박사

생체 촉매를 모방한 탄소기반의 광전기화학 물분해 촉매 연구 = Enzyme-Mimetic Carbon-based Catalysts for Photoelectrochemical Water Splitting

심욱 2016년
논문상세정보
' 생체 촉매를 모방한 탄소기반의 광전기화학 물분해 촉매 연구 = Enzyme-Mimetic Carbon-based Catalysts for Photoelectrochemical Water Splitting' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • 광전기화학셀
  • 물 분해
  • 생체모방
  • 수소발생
  • 촉매
  • 탄소
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
785 0

0.0%

' 생체 촉매를 모방한 탄소기반의 광전기화학 물분해 촉매 연구 = Enzyme-Mimetic Carbon-based Catalysts for Photoelectrochemical Water Splitting' 의 참고문헌

  • 99. A. B. Laursen, T. Pedersen, P. Malacrida, B. Seger, O. Hansen, P. C. K. Vesborg, I. Chorkendorff, Physical Chemistry Chemical Physics 2013, 15, 20000-20004.
  • 98. W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, Energy & Environmental Science 2013, 6, 943-951.
  • 97. D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi, J. S. Lee, ACS Nano 2014, 8, 5164-5173.
  • 96. J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, ACS Catalysis 2012, 2, 1916-1923.
  • 95. B. Seger, A. B. Laursen, P. C. K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff, Angewandte Chemie International Edition 2012, 51, 9128-9131.
  • 94. Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, D. P. Wilkinson, ACS Catalysis 2013, 3, 2101- 2107.
  • 93. Y. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang, C. J. Chang, Journal of the American Chemical Society 2013, 135, 17699-17702.
  • 92. B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, Journal of the American Chemical Society 2013, 135, 19186-19192.
  • 91. D. Kong, H. Wang, Z. Lu, Y. Cui, Journal of the American Chemical Society 2014, 136, 4897-4900.
  • 90. F. Harnisch, G. Sievers, U. Schr der, Applied Catalysis B: Environmental 2009, 89, 455-458.
  • 9. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nature Mater., 2011, 10, 780-786.
  • 9. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat. Mater., 2011, 10, 780-786.
  • 9. Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl and I. Chorkendorff, Angewandte Chemie International Edition, 2013, 52, 3621-3625.
  • 9. U. Sim, K. Jin, S. Oh, D. Jeong, J. Moon, J. Oh and K. T. Nam, in Handbook of Clean Energy Systems, John Wiley & Sons, Ltd, 2015, DOI: 10.1002/9781118991978.hces223.
  • 9. R. J. Gilliam, J. W. Graydon, D. W. Kirk, S. J. Thorpe, International Journal of Hydrogen Energy 2007, 32, 359-364.
  • 9. N. K. Allam, A. J. Poncheri and M. A. El-Sayed, ACS Nano, 2011, 5, 5056-5066.
  • 9. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253-278, (2009)
  • 9. K. Caldeira, M. R. Rampino, Geophysical Research Letters 1991, 18, 987-990.
  • 89. V. Damien, Y. Hisato, L. Junwen, S. Rafael, C. B. A. Diego, F. Takeshi, C. Mingwei, A. Tewodros, B. S. Vivek, E. Goki, C. Manish, Nature Materials 2013, 12, 850-855.
  • 88. D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Letters 2013, 13, 6222-6227.
  • 87. J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat Chem 2014, 6, 248- 253.
  • 86. I. M. Kodintsev, S. Trasatti, Electrochimica Acta 1994, 39, 1803-1808.
  • 85. J. Choi, Y. Qu, M. Hoffmann, Journal of Nanoparticle Research 2012, 14, 1-12.
  • 84. R. K. Shervedani, A. Lasia, Journal of The Electrochemical Society 1998, 145, 2219-2225.
  • 83. S. Schuldiner, Journal of The Electrochemical Society 1959, 106, 891-895.
  • 82. S. Schuldiner, Journal of The Electrochemical Society 1954, 101, 426-432.
  • 81. S. Schuldiner, Journal of The Electrochemical Society 1952, 99, 488- 494.
  • 80. K. Gossner, Z. Phys. Chem. Frankf. A.M. 1963, 36, 392.
  • 8. aJ. Ivy, National Renewable Energy Lab., Golden, CO (US), 2004; bA. Roy, Loughborough University 2006.
  • 8. T. F. Jaramillo, J. Bonde, J. Zhang, B.-L. Ooi, K. Andersson, J. Ulstrup and I. Chorkendorff, The Journal of Physical Chemistry C, 2008, 112, 17492-17498.
  • 8. S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Proceedings of the National Academy of Sciences 2009, 106, 1704-1709;
  • 8. Maeda, K.; Domen, K., Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655-2661, (2010)
  • 8. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. K. I. Grigorieva, S. Dubonos and A. Firsov, Nature, 2005, 438, 197-200.
  • 8. J. Tian, Q. Liu, A. M. Asiri, K. A. Alamry and X. Sun, ChemSusChem, 2014, 7, 2125-2130.
  • 8. A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253-278.
  • 8. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278.
  • 79. A. N. Frumkin, Advances in Electrochemistry and Electrochemical Engineering 1969, 3.
  • 78. V.L. Kheifets, B.S. Krastkov, A.L. Rotinyan, Elektrokhimiya 1970, 6, 916.
  • 77. A.L. Rotinyan, N.P. Fedotov, Li Un Sok, Zh. Fiz. Khim. 1957, 31, 1295.
  • 76. J. O. M. Bockris, R. Parsons, Transactions of the Faraday Society 1948, 44, 860-872.
  • 75. Ya.M. Kolotyrkin, L.A. Medvedeva, Zh. Fiz. Khim 1951, 25, 1365.
  • 74. O.L. Kabanova, A.N. Doronin, Elektrokhimiya 1970, 6, 222.
  • 73. N. Hackerman, C. D. Hall, Journal of The Electrochemical Society 1954, 101, 321-327.
  • 72. N. T. Thomas, K. Nobe, Journal of The Electrochemical Society 1970, 117, 622-626.
  • 71. A. T. Petrenko, Zh. Fiz. Khim. 1962, 36, 1527.
  • 70. D. Galizzioli, Thesis, University of Milan 1969.
  • 7. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 2011, 133, 7296-7299.
  • 7. U. Sim, H.-Y. Jeong, T.-Y. Yang and K. T. Nam, Journal of Materials Chemistry A, 2013, 1, 5414-5422.
  • 7. U. Sim, H.-Y. Jeong, T.-Y. Yang and K. T. Nam, J. Mater. Chem. A, 2013, 1, 5414-5422.
  • 7. K. Maeda and K. Domen, J. Phys. Chem. Lett., 2010, 1, 2655-2661.
  • 7. J. L. Sarmiento, C. Le Qu r , Science 1996, 274, 1346-1350;
  • 7. J. K. N rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, Journal of The Electrochemical Society, 2005, 152, J23-J26.
  • 7. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38, (1972)
  • 7. A. Ursua, L. M. Gandia, P. Sanchis, Proceedings of the IEEE 2012, 100, 410-426.
  • 69. J. P. Hoare, S. Schuldiner, The Journal of Chemical Physics 1956, 25, 786-787.
  • 68. P. R etschi, B. D. Cahan, Journal of The Electrochemical Society 1957, 104, 406-413.
  • 67. K. Punning, V. Past, Uch. Zap. Tartu. Gos. Univ. 1969, 265, 34.
  • 66. A.G. Pecherskaya, V.V. Stender, Zh. Fiz. Khim. 1950, 24, 856.
  • 65. B. E. Conway, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1960, 256, 128-144.
  • 64. H. Shiratori, Denki Kagaku 1961, 29, 765.
  • 63. D.K. Avdeyev, G.V. Aleksandrov, Y.V. Durdin, Proceedings 2nd Symposium on Double Layer and Adsorption on Solid Electrodes, Tartu 1970, 58.
  • 62. A. T. Kuhn, P. M. Wright, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1970, 27, 319-323.
  • 61. A. K. M. S. Huq, A. J. Rosenberg, Journal of The Electrochemical Society 1964, 111, 270-278.
  • 60. E.I. Mikhailova, Z.A. Iofa, Elektrokhimiya 1965, 1, 107.
  • 6. U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, J. Lee, K. Y. Kim, J. Lee, S. Han, B. H. Hong and K. T. Nam, Energy & Environ. Sci., 2013, 6, 3658-3664.
  • 6. U. Sim, H.-Y. Jeong, T.-Y. Yang and K. T. Nam, Journal of Materials Chemistry A, 2013, 1, 5414-5422.
  • 6. Sim, U.; Yang, T.-Y.; Moon, J.; An, J.; Hwang, J.; Seo, J.-H.; Lee, J.; Kim, K. Y.; Lee, J.; Han, S.; Hong, B. H.; Nam, K. T., N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy & Environmental Science 2013, 6 (12), 3658- 3664.
  • 6. R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder and M. S. Wrighton, J. Am. Chem. Soc., 1982, 104, 467-482.
  • 6. L. M. Gandia, G. Arzamedi, P. M. Di guez, Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Newnes, 2013.
  • 6. J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, M. Stievenard, Nature 1999, 399, 429- 436;
  • 6. I. Oh, J. Kye and S. Hwang, Nano Letters, 2011, 12, 298-302.
  • 6. F. Akira and H. Kenichi, Nature, 1972, 238, 37.
  • 59. N.M. Kozhevnikova, A.L. Rotinyan, Elektrokhimiya 1965, 1, 664.
  • 58. I.V. Gamali, V.V. Stender, Zh. Prikl. Khim. 1962, 35, 127.
  • 57. A. T. Petrenko, Elektrokhimiya 1965, 1, 839.
  • 56. J. N. Butler, M. Dienst, Journal of The Electrochemical Society 1965, 112, 226-232.
  • 55. A.L. Rotinyan, E.D. Levin, Elektrokhimiya 1970, 6, 328.
  • 54. J. N. Butler, A. C. Makrides, Transactions of the Faraday Society 1964, 60, 1664-1676.
  • 54 U. Sim, H.-Y. Jeong, T.-Y. Yang and K. T. Nam, Journal of Materials Chemistry A, 2013, 1, 5414-5422.
  • 53. D. B. Matthews, Ph. D. Thesis, University of Pennsylvania 1965.
  • 53 S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater and N. S. Lewis, J. Am. Chem. Soc., 2011, 133, 1216-1219
  • 52. J. O. M. Bockris, R. Parsons, Transactions of the Faraday Society 1949, 45, 916-928.
  • 52 J. R. Maiolo, B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, H. A. Atwater and N. S. Lewis, J. Am. Chem. Soc., 2007, 129, 12346-12352.
  • 51. Z.A. Iofa, K.P. Mikulin, Zh. Fiz. Khim. 1944, 18, 137.
  • 51 J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, Energy Environ. Sci., 2011, 4, 3573-3583.
  • 50. U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong and K. T. Nam, Energy & Environ. Sci., 2015, 8, 1329- 1338.
  • 50. B.N. Kabanov, A.N. Frumkin, Zh. Fiz. Khim. 1934, 5, 418.
  • 50 I. Oh, J. Kye and S. Hwang, Nano Lett., 2012, 12, 298-302.
  • 5. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. Qiao, ACS Nano, 2014, 8, 5290-5296.
  • 5. Y. W. Chen, J. D. Prange, S. D hnen, Y. Park, M. Gunji, C. E. Chidsey and P. C. McIntyre, Nature Mater., 2011, 10, 539-544.
  • 5. U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong and K. T. Nam, Energy & Environmental Science, 2015, 8, 1329-1338.
  • 5. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater and N. S. Lewis, Journal of the American Chemical Society, 2011, 133, 1216-1219.
  • 5. P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, I. J. Totterdell, Nature 2000, 408, 184-187;
  • 5. P. A. Mangrulkar, V. Polshettiwar, N. K. Labhsetwar, R. S. Varma and S. S. Rayalu, Nanoscale, 2012, 4, 5202-5209.
  • 5. Li, R. Parvez, K. Hinkel, F. Feng, X. and Mullen, K. Bioinspired wafer-scale production of highly stretchable carbon films for transparent conductive electrodes. Angew. Chem. Int. Ed. 52, 5535– 5538 (2013)
  • 5. C. Ronneau, Energie, pollution de l'air et developpement durable, 2004.
  • 49. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater and N. S. Lewis, Journal of the American Chemical Society, 2011, 133, 1216-1219.
  • 49. B. G. Dekker, M. Sluyters-Rehbach, J. H. Sluyters, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1969, 21, 137-147.
  • 49 J. Oh, T. G. Deutsch, H. C. Yuan and H. M. Branz, Energy Environ. Sci., 2011, 4, 1690-1694.
  • 48. J. N. Butler, M. L. Meehan, Transactions of the Faraday Society 1966, 62, 3524-3534.
  • 48. J. Moon, J. An, U. Sim, S.-P. Cho, J. H. Kang, C. Chung, J.-H. Seo, J. Lee, K. T. Nam and B. H. Hong, Advanced Materials, 2014, 26, 3501-3505.
  • 48 Y. D. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, K. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff, Nat. Mater. 2011, 10, 434-441.
  • 47. T. Lopes, L. Andrade, H. A. Ribeiro and A. Mendes, International Journal of Hydrogen Energy, 2010, 35, 11601-11608.
  • 47. S. Raicheva, L. Andreeva, C. R. Acad. Bulg. Sci., 1965, 18, 1023.
  • 47 S. Koynov, M. S. Brandt and M. Stutzmann J. Appl. Phys., 2011, 110, 043537.
  • 46. D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu, Chemical Science, 2012, 3, 2515-2525.
  • 46. A.M. Morozov, I.A. Bagotskaya, E.A. Preis, Elektrokhimiya 1969, 5, 40.
  • 46 J. D. J. Ingle and S. R. Crouch Spectrochemical Analysis, Prentice Hall, NJ, USA, 1988.
  • 45. R. E. Hummel, Electronic Properties of Materials, Springer, 4th edn., 2011.
  • 45. H.F. Fischer, H. Heiling, Z. Elektrochem. 1956, 54, 187.
  • 45. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar and A. Karger Appl. Phys. Lett., 2001, 78 1850-1851.
  • 44. Z. B. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. Dinh, J. Mater. Res., 2010, 25, 3-16.
  • 44. U. Palm, M. P rnoja, Uch. Zap. Tartu. Gos. Univ. 1970, 265, 34..
  • 44. N. S. Lewis, Journal of The Electrochemical Society, 1984, 131, 2496-2503.
  • 44. B. Eren, T. Glatzel, M. Kisiel, W. Fu, R. Pawlak, U. Gysin, C. Nef, L. Marot, M. Calame, C. Sch nenberger and E. Meyer, Appl. Phys. Lett., 2013, 102, 071602.
  • 43. R. N. Sajjad and K. Alam, J. Appl. Phys, 2009, 105, 044307-6.
  • 43. K. Gelderman, L. Lee and S. W. Donne, Journal of Chemical Education, 2007, 84, 685.
  • 43. J. L. Achtyl, R. R. Unocic, L. Xu, Y. Cai, M. Raju, W. Zhang, R. L. Sacci, I. V. Vlassiouk, P. F. Fulvio, P. Ganesh, D. J. Wesolowski, S. Dai, A. C. T. van Duin, M. Neurock and F. M. Geiger, Nat. Comm., 2015, 6:6539.
  • 43. E. J. Kelly, Journal of The Electrochemical Society 1965, 112, 124- 131.
  • 42. Y. Nakano, S. Iwamoto, I. Yoshinaga and J. W. Evans, Chem. Eng. Sci., 1987, 42, 1577-1583.
  • 42. S.Ya. Lanina, Z.A. Iofa, Elektrokhimiya 1969, 5, 359.
  • 42. S. Yadav, Z. Zhu and C. V. Singh, Inter. J. Hydro. Energy, 2014, 39, 4981-4995.
  • 42. A. W. Bott, Current Separations, 1998, 17, 87-91.
  • 41. Y. Fujimoto and S. Saito, Journal of Applied Physics, 2014, 115, 153701-1-153701-5.
  • 41. M. Magi, U. Palm, V. Past, Uch. Zap. Tartu. Gos. Univ. 1966, 193, 96.
  • 41. K. Dong Chul, J. Dae-Young, C. Hyun-Jong, W. YunSung, S. Jai Kwang and S. Sunae, Nanotechnology, 2009, 20, 375703.
  • 41. J. H. Bae, J.-H. Han and T. D. Chung, Phys. Chem. Chem. Phys., 2012, 14, 448-463.
  • 40. S. Trasatti and O. A. Petrii, J. Electroanal. Chem., 1992, 327, 353- 376.
  • 40. N. S. Lewis, J. Electrochem. Soc., 1984, 131, 2496-2503.
  • 40. Kho Ngok Ba, Nguyen Dyk Vi, Elektrokhimiya 1968, 4, 990.
  • 40. B. E. Conway and G. Jerkiewicz, Electrochimica Acta, 2000, 45, 4075-4083.
  • 4. aP. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, I. J. Totterdell, Nature 2000, 408, 184-187; bJ. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, M. Stievenard, Nature 1999, 399, 429-436; cJ. L. Sarmiento, C. Le Qu r , Science 1996, 274, 1346-1350; dS. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Proceedings of the National Academy of Sciences 2009, 106, 1704-1709; eK. Caldeira, M. R. Rampino, Geophysical Research Letters 1991, 18, 987-990.
  • 4. U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, J. Lee, K. Y. Kim, J. Lee, S. Han, B. H. Hong and K. T. Nam, Energy & Environmental Science, 2013, 6, 3658-3664.
  • 4. U. S. E. I. Administration., 2013.
  • 4. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets and D. G. Nocera, Chemical Reviews, 2010, 110, 6474-6502.
  • 4. Li, Y. Wang, H. Xie, L. Liang, Y. Hong, G. and Dai, H., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296-7299 (2011)
  • 4. K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, N.-E. Sung, S. H. Kim, S. Han and K. T. Nam, J. Am. Chem. Soc., 2014, 136, 7435-7443.
  • 4. C. Zhen, G. Liu and H.-M. Cheng, Nanoscale, 2012, 4, 3871-3874.
  • 4. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278.
  • 39. L. R. F. Allen J. Bard, John Wiley & Sons, Inc., 2001, 864.
  • 39. J. Oh, H.-C. Yuan and H. M. Branz, Nat. Nanotech., 2012, 7, 743-438.
  • 39. D. Kong, H. Wang, Z. Lu and Y. Cui, J. Am. Chem. Soc., 2014, 136, 4897-4900.
  • 39. B. E. Wilde, F. G. Hodge, Electrochimica Acta 1969, 14, 619-627.
  • 38. Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. Dinh, Journal of Materials Research, 2010, 25, 3-16.
  • 38. J. P. Randin and E. Yeager, J. Electrochem. Soc., 1971, 118, 711- 714.
  • 38. J. M. Foley, M. J. Price, J. I. Feldblyum and S. Maldonado, Energy Environ. Sci., 2012, 5, 5203-5220.
  • 38. A.G. Pecherskaya, V.V. Stender, Zh. Fiz. Khim. 1950, 24, 856.
  • 37. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru and U. Rapol, Nanophotonics, 2007, 1, 013552- 013552-013510.
  • 37. K. Gelderman, L. Lee and S. W. Donne, J. Chem. Edu., 2007, 84, 685.
  • 37. I.V. Kudryashov, E.S. Burmistrov, V.L. Kirlis, Elektrokhimiya 1970, 5, 737.
  • 37. B.K. Newman, J.T. Sullivan, M.T. Winkler, M.J. Sher, M.A. Marcus, S. Fakra, M.J. Smith, S. Gradecak, E. Mazur and T. Buonassisi, 24th European Photovoltaic Solar Energy Conference, 21-25 september 2009, Hamburg, Germany.
  • 36. Z. A. Lofa, W. Pao-Ming, Zh. Fiz. Khim. 1963, 37, 2300.
  • 36. J. Price, P. S. Lysaght, S. C. Song, Hong-Jyh Li and A. C. Diebold, Appl. Phys. Lett., 2007, 91, 061925-061927
  • 36. E. Garnett and P. Yang, Nano Letters, 2010, 10, 1082-1087.
  • 36. A. W. Bott, Current Separations, 1998, 17, 87-91.
  • 35. T. Lopes, L. Andrade, H. A. Ribeiro and A. Mendes, Inter. J. Hydro. Energy, 2010, 35, 11601-11608.
  • 35. S. Koynov, M. S. Brandt and M. Stutzmann, J. Appl. Phys, 2011, 110, 043537.
  • 35. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan and S. Lee, Chemistry – A European Journal, 2006, 12, 7942-7947.
  • 35. J. O. M. Bockris, S. Srinivasan, Electrochimica Acta 1964, 9, 31-44.
  • 34. N. S. Lewis, J. Electrochem. Soc., 1984, 131, 2496-2503.
  • 34. J. D. J. Ingle and S. R. Crouch, Spectrochemical Analysis, Prentice Hall, NJ, USA, 1988.
  • 34. D. B. Williams, Carter, C. Barry, Transmission Electron Microscopy, Springer, 2009.
  • 34. A.L. Rotinyan, A.B. Kilimnik, E.D. Levin, Proceedings 2nd Symposium on Double Layer and Adsorption on Solid Electrodes, Tartu 1970, 321.
  • 33. L.P. Bicelli, A. La Vecchia, M. Graziono, Waddtech. Rp. 1961, 61-63.
  • 33. L. R. F. Allen J. Bard, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., 2001, 864.
  • 33. E. Rosencher and B. Vinter, Optoelectronics, Cambridge University Press, Cambridge, UK, 2002.
  • 33. B. M. Kayes, H. A. Atwater and N. S. Lewis, Journal of Applied Physics, 2005, 97.
  • 32. T.T. Tenno, V.A. Slet, U.V. Palm, Proceedings 2nd Symposium on Double Layer and Adsorption on Solid Electrodes, Tartu 1970, 361.
  • 32. J. Oh, T. G. Deutsch, H.-C. Yuan and H. M. Branz, Energy & Environmental Science, 2011, 4, 1690-1694.
  • 32. D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu, Chemical Science, 2012, 3, 2515-2525.
  • 32. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar and A. Karger, Appl. Phys. Lett., 2001, 78, 1850-1852.
  • 31. Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. Dinh, J. Mater. Res., 2010, 25, 3-16.
  • 31. Y. W. Chen, J. D. Prange, S. D hnen, Y. Park, M. Gunji, C. E. D. Chidsey and P. C. McIntyre, Nat Mater, 2011, 10, 539-544.
  • 31. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain and C. Miazza, Sol. Energy Mater. Sol. Cells, 2006, 90, 2952-2959.
  • 31. A.B. Kilimnik, A.L. Rotinyan, Elektrokhimiya 1969, 5, 1235.
  • 30. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bj rketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. N rskov and I. Chorkendorff, Nat Mater, 2011, 10, 434-438.
  • 30. U. V. Palm, V. E. Past, Zh. Fiz. Khim. 1964, 38, 773.
  • 30. N rskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23-J26, (2005)
  • 30. ASTM International Standards Worldwide, http://www.astm.org/Standards/G173.htm
  • 30. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 2006, 97, 187401.
  • 3. Y. Kim, D. Shin, W. J. Chang, H. L. Jang, C. W. Lee, H.-E. Lee and K. T. Nam, Adv.Func. Mater., 2015, 25, 2369-2377.
  • 3. U. S. E. I. Administration., 2013.
  • 3. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets and D. G. Nocera, Chemical Reviews, 2010, 110, 6474-6502.
  • 3. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers and D. G. Nocera, Science, 2011, 334, 645-648.
  • 3. Reece, S. Y. Hamel, J. A. Sung, K. Jarvi, T. D. Esswein, A. J. Pijpers, J. J. H. and Nocera, D. G., Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts. Science 334, 645-648 (2011)
  • 3. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15729-15735.
  • 3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chemical Reviews, 2010, 110, 6446- 6473.
  • 3. A. J. Esswein, D. G. Nocera, Chemical reviews 2007, 107, 4022-4047.
  • 29. U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, J. Lee, K. Y. Kim, J. Lee, S. Han, B. H. Hong and K. T. Nam, Energy & Environmental Science, 2013, 6, 3658-3664.
  • 29. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru and U. Rapol, J. Nanophotonics, 2007, 1, 013552.
  • 29. J. Larminie, A. Dicks, M. S. McDonald, Fuel cell systems explained, Vol. 2, Wiley New York, 2003.
  • 29. D. J. G. Ives, S. Swaroopa, Journal of the Chemical Society (Resumed) 1955, 3489-3497.
  • 29. A. C. Nielander, M. J. Bierman, N. Petrone, N. C. Strandwitz, S. Ardo, F. Yang, J. Hone and N. S. Lewis, J. Am. Chem. Soc., 2013, 135, 17246-17249.
  • 28. Z. Huang, P. Zhong, C. Wang, X. Zhang and C. Zhang, ACS Applied Materials & Interfaces, 2013, 5, 1961-1966.
  • 28. N. Pentland, J. O. M. Bockris, E. Sheldon, Journal of The Electrochemical Society 1957, 104, 182-194.
  • 28. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296-7299, (2011)
  • 28. C. Battaglia, C.-M. Hsu, K. S derstr m, J. Escarr , F.-J. Haug, M. Charri re, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui and C. Ballif, ACS Nano, 2012, 6, 2790-2797.
  • 28. A. Ambrosi and M. Pumera, J. Phys. Chem. C, 2013, 117, 2053- 2058.
  • 27. R. J. Mannan, Ph.D. Thesis, University of Pennsylvania 1967.
  • 27. Q. Xiang, J. Yu and M. Jaroniec, Chemical Society Reviews, 2012, 41, 782-796.
  • 27. E. Garnett and P. Yang, Nano Lett., 2010, 10, 1082-1087.
  • 27. D. A. C. Brownson, S. A. Varey, F. Hussain, S. J. Haigh and C. E. Banks, Nanoscale, 2014, 6, 1607-1621.
  • 27. Allen J. Bard, L. R. F., Electrochemical methods: fundamentals and applications. John Wiley & Sons, Inc. 864, (2001)
  • 26. M. Avrami, J.Chem. Phys., 1939, 7, 1103-1112.
  • 26. J.-D. Qiu, G.-C. Wang, R.-P. Liang, X.-H. Xia and H.-W. Yu, The Journal of Physical Chemistry C, 2011, 115, 15639-15645.
  • 26. Huang, Z.; Zhong, P.; Wang, C.; Zhang, X.; Zhang, C., Silicon nanowires/reduced graphene oxide composites for enhanced photoelectrochemical properties. ACS Appl. Mater. & Inter. 5, 1961- 1966, (2013)
  • 26. A. T. Valota, I. A. Kinloch, K. S. Novoselov, C. Casiraghi, A. Eckmann, E. W. Hill and R. A. W. Dryfe, ACS Nano, 2011, 5, 8809-8815.
  • 26. A. K. Vijh, The Journal of Physical Chemistry 1968, 72, 1148-1156.
  • 25. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat Mater, 2011, 10, 780-786.
  • 25. X. Dang, H. Dong, L. Wang, Y. Zhao, Z. Guo, T. Hou, Y. Li and S.-T. Lee, ACS Nano, 2015, 9, 8562-8568.
  • 25. K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan and S. Lee, Chem. Eur. J., 2006, 12, 7942-7947.
  • 25. Huang, J. Y., HRTEM and EELS studies of defects structure and amorphous-like graphite induced by ball-milling. Acta Materialia 47, 1801-1808, (1999)
  • 25. B. E. Conway, J. O. Bockris, apos, M., The Journal of Chemical Physics 1957, 26, 532-541.
  • 24. Yu, X.; Fan, H.; Liu, Y.; Shi, Z.; Jin, Z., Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir 30, 5497-5505, (2014)
  • 24. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, Nature Communication, 2014, 5.
  • 24. W. Zhu, V. Perebeinos, M. Freitag and P. Avouris, Phys. Rev. B, 2009, 80, 235402.
  • 24. U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, J. Lee, K. Y. Kim, J. Lee, S. Han, B. H. Hong and K. T. Nam, Energy & Environ. Sci., 2013, 6, 3658-3664.
  • 24. J. R. Maiolo, H. A. Atwater and N. S. Lewis, J. Phys. Chem. C, 2008, 112, 6194-6201.
  • 24. J. O. M. Bockris, I. A. Ammar, A. K. M. S. Huq, The Journal of Physical Chemistry 1957, 61, 879-886.
  • 23. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec and S. Z. Qiao, ACS Nano, 2014, 8, 5290-5296.
  • 23. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 2009, 324, 1312-1314.
  • 23. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. Science, 318, 426-430, (2007)
  • 23. K. Muhammad Farooq, I. Muhammad Zahir, I. Muhammad Waqas and E. Jonghwa, Sci. Tech. Adv. Mater., 2014, 15, 055004.
  • 23. K. Gossner, F. Mansfeld, Z. Phys. Chem. Frankf. A.M. 1968, 58, 24.
  • 23. B. M. Kayes, H. A. Atwater and N. S. Lewis, J. Appl. Phys, 2005, 97, 114302.
  • 22. Li, R.; Parvez, K.; Hinkel, F.; Feng, X.; M llen, K., Bioinspired wafer-scale production of highly stretchable carbon films for transparent conductive electrodes. Angew. Chem. Int. Ed. 52, 5535- 5538, (2013)
  • 22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 2005, 438, 197-200.
  • 22. J. Oh, T. G. Deutsch, H. C. Yuan and H. M. Branz, Energy Environ. Sci., 2011, 4, 1690-1694.
  • 22. C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti and T. F. Heinz, Nat. Phys., 2011, 7, 944-947.
  • 22. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim and A. C. Ferrari, Appl. Phys. Lett., 2007, 91, 233108.
  • 22. A.B. Kilimnik, A.L. Rotinyan, Elektrokhimiya 1970, 6, 330.
  • 21. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, Nature, 2009, 459, 820-823.
  • 21. Xiang, Q.; Yu, J.; Jaroniec, M., Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782-796, (2012)
  • 21. V.I. Bystrov, L.I. Krishtalik, Elektrokhimiya 1967, 3, 1345.
  • 21. S. Chen, J. Duan, Y. Tang, B. Jin and S. Zhang Qiao, Nano Energy, 2015, 11, 11-18.
  • 21. I. Oh, J. Kye and S. Hwang, Nano Lett., 2012, 12, 298-302.
  • 21. A. Ferrari and J. Robertson, Phys. Rev. B, 2001, 64, 075414.
  • 20. V.I. Bystrov, L.I. Krishtalik, Elektrokhimiya 1967, 3, 1499.
  • 20. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets and D. G. Nocera, Chem. Rev., 2010, 110, 6474-6502.
  • 20. Qiu, J.-D.; Wang, G.-C.; Liang, R.-P.; Xia, X.-H.; Yu, H.-W., Controllable Deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 115, 15639-15645, (2011)
  • 20. L. R. F. Allen J. Bard, John Wiley & Sons, Inc., 2001, 864.
  • 20. K. Ihm, J. T. Lim, K.-J. Lee, J. W. Kwon, T.-H. Kang, S. Chung, S. Bae, J. H. Kim, B. H. Hong and G. Y. Yeom, Appl. Phys. Lett., 2010, 97, 032113.
  • 20. F. Tuinstra and J. L. Koenig, J. Chem. Phys., 1970, 53, 1126.
  • 20. B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic and P. G. Khalifah, Journal of the American Chemical Society, 2013, 135, 19186-19192.
  • 2. aD. G. Nocera, Daedalus 2006, 135, 112-115; bN. S. Lewis, D. G. Nocera, Proceedings of the National Academy of Sciences 2006, 103, 15729-15735; cA. J. Esswein, D. G. Nocera, Chemical reviews 2007, 107, 4022-4047.
  • 2. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bj rketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. N rskov and I. Chorkendorff, Nature Mater., 2011, 10, 434-438.
  • 2. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bj rketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. N rskov and I. Chorkendorff, Nat. Mater., 2011, 10, 434-438.
  • 2. N. S. Lewis, D. G. Nocera, Proceedings of the National Academy of Sciences 2006, 103, 15729-15735;
  • 2. N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences, 2006, 103, 15729-15735.
  • 2. J. A. Turner, Science, 2004, 305, 972-974.
  • 2. Hou, Y. Abrams, B. L. Vesborg, P. C. K. Bj rketun, M. E. Herbst, K. Bech, L. Setti, A. M. Damsgaard, C. D. Pedersen, T. Hansen, O. Rossmeisl, J. Dahl, S. N rskov, J. K. and Chorkendorff, I., Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434-438 (2011)
  • 190. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. Pijpers, D. G. Nocera, Science 2011, 334, 645-648.
  • 19. U. Sim, K. Jin, S. Oh, D. Jeong, J. Moon, J. Oh and K. T. Nam, Handbook of Clean Energy Systems, John Wiley & Sons, Ltd, 2015, 5, 1-42
  • 19. S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem., 1972, 39, 163-184.
  • 19. R. K. Shervedani and A. Lasia, Journal of The Electrochemical Society, 1998, 145, 2219-2225.
  • 19. M. W. Kanan, Y. Surendranath and D. G. Nocera, Chem. Soc. Rev., 2009, 38, 109-114.
  • 19. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780-786, (2011)
  • 19. D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu, Chemical Science, 2012, 3, 2515-2525.
  • 19. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339-1343.
  • 189. G. Lin, M. Kapur, R. Kainthla, J. M. Bockris, Applied Physics Letters 1989, 55, 386-387.
  • 188. M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, Science 2013, 342, 836-840.
  • 187. Y. W. Chen, J. D. Prange, S. D hnen, Y. Park, M. Gunji, C. E. Chidsey, P. C. McIntyre, Nature Mater. 2011, 10, 539-544.
  • 186. J. Y. Kim, G. Magesh, D. H. Youn, J.-W. Jang, J. Kubota, K. Domen, J. S. Lee, Scientific reports 2013, 3, 2681.
  • 185. A. Kleiman-Shwarsctein, M. N. Huda, A. Walsh, Y. Yan, G. D. Stucky, Y.-S. Hu, M. M. Al-Jassim, E. W. McFarland, Chemistry of Materials 2009, 22, 510-517.
  • 184. A. Kleiman-Shwarsctein, Y.-S. Hu, A. J. Forman, G. D. Stucky, E. W. McFarland, The Journal of Physical Chemistry C 2008, 112, 15900- 15907.
  • 183. Y.-S. Hu, A. Kleiman-Shwarsctein, A. J. Forman, D. Hazen, J.-N. Park, E. W. McFarland, Chemistry of Materials 2008, 20, 3803-3805.
  • 182. I. Cesar, A. Kay, J. A. Gonzalez Martinez, M. Gr tzel, Journal of the American Chemical Society 2006, 128, 4582-4583.
  • 181. T. W. Kim, K.-S. Choi, Science 2014, 343, 990-994.
  • 180. S. P. Berglund, A. J. Rettie, S. Hoang, C. B. Mullins, Physical Chemistry Chemical Physics 2012, 14, 7065-7075.
  • 18. Z. Huang, P. Zhong, C. Wang, X. Zhang and C. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 1961-1966.
  • 18. Y. Surendranath, M. W. Kanan and D. G. Nocera, Journal of the American Chemical Society, 2010, 132, 16501-16509.
  • 18. U. Sim, J. Moon, J. An, J. H. Kang, S. E. Jerng, J. Moon, S.-P. Cho, B. H. Hong and K. T. Nam, Energy & Environ. Sci., 2015, 8, 1329-1338.
  • 18. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200, (2005)
  • 18. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, H. B. Gray, Energy & Environmental Science 2011, 4, 3573-3583.
  • 18. D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi and J. S. Lee, ACS Nano, 2014, 8, 5164-5173.
  • 18. B. Marsen, B. Cole and E. L. Miller, Sol. Energy Mater. Sol. Cells, 2008, 92, 1054-1058.
  • 179. W. Luo, Z. Li, T. Yu, Z. Zou, The Journal of Physical Chemistry C 2012, 116, 5076-5081.
  • 178. D. K. Zhong, S. Choi, D. R. Gamelin, Journal of the American Chemical Society 2011, 133, 18370-18377.
  • 177. K. Sivula, F. Le Formal, M. Gr tzel, ChemSusChem 2011, 4, 432-449.
  • 176. Y. Park, K. J. McDonald, K.-S. Choi, Chemical Society Reviews 2013, 42, 2321-2337.
  • 175. C. Jan ky, K. Rajeshwar, N. De Tacconi, W. Chanmanee, M. Huda, Catalysis Today 2013, 199, 53-64.
  • 174. S. D. Tilley, M. Cornuz, K. Sivula, M. Gr tzel, Angewandte Chemie 2010, 122, 6549-6552.
  • 173. J. Su, L. Guo, S. Yoriya, C. A. Grimes, Crystal Growth & Design 2009, 10, 856-861.
  • 172. X. Liu, F. Wang, Q. Wang, Physical Chemistry Chemical Physics 2012, 14, 7894-7911.
  • 171. Q. Peng, B. Kalanyan, P. G. Hoertz, A. Miller, D. H. Kim, K. Hanson, L. Alibabaei, J. Liu, T. J. Meyer, G. N. Parsons, Nano letters 2013, 13, 1481-1488.
  • 170. A. Fujishima, nature 1972, 238, 37-38.
  • 17. Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S. J. Pennycook and H. Dai, Nature Nanotech., 2012, 7, 394-400.
  • 17. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, Journal of the American Chemical Society 2011, 133, 1216-1219.
  • 17. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, Energy Environ. Sci., 2011, 4, 3573-3583.
  • 17. I. Oh, J. Kye and S. Hwang, Nano Letters, 2011, 12, 298-302.
  • 17. H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith, Science, 2007, 318, 426-430.
  • 17. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474-6502, (2010)
  • 17. B. Xie, C. Yang, Z. Zhang, P. Zou, Z. Lin, G. Shi, Q. Yang, F. Kang and C.-P. Wong, ACS Nano, 2015, 9, 5636-5645.
  • 169. F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam, R. van de Krol, Nature communications 2013, 4, 2195.
  • 168. C. G. Morales-Guio, S. D. Tilley, H. Vrubel, M. Gr tzel, X. Hu, Nature communications 2014, 5, 3059.
  • 167. A. Paracchino, V. Laporte, K. Sivula, M. Gr tzel, E. Thimsen, Nature Mater. 2011, 10, 456-461.
  • 166. J. Kim, T. Minegishi, J. Kobota, K. Domen, Energy Environ. Sci. 2012, 5, 6368-6374.
  • 165. G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen, Chemical Physics Letters 2011, 501, 619-622.
  • 164. D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen, Applied physics express 2010, 3, 101202.
  • 163. D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konagai, K. Domen, Electrochemistry Communications 2010, 12, 851-853.
  • 162. M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y. Z. Chen, J. Nah, T. S. Matthews, Y. L. Chueh, J. W. Ager, Angewandte Chemie 2012, 124, 10918-10922.
  • 161. O. Khaselev, J. A. Turner, Science 1998, 280, 425-427.
  • 160. A. Heller, Accounts of Chemical Research 1981, 14, 154-162.
  • 16. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater and N. S. Lewis, J. Am. Chem. Soc., 2011, 133, 1216-1219.
  • 16. S. Ryu, M. Y. Han, J. Maultzsch, T. F. Heinz, P. Kim, M. L. Steigerwald and L. E. Brus, Nano Lett., 2008, 8, 4597-4602.
  • 16. J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, Chemical Society Reviews, 2014, 43, 7787-7812.
  • 16. D.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.- C. Lin, M. Guan, J. Yang, C.-W. Chen, Y.-L. Wang, B.-J. Hwang, C.- C. Chen and H. Dai, Journal of the American Chemical Society, 2015, 137, 1587-1592.
  • 16. Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S., Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133, 1216-1219, (2011)
  • 16. B. E. Conway, B. V. Tilak, Electrochimica Acta 2002, 47, 3571-3594.
  • 16. B. Conway and B. Tilak, Electrochim. acta, 2002, 47, 3571-3594.
  • 159. Y. Hou, B. L. Abrams, P. C. Vesborg, M. E. Bj rketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, Nature materials 2011, 10, 434-438.
  • 158. J. Oh, T. G. Deutsch, H.-C. Yuan, H. M. Branz, Energy & Environmental Science 2011, 4, 1690-1694.
  • 157. L. C. Seitz, Z. Chen, A. J. Forman, B. A. Pinaud, J. D. Benck, T. F. Jaramillo, ChemSusChem 2014, 7, 1372-1385.
  • 156. A. J. Nozik, R. Memming, The Journal of Physical Chemistry 1996, 100, 13061-13078.
  • 155. Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, Journal of Materials Research 2010, 25, 3-16.
  • 154. A. C. Tavares, M. A. M. Cartaxo, M. I. da Silva Pereira, F. M. Costa, J Solid State Electrochem 2001, 5, 57-67.
  • 153. R. D. L. Smith, M. S. Pr vot, R. D. Fagan, S. Trudel, C. P. Berlinguette, Journal of the American Chemical Society 2013, 135, 11580-11586.
  • 152. Y. Surendranath, M. W. Kanan, D. G. Nocera, Journal of the American Chemical Society 2010, 132, 16501-16509.
  • 151. J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang, K. T. Nam, Journal of the American Chemical Society 2014, 136, 4201- 4211.
  • 150. K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, N.-E. Sung, S. H. Kim, S. Han, K. T. Nam, Journal of the American Chemical Society 2014, 136, 7435- 7443.
  • 15. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 2011, 133, 7296-7299.
  • 15. Matsumura, M.; Roy Morrison, S., Anodic properties of n-Si and n- Ge electrodes in HF solution under illumination and in the dark. J. Electroanal. Chem. and Inter. Electrochem. 147, 157-166, (1983)
  • 15. M. Matsumura and S. Roy Morrison, J.Eelectroanal. Chem. Interfacial electrochem., 1983, 147, 157-166.
  • 15. J. Tafel, Z. phys. Chem 1905, 50, 641.
  • 15. F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, Nat. Photon., 2010, 4, 611-622.
  • 15. C. Di Giovanni, W.-A. Wang, S. Nowak, J.-M. Gren che, H. Lecoq, L. Mouton, M. Giraud and C. Tard, ACS Catalysis, 2014, 4, 681-687.
  • 15. A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253- 278.
  • 149. H. B. Suffredini, J. L. Cerne, F. C. Crnkovic, S. A. S. Machado, L. A. Avaca, International Journal of Hydrogen Energy 2000, 25, 415-423.
  • 148. M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, Journal of the American Chemical Society 2012, 134, 2930-2933.
  • 147. B. Cui, H. Lin, J.-B. Li, X. Li, J. Yang, J. Tao, Advanced Functional Materials 2008, 18, 1440-1447.
  • 146. C. Iwakura, A. Honji, H. Tamura, Electrochimica Acta 1981, 26, 1319-1326.
  • 145. S. Trasatti, Electrodes of conductive metallic oxides, Elsevier, Amsterdam 2.etc.., 1981.
  • 144. L. Ouattara, S. Fierro, O. Frey, M. Koudelka, C. Comninellis, J Appl Electrochem 2009, 39, 1361-1367.
  • 143. E. Tsuji, A. Imanishi, K.-i. Fukui, Y. Nakato, Electrochimica Acta 2011, 56, 2009-2016.
  • 142. N. Birkner, S. Nayeri, B. Pashaei, M. M. Najafpour, W. H. Casey, A. Navrotsky, Proceedings of the National Academy of Sciences 2013, 110, 8801-8806.
  • 141. D. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G. C. Dismukes, Journal of the American Chemical Society 2013, 135, 3494-3501.
  • 140. T. Takashima, K. Hashimoto, R. Nakamura, Journal of the American Chemical Society 2012, 134, 18153-18156.
  • 14. Y. W. Chen, J. D. Prange, S. Duhnen, Y. Park, M. Gunji, C. E. D. Chidsey and P. C. McIntyre, Nat. Mater., 2011, 10, 539-544.
  • 14. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong and S. Iijima, Nat. Nanotech., 2010, 5, 574-578.
  • 14. M. W. Kanan, Y. Surendranath and D. G. Nocera, Chemical Society Reviews, 2009, 38, 109-114.
  • 14. G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J. M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero and M. Fontecave, Nature, 2013, 499, 66-69.
  • 14. Chen, Y. W.; Prange, J. D.; D hnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C., Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539-544, (2011)
  • 14. A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
  • 14 L. R. F. Allen J. Bard, John Wiley & Sons, Inc. 2001, 864.
  • 139. A. Indra, P. W. Menezes, I. Zaharieva, E. Baktash, J. Pfrommer, M. Schwarze, H. Dau, M. Driess, Angewandte Chemie International Edition 2013, 52, 13206-13210.
  • 138. D. M. Robinson, Y. B. Go, M. Greenblatt, G. C. Dismukes, Journal of the American Chemical Society 2010, 132, 11467-11469.
  • 137. aM. Fekete, R. K. Hocking, S. L. Y. Chang, C. Italiano, A. F. Patti, F. Arena, L. Spiccia, Energy & Environmental Science 2013, 6, 2222- 2232; bF. Jiao, H. Frei, Chemical Communications 2010, 46, 2920- 2922; cY. Gorlin, T. F. Jaramillo, Journal of the American Chemical Society 2010, 132, 13612-13614; dI. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, Energy & Environmental Science 2012, 5, 7081-7089.
  • 136. aR. K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat Chem 2011, 3, 461- 466; bW. F. Ruettinger, D. M. Ho, G. C. Dismukes, Inorganic Chemistry 1999, 38, 1036-1037; cJ. S. Kanady, E. Y. Tsui, M. W. Day, T. Agapie, Science 2011, 333, 733-736; dE. Y. Tsui, R. Tran, J. Yano, T. Agapie, Nat Chem 2013, 5, 293-299; eM. M. Najafpour, T. Ehrenberg, M. Wiechen, P. Kurz, Angewandte Chemie International Edition 2010, 49, 2233-2237; fR. Brimblecombe, D. R. J. Kolling, A. M. Bond, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Inorganic Chemistry 2009, 48, 7269-7279.
  • 135. J. A. Seabold, K.-S. Choi, Journal of the American Chemical Society 2012, 134, 2186-2192.
  • 134. M. Dincă, Y. Surendranath, D. G. Nocera, Proceedings of the National Academy of Sciences 2010, 107, 10337-10341.
  • 133. Z. Chen, T. J. Meyer, Angewandte Chemie International Edition 2013, 52, 700-703.
  • 132. aM. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, Journal of the American Chemical Society 2013, 135, 8452-8455; bC. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, Journal of the American Chemical Society 2013, 135, 16977-16987; cM. Yagi, M. Kaneko, Chemical Reviews 2000, 101, 21-36; dM.-T. Zhang, Z. Chen, P. Kang, T. J. Meyer, Journal of the American Chemical Society 2013, 135, 2048-2051; eD. K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D. R. Gamelin, Energy & Environmental Science 2011, 4, 1759-1764; fD. K. Zhong, S. Choi, D. R. Gamelin, Journal of the American Chemical Society 2011, 133, 18370-18377; gC. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, D. Wang, Angewandte Chemie International Edition 2013, 52, 12692-12695.
  • 131. aW. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez- Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, T. E. Mallouk, Journal of the American Chemical Society 2009, 131, 926- 927; bF. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton, T. J. Meyer, Inorganic Chemistry 2008, 47, 1727-1752; cL. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat Chem 2012, 4, 418-423; dY. Zhao, J. R. Swierk, J. D. Megiatto, B. Sherman, W. J. Youngblood, D. Qin, D. M. Lentz, A. L. Moore, T. A. Moore, D. Gust, T. E. Mallouk, Proceedings of the National Academy of Sciences 2012, 109, 15612-15616; eM. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, D. G. Nocera, Journal of the American Chemical Society 2010, 132, 13692- 13701.
  • 130. Y. Matsumoto, E. Sato, Materials Chemistry and Physics 1986, 14, 397-426.
  • 13. Z. Huang, P. Zhong, C. Wang, X. Zhang and C. Zhang, ACS Appl. Mater. & Inter., 2013, 5, 1961-1966.
  • 13. Y. D. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Norskov and I. Chorkendorff, Nat. Mater., 2011, 10, 434-438.
  • 13. J. K. N rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, Journal of The Electrochemical Society 2005, 152, J23-J26.
  • 13. Hou, Y.; Abrams, B. L.; Vesborg, P. C. K.; Bj rketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O.; Rossmeisl, J.; Dahl, S.; N rskov, J. K.; Chorkendorff, I., Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10, 434-438, (2011)
  • 13. F.-M. Liu, B. Ren, J.-W. Yan, B.-W. Mao and Z.-Q. Tian, J. Electrochem. Soc., 2002, 149, G95-G99.
  • 13. B. Marsen, B. Cole and E. L. Miller, Solar Energy Materials and Solar Cells, 2008, 92, 1054-1058.
  • 13. A. Adamska, A. Silakov, C. Lambertz, O. R diger, T. Happe, E. Reijerse and W. Lubitz, Angewandte Chemie International Edition, 2012, 51, 11458-11462.
  • 129. S.-Y. Huang, P. Ganesan, W. S. Jung, N. Cadirov, B. N. Popov, ECS Transactions 2010, 33, 1979-1987.
  • 128. E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists, wiley, 1993.
  • 127. R. D. L. Smith, M. S. Pr vot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, C. P. Berlinguette, Science 2013, 340, 60-63.
  • 126. aP. Rasiyah, A. C. C. Tseung, Journal of The Electrochemical Society 1984, 131, 803-808; bS. Trasatti, Electrochimica Acta 1984, 29, 1503- 1512; cJ. O. Bockris, T. Otagawa, The Journal of Physical Chemistry 1983, 87, 2960-2971; dJ. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383-1385.
  • 125. I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Mart nez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. N rskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159-1165.
  • 124. A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
  • 123. aM. W. Kanan, D. G. Nocera, Science 2008, 321, 1072-1075; bT. A. Betley, Q. Wu, T. Van Voorhis, D. G. Nocera, Inorganic Chemistry 2008, 47, 1849-1861.
  • 122. Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat Photon 2012, 6, 511- 518.
  • 121. aB. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 2005, 438, 1040-1044; bJ. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni, V. K. Yachandra, Science 2006, 314, 821-825; cK. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004, 303, 1831- 1838; dY. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55-60; eT. A. Roelofs, W. Liang, M. J. Latimer, R. M. Cinco, A. Rompel, J. C. Andrews, K. Sauer, V. K. Yachandra, M. P. Klein, Proceedings of the National Academy of Sciences 1996, 93, 3335- 3340; fH. Dau, L. Iuzzolino, J. Dittmer, Biochimica et Biophysica Acta (BBA) - Bioenergetics 2001, 1503, 24-39.
  • 120. aM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chemical Reviews 2010, 110, 6446-6473; bA. J. Bard, M. A. Fox, Accounts of Chemical Research 1995, 28, 141- 145; cD. Gust, T. A. Moore, A. L. Moore, Accounts of Chemical Research 2009, 42, 1890-1898; dJ. R. Swierk, T. E. Mallouk, Chemical Society Reviews 2013, 42, 2357-2387; eM. Gratzel, Nature 2001, 414, 338-344; fT. J. Meyer, Accounts of Chemical Research 1989, 22, 163-170; gJ. Barber, Chemical Society Reviews 2009, 38, 185-196; hT. A. Faunce, W. Lubitz, A. W. Rutherford, D. MacFarlane, G. F. Moore, P. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring, Energy & Environmental Science 2013, 6, 695-698.
  • 12. Y.-C. Lin, Y. Chen, A. Shailos and Y. Huang, Nano Lett., 2010, 10, 2281-2287.
  • 12. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem. Rev. 110, 6446-6473, (2010)
  • 12. Q. Xiang, J. Yu and M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782- 796.
  • 12. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473.
  • 12. J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni and V. K. Yachandra, Science, 2006, 314, 821-825.
  • 12. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis and H. B. Gray, Energy & Environmental Science, 2011, 4, 3573-3583.
  • 12. B. E. Conway, G. Jerkiewicz, Electrochimica Acta 2000, 45, 4075- 4083.
  • 12. A. Kudo, Y. Miseki, Chemical Society Reviews 2009, 38, 253-278.
  • 119. H. E. Zittel, F. J. Miller, Analytical Chemistry 1965, 37, 200-203.
  • 118. A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, Vol. 2, Wiley New York, 1980.
  • 117. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, Nat Commun 2014, 5.
  • 116. Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290-5296.
  • 115. J. Kibsgaard, Z. Chen, B. N. Reinecke and T. F. Jaramillo, Nat Mater, 2012, 11, 963-969.
  • 114. U. Sim, T.-Y. Yang, J. Moon, J. An, J. Hwang, J.-H. Seo, J. Lee, K. Y. Kim, J. Lee, S. Han, B. H. Hong, K. T. Nam, Energy Environ. Sci. 2013, 6, 3658-3664.
  • 113. aY. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nature Mater. 2011, 10, 780-786; bJ.-D. Qiu, G.-C. Wang, R.-P. Liang, X.-H. Xia, H.-W. Yu, J. Phys. Chem. C 2011, 115, 15639-15645; cQ. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782-796.
  • 112. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. K. I. Grigorieva, S. Dubonos, A. Firsov, Nature 2005, 438, 197-200.
  • 111. H. Wang, Z. Lu, D. Kong, J. Sun, T. M. Hymel, Y. Cui, ACS Nano 2014, 8, 4940-4947.
  • 110. W.-F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, R. R. Adzic, Angewandte Chemie International Edition 2012, 51, 6131-6135.
  • 11. Yun, H. J.; Lee, H.; Kim, N. D.; Lee, D. M.; Yu, S.; Yi, J., A combination of two visible-light responsive photocatalysts for achieving the Z-Scheme in the solid state. ACS Nano 5, 4084-4090, (2011)
  • 11. Q. Xiang, J. Yu and M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782-796.
  • 11. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473.
  • 11. L. M. Gandia, G. Arzamedi, P. M. Di guez, Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Newnes, 2013.
  • 11. J.-D. Qiu, G.-C. Wang, R.-P. Liang, X.-H. Xia and H.-W. Yu, J. Phys. Chem. C, 2011, 115, 15639-15645.
  • 11. J. Barber, Chemical Society Reviews, 2009, 38, 185-196.
  • 11. H. Wolfschmidt, O. Paschos, U. Stimming, in Fuel Cell Science, John Wiley & Sons, Inc., 2010, pp. 1-70.
  • 11. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang and V. R. Stamenkovic, Science, 2014, 343, 1339-1343.
  • 109. J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat Mater 2012, 11, 963-969.
  • 108. Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, Nano Letters 2011, 11, 4168-4175.
  • 107. X. Ge, L. Chen, L. Zhang, Y. Wen, A. Hirata, M. Chen, Advanced Materials 2014, 26, 3100-3104.
  • 106. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, Journal of the American Chemical Society 2011, 133, 7296-7299.
  • 105. T. F. Jaramillo, J. Bonde, J. Zhang, B.-L. Ooi, K. Andersson, J. Ulstrup, I. Chorkendorff, The Journal of Physical Chemistry C 2008, 112, 17492-17498.
  • 104. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Journal of the American Chemical Society 2013, 135, 10274-10277.
  • 103. T. F. Jaramillo, K. P. J rgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100-102.
  • 102. D. Merki, S. Fierro, H. Vrubel, X. Hu, Chemical Science 2011, 2, 1262-1267.
  • 101. H. Vrubel, D. Merki, X. Hu, Energy & Environmental Science 2012, 5, 6136-6144.
  • 100. A. B. Laursen, P. C. K. Vesborg, I. Chorkendorff, Chemical Communications 2013, 49, 4965-4967.
  • 10. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec and S. Z. Qiao, Nat. Comm., 2014, 5:3783.
  • 10. Y. Yan, B. Xia, Z. Xu and X. Wang, ACS Catalysis, 2014, 4, 1693- 1705.
  • 10. W. Lubitz, H. Ogata, O. R diger and E. Reijerse, Chemical Reviews, 2014, 114, 4081-4148.
  • 10. J.-D. Qiu, G.-C. Wang, R.-P. Liang, X.-H. Xia and H.-W. Yu, J. Phys. Chem. C, 2011, 115, 15639-15645.
  • 10. J. Larminie, A. Dicks, M. S. McDonald, Fuel cell systems explained, Vol. 2, Wiley New York, 2003.
  • 10. H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu and J. Yi, ACS Nano, 2011, 5, 4084-4090.
  • 10. C. Ronneau, Energie, pollution de l'air et developpement durable, 2004.
  • 10. Allam, N. K.; Poncheri, A. J.; El-Sayed, M. A., Vertically oriented Ti–Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water Splitting. ACS Nano 5, 5056-5066, (2011)
  • 1. N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences, 2006, 103, 15729-15735.
  • 1. M. Gratzel, Nature, 2001, 414, 338-344.
  • 1. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473.
  • 1. Heller, A. Aharon-Shalom, E. Bonner, W. A. and Miller, B., Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst. J. Am. Chem. Soc. 104, 6942-6948 (1982)
  • 1. D. G. Nocera, Daedalus 2006, 135, 112-115;
  • 1. A. Kudo, Y. Miseki, Chemical Society Reviews 2009, 38, 253-278.
  • 1. A. Heller, E. Aharon-Shalom, W. A. Bonner and B. Miller, J. Am. Chem. Soc., 1982, 104, 6942-6948.
  • 1 J. A. Turner, Science, 2004, 305, 972-974.