박사

펄럭이는 날개와 깃말의 유체역학 : 스케일링 분석과 실험

이정수 2016년
논문상세정보
' 펄럭이는 날개와 깃말의 유체역학 : 스케일링 분석과 실험' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • energy-harvesting
  • flag flutter
  • flapping locomotion
  • vortex flows
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
883 0

0.0%

' 펄럭이는 날개와 깃말의 유체역학 : 스케일링 분석과 실험' 의 참고문헌

  • van den Berg, C. & Ellington, C.P. (1997). The threedimensional leadingedge vortex of a `hovering' model hawkmoth. Phil. Trans. R. Soc. B, 352, 329{340.
  • nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Funct. Mater., 23, 2445{2449.
  • Zhu, G., Lin, Z.H., Jing, Q., Bai, P., Pan, C., Yang, Y., Zhou, Y. & Wang, Z.L. (2013b). Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett., 13, 847{ 853.
  • Zhu, G., Chen, J., Zhang, T., Jing, Q. & Wang, Z.L. (2014). Radial- arrayed rotary electri cation for high performance triboelectric genera- tor. Nat. Commun., 5, 3426.
  • Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y.S., Jing, Q., Pan, C. & Wang, Z.L. (2013a). Linear-grating triboelectric generator based on sliding electri cation. Nano Lett., 13, 2282{2289.
  • Zhang, X.S., Han, M.D., Wang, R.X., Zhu, F.Y., Li, Z.H., Wang, W. & Zhang, H.X. (2013). Frequency-multiplication high-output tribo- electric nanogenerator for sustainably powering biomedical microsystems. Nano Lett., 13, 1168{1172.
  • Zhang, R., Lin, L., Jing, Q., Wu, W., Zhang, Y., Yan, L., Han, R.P.S. & Wang, Z.L. (2012). Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection. Energ.Environ. Sci., 5, 8528{8533.
  • Zhang, J., Childress, S., Libchaber, A. & Shelley, M. (2000). Flex- ible flaments in a flowing soap film as a model for one-dimensional ags in a two-dimensional wind. Nature, 408, 835{839.
  • Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., Low, T., Stanford, S. & Holeman, D. (2007). Development and testing of the mentor apping-wing micro air vehicle. J. Aircraft, 44, 1701{1711.
  • Yu, J., Hu, Y., Huo, J. & Wang, L. (2009). Dolphin-like propulsive mechanism based on an adjustable scotch yoke. Mech. Mach. Theory, 44, 603{614.
  • Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.H., Su, Y., Bai, P., Wen, X. & Wang, Z.L. (2013b). Triboelectric nanogen- erator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano, 7, 9461{9468.
  • Yang, W., Chen, J., Zhu, G., Wen, X., Bai, P., Lin, Y. & Wang, Z.L. (2013a). Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res., 6, 880{886.
  • Yamaguchi, N., Yokota, K. & Tsujimoto, Y. (2000b). Flutter lim- its and behaviors of a exible thin sheet in high-speed owi: analytical method for prediction of the sheet behavior. ASME J. Fluids. Eng., 122, 65{73.
  • Yamaguchi, N., Sekiguchi, T., Yokota, K. & Tsujimoto, Y. (2000a). Flutter limits and behaviors of a exible thin sheet in high- speed owii: experimental results and predicted behaviors for low mass ratios. ASME J. Fluids. Eng., 122, 74{83.
  • Xie, Y., Wang, S., Lin, L., Jing, Q., Lin, Z.H., Niu, S., Wu, Z. & Wang, Z.L. (2013). Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano, 7, 7119{ 7125.
  • Wu, T.Y. (2007). A non-linear theory for a exible unsteady wing. J. Eng. Math., 58, 279{287.
  • Wu, T.Y. (2006). A non-linear unsteady exible wing theory. Struct. Con- trol. Health Monit., 13, 553{560.
  • Wu, J.Z., Ma, H.Y. & Zhou, M.D. (2006). Vorticity and Vortex Dy- namics. Springer.
  • Willmott, A.P. & Ellington, C.P. (1997b). The mechanics of ight in the hawkmoth manduca sexta. ii. aerodynamic consequences of kinematic and morphological variation. J. Exp. Biol., 200, 2723{2745.
  • Willmott, A.P. & Ellington, C.P. (1997a). The mechanics of ight in the hawkmoth manduca sexta. i. kinematics of hovering and forward ight. J. Exp. Biol., 200, 2705{2722.
  • Williamson, C.H. (1996). Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech., 28, 477{539.
  • Weis-Fogh, T. (1973). Quick estimates of ight tness in hovering ani- mals, including novel mechanisms for lift production. J. Exp. Biol., 59, 169{230.
  • Watanabe, Y., Suzuki, S., Sugihara, M. & Sueoka, Y. (2002). An experimental study of paper utter. J. Fluids Struct., 16, 529{542.
  • Wang, Z.J. (2008). Aerodynamic efficiency of apping ight: analysis of a two-stroke model. J. Exp. Biol., 211, 234{238.
  • Wang, Z.J. (2004). The role of drag in insect hovering. J. Exp. Biol., 207, 4147{4155.
  • Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S. & Wang, Z.L. (2012b). Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett., 13, 2226{2233.
  • Wang, S., Lin, L. & Wang, Z.L. (2012a). Nanoscale triboelectric-effect- enabled energy conversion for sustainably powering portable electronics. Nano Lett., 12, 6339{6346.
  • Walker, S.M., Thomas, A.L.R. & Taylor, G.K. (2010). Deformable wing kinematics in free- ying hover ies. J. R. Soc. Interface, 7, 131{142.
  • Virot, E., Amandolese, X. & Hemon, P. (2013). Fluttering ags: an experimental study of uid forces. J. Fluids Struct., 43, 385{401.
  • Videler, J.J., Stamhuis, E.J. & Povel, G.D.E. (2004). Leading-edge vortex lifts swifts. Science, 306, 1960{1962.
  • Traber, T. & Kemfert, C. (2011). Gone with the wind? electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply. Energ. Econ., 33, 249{256.
  • Tian, F.B., Luo, H., Zhu, L. & Lu, X.Y. (2011). Coupling modes of three laments in side-by-side arrangement. Phys. Fluids, 23, 111903.
  • Theodorsen, T. (1935). General theory of aerodynamic instability and the mechanism of utter. NACA Report, 496.
  • Techet, A.H. (2008). Propulsive performance of biologically inspired ap- ping foils at high reynolds numbers. J. Exp. Biol., 211, 274{279.
  • Taylor, G.K., Nudds, R.L. & Thomas, A.L.R. (2003). Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature, 425, 707{711.
  • Tang, P.M.P., L. & Jiang, J. (2009). Cantilevered exible plates in axial ow: energy transfer and the concept of utter-mill. J. Sound Vib., 326, 263{276.
  • Tang, L. & Padoussis, M.P. (2008). The in uence of the wake on the stability of cantilevered exible plates in axial ow. J. Sound Vib., 310, 512{526.
  • Tang, L. & Padoussis, M.P. (2007). On the instability and the post- critical behaviour of twodimensional cantilevered exible plates in axial ow. J. Sound Vib., 305, 97{115.
  • Tang, D.M., Yamamoto, H. & Dowell, E.H. (2003). Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial ow. J. Fluids Struct., 17, 225{242.
  • Taneda, S. (1968). Waving motions of ags. J. Phys. Soc. Japan, 24, 392{401.
  • Taira, K. & Colonius, T. (2009). Three-dimensional ows around low- aspect-ratio at-plate wings at low reynolds numbers. J. Fluid Mech., 623, 187{207.
  • Swainson, W. (1839). On the natural history and classi cation of shes, amphibians and reptiles or monocardian animals. Longman.
  • Srygley, R.B. & Thomas, A.L.R. (2002). Unconventional lift- generating mechanisms in free- ying butter ies. Nature, 420, 660{664.
  • Sonin, A.A. (2004). A generalization of the -theorem and dimensional analysis. Proc. Nat. Acad. Sci. USA, 101, 8525{8526.
  • Shelley, M.J. & Zhang, J. (2011). Flapping and bending bodies inter- acting with uid ows. Annu, Rev. Fluid Mech., 43, 449{465.
  • Shelley, M., Vandenberghe, N. & Zhang, J. (2005). Heavy ags undergo spontaneous oscillations in owing water. Phys. Rev. Lett., 94, 094302.
  • Sfakiotakis, M., Lane, D.M. & Davies, J.B.C. (1999). Review of sh swimming modes for aquatic locomotion. J. Ocean. Eng., 24, 237{252.
  • Schouveile, L. & Eloy, C. (2009). Coupled utter of parallel plates. Phys. Fluids, 21, 081703.
  • Sane, S.P. (2003). The aerodynamics of insect ight. J. Exp. Biol., 206, 4191{4208.
  • Sane, S.P. & Dickinson, M.H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of apping flight. J. Exp. Biol., 205, 1087{1096.
  • Ristroph, L. & Zhang, J. (2008). Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett., 101, 194502.
  • Rayleigh, L. (1878). On the instability of jets. Proc. Lond. Math. Soc., 10, 4{13.
  • Poelma, C., Dickson, W.B. & Dickinson, M.H. (2006). Time-resolved reconstruction of the full velocity eld around a dynamically-scaled ap-flping wing. Exp. Fluids, 41, 213{225.
  • Pfeifer, R., Lungarella, M. & Mahadevan, F., Iida (2007). Self- organization, embodiment, and biologically inspired robotics. Science, 318, 1088{1093.
  • Peng, J. & Chen, S.G. (2012). Flow-oscillating structure interactions and the applications to propulsion and energy harvest. Appl. Phys. Res., 4, 1{14.
  • Park, Y.J., Jeong, U., Lee, J., Kwon, S.R., Kim, H.Y. & Cho, K.J. (2012). Kinematic condition for maximizing the thrust of a robotic sh using a compliant caudal n. IEEE Trans. Robot., 28, 1216{1227.
  • Park, K., Kim, W. & Kim, H.Y. (2014). Optimal lamellar arrangement in sh gills. Proc. Natl Acad. Sci. USA, 111, 8067{8070.
  • Park, H. & Choi, H. (2012). Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspir. Biomim., 7, 016008.
  • Pang, Z., Jia, L.b. & Yin, X. (2001). Calculation of wing utter by a flcoupled uid-structure method. J. Aircraft, 22, 121701.
  • Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y. & Wang, Z.L. (2013). Theory of sliding-mode triboelectric nanogenerators. Adv. Mater., 25, 6184{6193.
  • Newman, J.N. (1977). Marine Hydrodynamics. MIT Press.
  • Mou, X.L., Liu, Y.P. & Sun, M. (2011). Wing motion measurement and aerodynamics of hovering true hover ies. J. Exp. Biol., 214, 2832{2844.
  • Motani, R. (2002). Scaling effects in caudal n propulsion and the speed of ichthyosaurs. Nature, 415, 309{312.
  • Michelin, S., Llewellyn Smith, S.G. & Glover, B.J. (2008). Vortex shedding model of a flapping flag. J. Fluid Mech., 617, 1{10.
  • Michelin, S. & Doare, O. (2013). Energy harvesting efficiency of piezo- electric flags in axial flows. J. Fluid Mech., 714, 489{504.
  • McCarty, L.S. & Whitesides, G.M. (2008). Electrostatic charging due to separation of ions at interfaces: contact electri cation of ionic electrets. Angew. Chem. Int. Edit., 47, 2188{2207.
  • Liu, Y. & Sun, M. (2008). Wing kinematics measurement and aerody- namics of hovering drone ies. J. Exp. Biol., 211, 2014{2025.
  • Liu, H. & Aono, H. (2009). Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir. Biomim., 4, 015002.
  • Liu, F., Cai, J., Zhu, Y., Tsai, H.M. & Wong, A.S.F. (2001). Cal- culation of wing flutter by a coupled fluid-structure method. J. Aircraft, 38, 334{342.
  • Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y. & Wang, Z.L. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett., 13, 2916{2923.
  • Lighthill, M.J. (1970). Aquatic animal propulsion of high hydromechan- ical efficiency. J. Fluid Mech., 44, 265{301.
  • Lentink, D. & Dickinson, M.H. (2009). Rotational accelerations sta- bilize leading edge vortices on revolving y wings. J. Exp. Biol., 212, 2705{2719.
  • Lee, S., Bae, S.H., Lin, L., Yang, Y., Park, C., Kim, S.W., Cha, S.N., Kim, H., Park, Y.J. & Wang, Z.L. (2013b). Super- exible
  • Lee, J., Park, Y.J., Jeong, U., Cho, K.J. & Kim, H.Y. (2013a). Wake and thrust of an angularly reciprocating plate. J. Fluid Mech., 720, 545{557.
  • Lang, T.G. (1966). Hydrodynamic Analysis of Cetacean Performance in Whales, Dolphins and Porpoises. Univ. California Press.
  • Kweon, J. & Choi, H. (2010). Sectional lift coefficient of a apping wing in hovering motion. Phys. Fluids, 22, 071703.
  • Knight, J. (2004). Urban wind power: Breezing into town. Nature, 430, 12{13.
  • Kim, W., Gilet, T. & Bush, J.W. (2011). Optimal concentrations in nectar feeding. Proc. Natl Acad. Sci. USA, 108, 16618{16621.
  • Kim, S., Huang, W.X. & Sung, H.J. (2010). Constructive and destruc- tive interaction modes between two tandem flexible ags in viscous flow. J. Fluid Mech., 661, 511{521.
  • Kim, J. & Chung, W.K. (2006). Accurate and practical thruster modeling for underwater vehicles. Ocean Eng., 33, 566{586.
  • Kim, D., Cosse, J., Huertas Cerderira, C. & Gharib, M. (2013). Flapping dynamics of an inverted ag. J. Fluid Mech., 736, R1.
  • Kim, D. (2010). Characteristics of three-dimensional vortex formation and propulsive performance in apping locomotion. Doctoral dissertation, California Institute of Technology.
  • Kim, D. & Gharib, M. (2011). Characteristics of vortex formation and thrust performance in drag-based paddling propulsion. J. Exp. Biol., 214, 2283{2291.
  • Katz, J. & Plotkin, A. (2001). Low-Speed Aerodynamics, second ed.. Cambridge University Press.
  • Jones, M.A. (2003). The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech., 496, 405{441.
  • Jia, L.B., Li, F., Yin, X.Z. & Yin, X.Y. (2007). Coupling modes be- tween two flapping laments. J. Fluid Mech., 581, 199{220.
  • Jardin, T., David, L. & Farcy, A. (2009). Characterization of vortical structures and loads based on time-resolved piv for asymmetric hovering apping flight. Exp. Fluids, 46, 847{857.
  • Huang, W.X. & Sung, H.J. (2010). Three-dimensional simulation of a flapping ag in a uniform flow. J. Fluid Mech., 653, 301{336.
  • Huang, L.X. (1995). Flutter of cantilevered plates in axial flow. J. Fluids Struct., 9, 127{147.
  • Grotberg, J.B. & Jensen, O.E. (2004). Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech., 36, 121{147.
  • Gazzola, M., Argentina, M. & Mahadevan, L. (2014). Scaling macroscopic aquatic locomotion. Nature Phys., 10, 758{761.
  • Fry, S.N., Sayaman, R. & Dickinson, M.H. (2005). The aerodynamics of hovering ight in drosophila. J. Exp. Biol., 208, 2303{2318.
  • Floreano, D. & Mattiussi, C. (2008). Bio-inspired arti cial intelli-flgence: theories, methods, and technologies. MIT press.
  • Fei, F., Mai, J.D. & Li, W.J. (2012). A wind-flutter energy converter for powering wireless sensors. Sensor. Actuat. A- Phys., 173, 163{171.
  • Farnell, D.J.J., David, T. & Barton, D.C. (2004). Coupled states of flapping ags. J. Fluids Struct., 19, 29{36.
  • Fan, F.R., Lin, L., Zhu, G., Wu, W., Zhang, R. & Wang, Z.L. (2012). Transparent triboelectric nanogenerators and self-powered pres- sure sensors based on micropatterned plastic lms. Nano Lett., 12, 3109{ 3114.
  • Ennos, A.R. (1989). The kinematics and aerodynamics of the free flight of some diptera. J. Exp. Biol., 142, 49{85.
  • Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. (2008). Aeroelastic instability of a flexible plate in a uniform flow. J. Fluid Mech., 611, 97{106.
  • Eloy, C., Kofman, N. & Schouveiler, L. (2012). The origin of hys- teresis in the ag instability. J. Fluid Mech., 691, 583{593.
  • Ellington, C.P. (1984d). The aerodynamics of hovering insect flight, iii: Kinematics. Phil. Trans. R. Soc. B, 305, 41{78.
  • Ellington, C.P. (1984c). The aerodynamics of hovering insect flight, ii: Morphological parameters. Phil. Trans. R. Soc. B, 305, 17{40.
  • Ellington, C.P. (1984b). The aerodynamics of hovering insect flight. i. the quasi-steady analysis. Phil. Trans. R. Soc. Lond. B, 305, 1{15.
  • Ellington, C.P. (1984a). The aerodynamics of apping animal flight. Am. Zool., 24, 95{105.
  • Ellington, C. P., van den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626-630.
  • Drucker, E.G. & Lauder, G.V. (1999). Locomotor forces on a swim- ming sh: three-dimensional vortex wake dynamics quanti ed using dig- ital particle image velocimetry. J. Exp. Biol., 202, 2393{2412.
  • Dong, H., Mittal, R. & Najjar, F.M. (2006). Wake topology and hydrodynamic performance of low-aspect-ratio apping foils. J. Fluid Mech., 566, 309{343.
  • Doare, O. & Michelin, S. (2011). Piezoelectric coupling in energy- harvesting fluttering flexible plates: linear stability analysis and con- version efficiency. J. Fluids Struct., 27, 1357{1375.
  • Dickinson, M.H., Lehmann, F.O. & Sane, S.P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284, 1954{1960.
  • Dickinson, M.H. (1996). Unsteady mechanisms of force generation in aquatic and aerial locomotion. Amer. Zool., 36, 537{554.
  • DeVoria, A.C. & Ringuette, M.J. (2012). Vortex formation and satu- ration for low-aspect-ratio rotating at-plate ns. Exp. Fluids, 52, 441{ 462.
  • Connell, B.S.H. & Yue, D.K.P. (2007). Flapping dynamics of a ag in a uniform stream. J. Fluid Mech., 581, 33{67.
  • Chopra, M.G. (1976). Large amplitude lunate-tail theory of sh locomo- tion. J. Fluid Mech., 74, 161{182.
  • Chopra, M.G. & Kambe, T. (1977). Hydromechanics of lunate-tail swim- ming propulsion. part 2. J. Fluid Mech., 79, 49{69.
  • Cheng, G., Lin, Z.H., Lin, L., Du, Z. & Wang, Z.L. (2013). Pulsed nanogenerator with huge instantaneous output power density. ACS Nano, 7, 7383{7391.
  • Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev., 4, 345{376.
  • Buchholz, J.H.J. & Smitz, A.J. (2008). The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech., 603, 331{365.
  • Buchholz, J.H.J. & Smitz, A.J. (2006). On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech., 546, 433{443.
  • Boyer, F., Porez, M., Leroyer, A. & Visonneau, M. (2008). Fast dynamics of an eel-like robotcomparisons with navierstokes simulations. IEEE Trans. Robot., 24, 1274{1288.
  • Bos, F.M., Lentink, D., Van Oudheusden, B.W. & Bijl, H. (2008). Influence of wing kinematics on aerodynamic performance in hovering insect flight. J. Fluid Mech., 594, 341{368.
  • Birch, J.M. & Dickinson, M.H. (2003). The in uence of wing-wake interactions on the production of aerodynamic forces in apping ight. J. Exp. Biol., 206, 2257{2272.
  • Berkooz, G., Holmes, P. & Lumley, J.L. (1993). The proper orthog- onal decomposition in the analysis of turbulent ows. Annu. Rev. Fluid Mech., 25, 539{575.
  • Bao, C.Y., Tang, C., Yin, X.Z. & Lu, X.Y. (2010). Flutter of nite- span flexible plates in uniform flow. Chinese Phys. Lett., 27, 064601.
  • Balint, T.S. & Lucey, A.D. (2005). Instability of a cantilevered flexible plate in viscous channel flow. J. Fluids Struct., 20, 893{912.
  • Bae, J., Lee, J., Kim, S., Ha, J., Lee, B.S., Park, Y., Choong, C., Kim, J.B., Wang, Z.L., Kim, H.Y., Park, J.J. & Chung, U.I. (2014). Flutter-driven triboelectri cation for harvesting wind en- ergy. Nat. Commun., 5, 4929.
  • Argentina, M. & Mahadevan, L. (2005). Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci., 102, 1829{1834.
  • Ansari, S.A., Z_ bikowski, R. & Knowles, K. (2006b). Non-linear un- steady aerodynamic model for insect-like apping wings in the hover. part 2: implementation and validation. J. Aerospace Eng., 220, 169{186.
  • Ansari, S.A., Z_ bikowski, R. & Knowles, K. (2006a). Non-linear un- steady aerodynamic model for insect-like apping wings in the hover. part 1: methodology and analysis. J. Aerospace Eng., 220, 61{83.
  • Allen, J.J. & Smits, A.J. (2001). Energy harvesting eel. J. Fluids Struct., 15, 629{640.
  • Alben, S. & Shelley, M.J. (2008). Flapping states of a ag in an invis-cid fluid: Bistability and the transition to chaos. Phys. Rev. Lett., 100, 074301.
  • Akaydin, H.D., Elvin, N. & Andreopoulos, Y. (2012). Smart mate- rials and structures. J. Fluids Struct., 21, 025007.
  • Akaydin, H.D., Elvin, N. & Andreopoulos, Y. (2010). Energy har- vesting from highly unsteady fluid flows using piezoelectric materials. J. Intel. Mat. Syst. Str., 21, 1263{1278.
  • Ahlborn, B., Chapman, S., Stafford, R., Blake, R.W. & Harper, D.G. (1997). Experimental simulation of the thrust phases of fast-start swimming of sh. J. Exp. Biol., 200, 2301{2312.