, K.; Arvidson, K. Determining optimal surface roughness of Ti02 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin. Oral Implant. Res. 2001, 12, 515-525.
  • Mustafa, K.; Oden, A.; Wennerberg, A.; Hultenby, K.; Arvidson, K. The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts. Biomaterials 2005, 26, 373-381.
  • Moller, B.; Terheyden, H.; Acil, Y.; Purcz, N.M.; Hertramp : K.; Tabakov, A.; Behrens, E.; Wiltfang, J. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: An in vivo and in vitro study. Int. J. Oral Maxillofac. Surg. 2012, 41, 638-645.
  • Mistry, S.; Kundu, D.; Datta, S.; Basu, D. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Aust. Dent. J. 2011, 56, 68-75.
  • Matsui, M.; Soma, T.; Oda, I. Stress-induced transformation and plastic deformation for Y203-containing tetragonal zirconia polycrystals . J. Am. Ceram. Soc. 1986, 69, 198-202.
  • Masonis, J.L.; Bourne, R.B.; Ries, M.D.; McCalden, R.W.; Salehi, A.; Kelman, D.C. Zirconia femoral head fractures: A clinical and retrieval analysis . J. Arthroplast. 2004, 19, 898-905.
  • Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater 2010;26:807-820.
  • Lincks, J.; Boyan, B.D.; Blanchard, C.R.; Lohmann, C.H.; Liu, Y.; Cochran, D.L.; Dean, D.D.; Schwmiz, Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998, 19, 2219-2232.
  • Lee, B.C.; Yeo, LS.; Kim, D.J.; Lee, J.B.; Kim, S.H.; Han, J.S. Bone formation around zirconia implants combined with rhbmp-2 gel in the canine mandible. Clin. Oral Implant. Res. 2013, 24, 1332-1338.
  • Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-854.
  • Koka, S. The implant-mucosal interface and its role in the long-term success of endosseous oral implants: A review of the literature. Int. J. Prosthodont. 1998, 11, 421-432.
  • Knabe, C.; Klar, F.; Fitzner, R.; Radlanski, R.J.; Gross, U. In vitro investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system. Biomaterials 2002, 23, 3235-3245.
  • Knabe, C.; Howlett, C.R.; Klar, F.; Zreiqat, H. The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells. J. Biomed. Mater. Res. Part A 2004, 71, 98-107.
  • Kim, H.; Murakami, H.; Chehroudi, B.; Textor, M.; Brunette, D.M. Effects of surface topography on the connective tissue attachment to subcutaneous implants. Int. J. Oral Maxillofac. Implant. 2006, 21,354-365.
  • Kim, D.J.; Lee, M.H.; Lee, D.Y.; Han, J.S. Mechanical properties, phase stability, and biocompatibility of (Y,Nb)-TZP/Al203 composite abutments for dental implant. J. Biomed. Mater. Res. 2000, 53, 438--443.
  • Kim, D.J.; Lee, M.H.; Lee, D.Y.; Han, J.S. Mechanical properties, phase stability, and biocompatibility of (Y,Nb )-TZP/ Ah03 composite abutments for dental implant. J. Biomed. Mater. Res. 2000, 53, 438--443.
  • Kim, D.J.; Jung, H.J.; Jang, J.W.; Lee, H.L. Fracture toughness, ionic conductivity, and low-temperature phase stability of tetragonal zirconia codoped with yttria and niobium oxide . J. Am. Ceram. Soc. 1998, 81, 2309-2314.
  • Kim, D.J. Effect of Ta2O5, Nb205, and HfO2 alloying on the transformability of Y203-stabilized tetragonal Zr02 . J. Am. Ceram. Soc. 1990, 73, 115-120.
  • Kim, D.J. Effect of Ta205, Nb205, and Hf02 alloying on the transformability of Y203- stabilized tetragonal Zr02. J. Am. Ceram. Soc. 1990, 73, 115-120.
  • Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T. Workability of the supercooled liquid in the zr65all0nil0cul5 bulk metallic glass. Acta Mater. 1998, 46, 253-263.
  • Kawai, Y.; Uo, M.; Wang, Y.; Kono, S.; Ohnuki, S.; Watari, F. Phase transformation of zirconia ceramics by hydrothermal degradation. Dent. Mater. J. 2011, 30, 286-292.
  • Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication, and apatite formation. J. Biomed. Mater. Res. Part A 2013, doi: 10.1002/jbm.a.34690.
  • Kanematu, N.; Shibata, K.I.; Kurenuma, S.; Watanabe, K.; Yamagami, A.; Nishio, Y.; Fujii, T. Cytotoxicity of oxide anodized titanium alloy evaluated by cell and organic culture study. Gijit Shika Gakkai Zasshi 1990, 17, 583-591.
  • Jiang, Q.H.; Liu, L.; Peel, S.; Yang, G.L.; Zhao, S.F.; He, F.M. Bone response to the multilayer BMP-2 gene coated porous titanium implant surface. Clin. Oral Implant. Res. 2013, 24, 853-861.
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11-25.
  • Humphries, M.J. Integrin structure. Biochem. Soc. Trans. 2000, 28, 311-339.
  • Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin ligands at a glance. J. Cell Sci. 2006, 119, 3901-3903.
  • Hsu SH, Liu BS, Lin WH, Chiang HC, Huang SC, Cheng SS. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface. Biomed Mater Eng 2007;17:53-68.
  • Hormia, M.; Ylanne, J.; Virtanen, I. Expression of integrins in human gingiva. J. Dent. Res. 1990, 69, 1817-1823.
  • Hisbergues M, Vendeville S, Vendeville P. Zirconia: Established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B Appl Biomater 2009;88:519-529.
  • Hiromoto, S.; Tsai, A.P.; Sumita, M.; Hanawa, T. Effect of chloride ion on the anodic polarization behavior of the zr65al7.5ni10cu17.5 amorphous alloy in phosphate buffered solution. Carros. Sci. 2000, 42, 1651-1660.
  • Heydenrijk, K.; Meijer, H.J.; van der Reijden, W.A.; Raghoebar, G.M.; Vissink, A.; Stegenga, B. Microbiota around root-form endosseous implants: A review of the literature. Int. J. Oral Maxillofac. Implant. 2002, 17,829-838.
  • Gremillard, L.; Chevalier, J. Durability of zirconia-based ceramics and composites for total hip replacement. Key Eng. Mater. 2008, 361-363, 791-794.
  • Geiger, B.; Bershadsky, A.; Pankov, R.; Yamada, K.M. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mal. Cell Biol. 2001, 2, 793-805.
  • Eisenbarth, E.; Meyle, J.; Nachtigall, W.; Breme, J. Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials 1996, 17, 1399-1403.
  • Di Carlo, F.; Prosper, L.; Ripari, F.; Scarano, A. Bone response to zirconia ceramic implants: An experimental study in rabbit. J. Oral Implantol. 2000, 29, 8-12.
  • De Maeztu, M.A.; Braceras, I.; Aiava, J.T.; Gay-Escoda, C. Improvement of osseointegration of titanium dental implant surfaces modified with co ions: A comparative histomorphometric study in beagle dogs. Int. J. Oral Maxillofac. Surg. 2008, 37, 441-447.
  • Cunha, C.; Sprio, S.; Panseri, S.; Dapporto, M.; Marcacci, M.; Tampieri, A. High biocompatibility and improved osteogenic potential of novel ca-p/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects. J. Biomed. Mater. Res. Part A 2013, 101, 1612-1619.
  • Cooper, L.F. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J. Prosthet. Dent. 2000, 84, 522-534.
  • Cochran, D.L.; Simpson, J.; Weber, H.P.; Buser, D. Attachment and growth of periodontal cells on smooth and rough titanium. Int. J. Oral Maxillofac. Implant. 1994, 9,289-297
  • Clarke, LC.; Manaka, M.; Green, D.D.; Williams, P.; Pezzotti, G.; Kim, Y.H.; Ries, M.; Sugano, N.; Sedel, L.; Delauney, C.; et al. Current status of zirconia used in total hip implants . J. Bone Jt. Surg. Am. 2003, 85-A, 73-84.
  • Cho, Y.D.; Yoon, W.J.; Woo, K.M.; Baek, J.H.; Lee, G.; Cho, .T.Y.; Ryoo, H.M. Molecular regulation of matrix extracellular phosphoglycoprotein expression by bone morphogenetic protein-2 . J. Biol. Chem. 2009, 284, 25230-25240.
  • Cho, Y.D.; Shin, J.C.; Kim, H.L.; Gerelmaa, M.; Yoon, H.I.; Ryoo, H.M.; Kim, D.J.; Han, J.S. Comparison of the osteogenic potential of titanium and modified zirconiabased bioceramics. Int. J. Mol. Sci. 2014, 15, 4442-4452.
  • Cho, Y.D.; Hong, .T.S.; Ryoo, H.M.; Kim, D.J.; Park, J.H.; Han, .T.S. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition. J. Dent. Res. 2015, 94, 491-499.
  • Chehroudi, B.T.R.L.; Gould, T.R.L.; Brunette, D.M. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J. Biomed. Mater. Res. 1990, 24, 1203-1219.
  • Buser, D.; Janner, S.F.; Wittneben, .T.G.; Bragger, U.; Ramseier, C.A.; Salvi, G.E. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A retrospective study in 303 partially edentulous patients. Clin. Implant Dent. Relat. Res. 2012, 14, 839-851.
  • Brunette, D.M.; Chehroudi, B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J. Biomech. Eng. 1999,121,49-57.
  • Bruckmann, C.; Walboomers, X.F.; Matsuzaka, K.; Jansen, J.A. Periodontal ligament and gingival fibroblast adhesion to dentin-like textured surfaces. Biomaterials 2005, 26, 339-346.
  • Borsani, E.; Salgarello, S.; Mensi, M.; Boninsegna, R.; Stacchiotti, A.; Rezzani, R.; Sapelli,P.; Bianchi,R.; Rodella,L.F. Histochemical and immunohistochemical evaluation of gingival collagen and metalloproteinases in peri-implantitis. Acta Histochem. 2005, 107, 231-240.
  • Borghetti, P.; de Angelis, E.; Caldara, G.; Corradi, A.; Cacchioli, A.; Gabbi, C. Adaptive response of osteoblasts grown on a titanium surface: Morphology, cell proliferation and stress protein synthesis. Vet. Res. Commun. 2005, 29, 221-224.
  • Bachle, M.; Kohal, R.J. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin. Oral Implant. Res. 2004, 15, 683-692.
  • Anselme, K.; Linez, P.; Bigerelle, M.; Le Maguer, D.; Le Maguer, A.; Hardouin, P.; Hildebrand, H.F.; lost, A.; Leroy, J.M. The relative influence of the topography and chemistry of TiA16 V 4 surfaces on osteoblastic cell behaviour. Biomaterials 2000, 21, 1567-1577.
  • Adell, R.; Lekholm, U.; Rockier, B.; Branemark, P.I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Surg. 1981, 10, 387-416.
  • Adell, R.; Eriksson, B.; Lekholm, U.; Branemark, P.T.; Jemt, T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int. J. Oral Maxillofac. Implant. 1990, 5, 347-359.
  • Abou Neel, E.A.; Knowles, J.C. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 2008, 19, 377-386.