박사

구름 내 난류가 구름과 강수에 미치는 영향 = Effects of In-Cloud Turbulence on Clouds and Precipitation

이현호 2016년
논문상세정보
' 구름 내 난류가 구름과 강수에 미치는 영향 = Effects of In-Cloud Turbulence on Clouds and Precipitation' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 지구 과학
  • 강수
  • 구름
  • 구름 미세물리
  • 난류 효과
  • 상세 구름 미세물리 모형
  • 자동변환 과정
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
656 0

0.0%

' 구름 내 난류가 구름과 강수에 미치는 영향 = Effects of In-Cloud Turbulence on Clouds and Precipitation' 의 참고문헌

  • Albrecht, B.A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.
  • vanZanten, M.C., B. Stevens, L. Nuijens, A. P. Siebesma, A. S. Ackerman, F. Burnet, A. Cheng, F. Couvreux, H. Jiang, M. Khairoutdinov, Y. Kogan, D. C. Lewellen, D. Mechem, K. Nakamura, A. Noda, B. J. Shipway, J. Slawinska, S. Wang, and A. Wyszogrodzki, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst. 3, M06001.
  • Zhang, Y., B. Stevens, and M. Ghil, 2005: On the diurnal cycle and susceptibility to aerosol concentration in a stratocumulus-topped mixed layer. Q. J. R. Meteorol. Soc., 131, 1567–1583.
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63, 1605–1622.
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392–406.
  • Wyszogrodzki, A. A., W. W. Grabowski, L.-P. Wang, and O. Ayala, 2013: Turbulent collision-coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 8471–8487.
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.
  • Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 3237–3256.
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 3421–3435.
  • Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys. 43, 243–249.
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658.
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
  • Takahashi, T., T. Endoh, and G. Wakahama, 1991: Vapor diffusional growth of free falling snow crystals between –3 C and –23 C. J. Meteorol. Soc. Jpn, 69, 15–30.
  • Stoelinga, M. T., 2005: Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements. Accessed on 4 Jan 2015. [Available online at http://www.atmos.washington.edu/~stoeling/ RIP_sim_ref.pdf.]
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN– 475+STR, NCAR.
  • Siebert, H., R. A. Shaw, and Z. Warhaft, 2010: Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. J. Atmos. Sci., 67, 262–273.
  • Siebert, H., K. Lehmann, and M. Wendisch, 2006: Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. J. Atmos. Sci., 61, 1451–1466.
  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183–227.
  • Seifert, A., and K. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms. Meteorol. Atmos. Phys., 92, 67–82.
  • Seifert, A., and K. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion, and selfcollection. Atmos. Res., 59– 60, 265–281.
  • Seifert, A., L. Nuijens, and B. Stevens, 2010: Turbulence effects on warm-rain autoconversion in precipitating shallow convection. Q. J. R. Meteorol. Soc., 136, 1753–1762.
  • Saffman, P. G., and J. S. Turner, 1956: On the collision of drops in turbulent clouds. J. Fluid Mech., 1, 16–30.
  • Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new single-layer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteorol. Climatol., 50, 1773–1794.
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008.
  • Reuter, G. W., R. De Villiers, and Y. Yavin, 1988: The collection kernel for two falling cloud drops subjected to random perturbations in a turbulent air flow: A stochastic model. J. Atmos. Sci., 45, 765–773
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of clouds and precipitation, 2nd ed. Kluwer Academic Publishers, 954pp.
  • Pope, B., 2000: Turbulent flows. Cambridge Univ. Press, 771 pp.
  • Pinsky, M., A. P. Khain, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357–374.
  • Pinsky, M., A. Khain, D. Rosenfeld, and A. Pokrovsky, 1998: Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud. Atmos. Res., 49, 99–113.
  • Pinsky, M. M. Shapiro, A. Khain, and H. Wirzberger, 2004: A statistical model of strains in homogeneous and isopropic turbulence. Phys. D, 191, 297–313.
  • Pinsky, M. B., and A. P. Khain, 1998: Some effects of cloud turbulence on water– ice and ice–ice collisions. Atmos. Res., 47–48, 69–86.
  • Pinsky, M. A. Khain, and M. Shapiro, 2001: Collision efficiency of drops in a wide range of Reynolds number: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742–764.
  • Pinsky M. B., A. P. Khain, B. Grits, and M. Shapiro, 2006: Collisions of small drops in a turbulent flow. Part III: Relative droplet fluxes and swept volumes. J. Atmos. Sci., 63, 2123–2139.
  • Phillips, V. T. J., A. Pokrovsky, and A. Khain, 2007: The influence of timedependent melting on the dynamics and precipitation production in maritime and continental storm clouds. J. Atmos. Sci., 64, 338–359.
  • Onishi, R., K. Matsuda, and K. Takahashi, 2015: Lagrangian tracking simulation of droplet growth in turbulence–Turbulence enhancement of autoconversion rate. J. Atmos. Sci., 72, 2591–2607.
  • Ogura, Y., and T. Takahashi, 1973: The development of warm rain in a cumulus cloud. J. Atmos. Sci., 30, 262–277.
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.
  • Monin, A. S., and A. M. Yaglom, 1975: Statistical fluid mechanics: Mechanics of turbulence. 2nd ed., MIT Press.
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.
  • Meyer, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol., 31, 708– 721.
  • Long, A. B., 1974: Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 1040–1052.
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.
  • Lee. J., Y. Noh, S. Raasch, T. Riechelmann, and L.-P. Wang, 2014: Investigation of droplet dynamics in a convective cloud using a Lagrangian cloud model. Meteorol. Atmos. Phys., 124, 1–21.
  • Lee, S. S., and G. Feingold, 2013: Aerosol effects on the cloud-field properties of tropical convective clouds. Atmos. Chem. Phys., 13, 6713–6726.
  • Lee, S. S., L. J. Donner, and J. E. Penner, 2010: Thunderstorm and stratocumulus: how does their contrasting morphology affect their interactions with aerosols? Atmos. Chem. Phys., 10, 6819–6837.
  • Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 1685–1697.
  • Lakshmana, R. V., S. S. V. S. R. Krishna, and K. P. R. V. Murty, 2012: A comprehensive study of aerosols around Visakhapatnam, a coastal region, India. Ecol. Environ. Conserv., 18, 53–59.
  • La Porta, A., G. A. Voth, A. M. Crawford, J. Alexander, and E. Bodenschatz, 2001: Fluid particle accelerations in fully developed turbulence. Nature, 409, 1017–1019.
  • Kunnen, R. P. J., C. Siewert, M. Meinke, W. Schr der, and K. D. Beheng, 2013: Numerically determined geometric collision kernels in spatially evolving isotropic turbulence relevant for droplets in clouds. Atmos. Res., 127, 8–21.
  • Korolev, A., M. Pinsky, and A. Khain. 2013: A new mechanism of droplet size distribution broadening during diffusional growth. J. Atmos. Sci., 70, 2051–2071.
  • Koren, I., and G. Feingold, 2011: Aerosol-cloud-precipitation system as a predator-prey problem. Proc. Natl. Acad. Sci. USA, 108, 12227–12232.
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129–146.
  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77–110.
  • Khain, A. P., T. V. Prabha, N. Benmoshe, G. Pandithurai, and M. Ovchinnikov, 2013: The mechanism of first raindrops formation in deep convective clouds. J. Geophys. Res. Atmos., 118, 9123–9140.
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 1721–1748.
  • Khain, A. P., M. Pinsky, T. Elperin, N. Kleeorin, I. Rogachevskii, and A. Kostinski, 2007: Critical comments to results of investigations of drop collisions in turbulent clouds. Atmos. Res., 86, 1–20.
  • Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159–224.
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963–2982.
  • Khain, A. P., 2009: Note on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004.
  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
  • K hler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc., 32, 1152–1161.
  • Jung, W., and T.-Y. Lee, 2013: Formation and evolution of mesoscale convective systems that brought the heavy rainfall over Seoul on September 21, 2010. Asia-Pacific J. Atmos. Sci., 49, 635–647.
  • Jonas, P. R., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283–306.
  • Janjic, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note, No. 437, NCEP.
  • Iguchi, T., and Coauthors, 2014: WRF–SBM simulations of melting-layer structure in mixed-phase precipitation events observed during LPVEx. J. Appl. Meteor. Climatol., 53, 2710–2731.
  • Hill, R. J., 2002: Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech., 452, 361–370.
  • Han, J.-Y., J.-J. Baik, and A. P. Khain, 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504–520.
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293–324.
  • Grabowski, W. W., L.-P. Wang, and T. V. Prabha, 2015: Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large eddy simulation model with bin microphysics. Atmos. Chem. Phys., 15, 913–926.
  • Givati, A., and D. Rosenfeld, 2004: Quantifying precipitation suppression due to air pollution. J. Appl. Meteorol., 43, 1038–1056.
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J. Meteorol. Soc. Jpn., 86A, 87–106.
  • Frisch, U., 1995: Turbulence. Cambridge University Press, 258 pp.
  • Franklin, C. N., P. A. Vaillancourt, M. K. Yau, and P. Bartello, 2005: Collision rates of cloud droplets in turbulent flows. J. Atmos. Sci., 62, 2451–2466.
  • Franklin, C. N., 2014: The effects of turbulent collision-coalescence on precipitation formation and precipitation-dynamical feedbacks in simulations of stratocumulus and shallow cumulus convection. Atmos. Chem, Phys., 14, 6557–6570.
  • Franklin, C. N., 2008: A warm rain microphysics parameterization that includes the effect of turbulence. J. Atmos. Sci. 65, 1795–1816.
  • Feingold, G., I. Koren, H. Wang, H. Xue, and Wm. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849–852.
  • Fan, J., T. Yuan, J. M. Comstock, S. Ghan, A. Khain, L. R. Leung, Z. Li, V. J. Martins, and M. Ovchinnikov, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206.
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.
  • Devenish, B. J., P. Bartello, J. L. Brenguier, L. R. Collins, W. W. Grabowski, R. H. A. IJzermans, S. P. Malinowski, M. W. Reeks, J. C. Vassilicos, L.-P. Wang, and Z. Warhaft, 2012: Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc., 138, 1401–1429.
  • Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and test. Q. J. R. Meteorol. Soc., 126, 1815–1842.
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.
  • Carri , G. G., and W. R. Cotton, 2011: Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability. Atmos. Res., 102, 167–174.
  • Carri , G. G., W. R. Cotton, and W. Y. Y. Cheng, 2010: Urban growth and aerosol effects on convection over Houston. Part I: the August 2000 case. Atmos. Res., 96, 560–574.
  • Brenguier, J.-L., T. Bourrianne, A. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, 1998: Improvements of droplet size distribution measurements with the Fast-FSSP (forward scattering spectrometer probe). J. Atmos. Ocean. Technol., 15, 1077–1090.
  • Bott, A., 2000: A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284–294.
  • Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 1825– 1831.
  • Benmoshe, N., and A. P. Khain, 2014: The effects of turbulence on the microphysics of mixed-phase deep convective clouds investigated with a 2-D cloud model with spectral bin microphysics. J. Geophys. Res. Atmos., 119, 207–221.
  • Benmoshe, N., M. Pinsky, A. Pokrovsky, and A. Khain, 2012: Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2- D simulations by a spectral mixed-phase microphysics cloud model. J. Geophys. Res., 117, D06220.
  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864.
  • Baker, B., Q. Mo, R. Lawson, D. O’Connor, and A. Korolev, 2009: Drop size distributions and the lack of small drops in RICO rain shafts. J. Appl. Meteorol. Climatol., 48, 616–623.
  • Ayala, O., B. Rosa, and L.-P. Wang, 2008: Effects of turbulence on the geometric collision rate of sedimenting droplets. Part II: Theory and parameterization. New J. Phys., 10, 075016.
  • Arenberg D., 1939: Turbulence as a major factor in the growth of cloud droplets. Bull. Am. Meteorol. Soc., 20, 444–445.
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. J. Comp. Phys., 1, 119–143.
  • Arabas, S., and S.-I. Shima, 2013: Large eddy simulations of trade-wind cumuli using particle-based microphysics with Monte-Carlo coalescence. J. Atmos. Sci., 70, 2768–2777.