박사

Perovskite 구조의 La0.1Sr0.9Co0.8Fe0.2O2.05+δ의 등온 및 비 등온 조건에서의 물질 / 전하 나름특성 : Mass/Charge Transport and Electrode Kinetics of La0.1Sr0.9Co0.8Fe0.2O2.05+δ

임하니 2016년
논문상세정보
' Perovskite 구조의 La0.1Sr0.9Co0.8Fe0.2O2.05+δ의 등온 및 비 등온 조건에서의 물질 / 전하 나름특성 : Mass/Charge Transport and Electrode Kinetics of La0.1Sr0.9Co0.8Fe0.2O2.05+δ' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • charge transport
  • ionic probe
  • perovskite
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
820 0

0.0%

' Perovskite 구조의 La0.1Sr0.9Co0.8Fe0.2O2.05+δ의 등온 및 비 등온 조건에서의 물질 / 전하 나름특성 : Mass/Charge Transport and Electrode Kinetics of La0.1Sr0.9Co0.8Fe0.2O2.05+δ' 의 참고문헌

  • Yasutake Teraoka, Hua-Min Zhang, Shoichi Furukawa, Noboru Yamazoe, “Oxygensorptive properties of defect perovskite-type La1-xSrxCo1-yFeyO3-δ”, Chemistry Letters, 11 (9), 1367-1670, (1985)
  • Yasutake Teraoka, Hua-Min Zhang, Shoichi Furukawa, Noboru Yamazoe, “Oxygen Permeation Through Perovskite-Type Oxides”, Chemistry Letters, 11(11), 1743-1746, (1985)
  • Y. Teraoka, H.M. Zhang, K. Okamoto, and N. Yamazoe, “Mixed ionic-electronic conductivity of Lal-xSrxCol-yFeyO3-δ perovskite-type oxides”, Mat. Res,. Bull., 23, 51- 58, (1988)
  • Y. Matsumoto, S. Yamada, T. Nishida, E. Sato, “Oxygen Evolution on La1 − xSrxFe1 − yCoy O 3 Series Oxides”, journal of The Electrochemical Society, 127(11), 2360-2364 (1980)
  • Y. Lu, C. Kreller, and S.B. Adler, “Measurement and Modeling of the Impedance Characteristics of Porous La1 − xSrxCoO3 − δ Electrodes” J. Electrochem. Soc. 156, B513-B525 (2009).
  • Y. L. Yang, C. L. Chen, S. Y. Chen, C. W. Chu, and A. J. Jacobson, “Impedance Studies of Oxygen Exchange on Dense Thin Film Electrodes of La0.5Sr0.5CoO3 − δ” J. Electrochem. Soc. 147, 4001-4007 (2000).
  • W. Shockley, “Some Predicted Effects of Temperature Gradients on Diffusion in Crystals,” Phys Rev., 91, 1563-1564, (1953).
  • W. Nernst, Z. Elektrochem. 6, 41-43 (1899).
  • W. Jiang, R.X. Fang, J.A. Khan, and R.A. Dougal, “Parameter setting and analysis of a dynamic tubular SOFC model” J. Power Sources 162, 316-326 (2006).
  • Teruhisa Horita, Katsuhiko Yamaji, Masahiko Ishikawa, Natsuko Sakai, and Harumi Yokokawa , “Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3– x/Yttria- Stabilized Zirconia Interface by Secondary-Ion Mass Spectrometry”, Journal of the Electrochemical Society, 145, 3196-3202 (1998).
  • Takashi Nakamura, Keiji Yashiro, Kazuhisa Sato, Junichiro Mizusaki, “Oxygen nonstoichiometry and defect equilibrium in La2 − xSrxNiO4 + δ”, Solid State Ionics , 180, 368–376, (2009)
  • Takanori Inoue, Koichi Eguchi, Toshihiko Setoguchi and Hiromichi Arai, “Cathode and anode materials and the reaction kinetics for the solid oxide fuel cell”, Solid State Ionics, 40-41, 407-410 (1990).
  • Taewon. Lee “ Mass/charge transport properties under iso/nonisothermal condition and defect structure of BaCo0.7Fe0.22Nb0.08O3-δ” ph.D thesis, Seoul national university, Korea, 2013
  • Taewon Lee, Hong-Seok Kim, Han-Ill Yoo, “From Onsager to mixed ionic electronic conductors”, Solid State Ionics 262, 2–8, (2014)
  • T. H. Etsell and S. N. Flengas, “Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells” J. Electrochem. Soc. 118, 1890-1900 (1971).
  • Subhash C. Singhal, Kevin Kendall, “High Temperature and Solid Oxide Fuel Cells” Elsevier B.V. (2003)
  • Stuart B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chem. Rev, 104, 4791 4843, (2004)
  • Steven McIntosh, Jaap F. Vente, Wim G. Haije, Dave H.A. Blank , Henny J.M. Bouwmeester, “Phase stability and oxygen non-stoichiometry of SrCo0.8Fe0.2O3−δ measured by in situ neutron diffraction” Solid State Ionics 177, 833–842, (2006)
  • Stephen J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell Cathodes”, International Journal of Inorganic Materials , 3, 113–121, (2001)
  • Shigenori Onuma, Keiji Yashiro , Shogo Miyoshi, Atsushi Kaimai, Hiroshige Matsumoto, Yutaka Nigara, Tatsuya Kawada, Junichiro Mizusaki, Kenichi Kawamura, Natsuko Sakai, Harumi Yokokawa, “Oxygen nonstoichiometry of the perovskite-type oxide La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3)”, Solid State Ionics, 174(1- 4), 287-293, (2004)
  • Seungho Lee, Hwa Seob Song, Sang Hoon Hyun, Joosun Kim, Jooho Moon “LSCF– SDC core–shell high-performance durable composite cathode” Journal of Power Sources 195 , 118–123, (2010)
  • Seungdoo Park, John M. Vohs, Raymond J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell”, Nature, 404, 265-267 (2000).
  • Service Group Scientific Data Processing at Freiburg Materials Research Center, User Manual FTIKREG: A program for the solution of Fredholm integral equations of the first kind (2008).
  • S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, “Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation” Solid State Ionics 136–137 91–99 (2000)
  • S.H. Chan, K.A. Khor, and Z.T. Xia, “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness” J. Power Sources 93, 130-140 (2001).
  • S.C Singhal, “Advances in solid oxide fuel cell technology”, Solid State Ionics, 135(1- 4), 305-313, (2000)
  • S.B. Adler, “Mechanism and kinetics of oxygen reduction on porous La1−xSrxCoO3−δ electrodes” Solid State Ionics 111, 125-134 (1998).
  • S.B. Adler, J.A. Lane, and B.C.H. Steele, “Electrode Kinetics of Porous MixedConducting Oxygen Electrodes”, Journal of the Electrochemical Society, 143, 3554- 3564 (1996).
  • S. R. de Groot, “Thermodynamics of Irreversible processes”, North-holand publishing Co., Amesterdam, (1951)
  • S. J. Skinner and J. A. Kilner, “Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ” Solid State Ionics 135, 709-712, (2000)
  • Raymond M. Fuoss, “Electrical Properties of Solids. VII. The System Polyvinyl Chloride-Diphenyl”, J. Am. Chem. Soc., 63 (2), 378–385 (1941)
  • R.T.K. Baker, P.S. Harris, J. Henderson, R.B. Thomas, “Formation of carbonaceous deposits from the reaction of methane over nickel” Carbon, 13 17-22 (1975).
  • R.T.K. Baker, G.R. Gadsby, S. Terry, “Formation of carbon filaments from catalysed decompasition of hydrocarbons” Carbon, 13 245-246 (1975) .
  • R.R. Heikes, R.C. Miller, R. Mazelsky, “Magnetic and electrical anomalies in LaCoO3”, Physica, 30(8), 1600-1608, (1964)
  • R.J. Gorte, S. Park, J.M. Vohs, C. Wang, “Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-Oxide Fuel Cell”, Advanced Materials, 12, 1465-1469 (2000)
  • R.E. Howard and A.B. Lidiard, “Matter Transport in Solid,” Rep.Proc.Phys., 27, 161- 240 (1964)
  • R. A. Oriani, “Thermomigration in Solid Metals,” J.Phys. Chem. Solids., 30, 339-351 (1969).
  • R. A. De Souza and J. A. Kilner, “Oxygen transport in La1−xSrxMn1−yCoyO3 δ perovskites: Part I. Oxygen tracer diffusion” Solid State Ionics 106, 175-187 (1998).
  • Pengnian Huang, Alesh Horky, and Anthony Petric, “Interfacial Reaction between Nickel Oxide and Lanthanum Gallate during Sintering and its Effect on Conductivity”, Journal of the American Ceramic Society, 82(9) 2402-2406 (1999).
  • P.J. Gelling, H.J.M. Bouwmeester, “The CRC Handbook of Solid State Electrochemistry”, CRC Press, Tokyo, (1997).
  • Osamu Yamamoto, “Solid oxide fuel cells: fundamental aspects and prospects”, Electrochimica Acta , 45(15-16), 2423-2435, (2000)
  • Olga A. Marina, Nathan L. Canfield, Jeff W. Stevenson, “Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate”, Solid State Ionics, 149, 21-28 (2002).
  • Olga A. Marina, Carsten Bagger, S ren Primdahl, Mogens Mogensen, “A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance”, Solid State Ionics, 123,199-208 (1999).
  • Nguyen Quang Minh, Takehiko Takahashi, “Science and Technology of Ceramic Fuel Cells”, Elsevier Science, (1995).
  • N. Hildenbrand, P. Nammensma, D.H.A. Blank, H.J.M. Bouwmeester, and B.A. Boukamp, “Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells” J. Power Sources 238, 442-453 (2013).
  • N. Hildenbrand, B.A. Boukamp, P. Nammensma, and D.H.A. Blank, “Improved cathode/electrolyte interface of SOFC” Solid State Ionics 192, 12-15 (2011).
  • N. Cusack and P. Kendall, “The Absolute Scale of Thermoelectric power at High Temperature,” Proc. Phys. Soc. (London), 72[6], 898-910 (1958).
  • Myung Chul Kim, Soon Ja Park, Hajime Haneda, Junzo Tanaka, Shinich Shirasaki, “High temperature electrical conductivity of La1−xSrxFeO3−δ (x>0.5)”, Solid State Ionics, 40-41(1), 239-243, (1990)
  • Mogens Mogensen , Kent Kammer, “Conversion of hydrocarbons in solid oxide fuel cells”, Annual Review of Materials Research, 33, 321-331, (2003)
  • Martijn H.R. Lankhorst, H.J.M. Bouwmeester, H. Verweij, “High-Temperature Coulometric Titration of La1−xSrxCoO3−δ: Evidence for the Effect of Electronic Band Structure on Nonstoichiometry Behavior”, Journal of Solid State Chemistry, 133(2), 555-567, (1997)
  • Martijn H. R. Lankhorst, H. J. M. Bouwmeester,1 and H. Verweij, “High-Temperature Coulometric Titration of La1–x SrxCoO3–d : Evidence for the Effect of Electronic Band Structure on Nonstoichiometry Behavior”, Journal of solid state of chemistry, 133, 555-567, (1997)
  • Marjolein L. Toebes, Johannes H Bitter, A.Jos van Dillen, Krijn P de Jong, ” Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers”, Catalysis Today, 76, 33-42 (2002).
  • M.J.L. Ostergard and M. Mogensen, “AC Impedance study of the oxygen reduction mechanism on La1−xSrxMnO3 in solid oxide fuel cells”, Electrochimica Acta, 38 (1993) 2015.
  • M.B. Choi, “Study of Thermodynamic and Kinetic Properties of La0.1Sr0.9Co0.8Fe0.2O3-δ as Air Electrode in Solid Oxide Fuel Cell”. Ph.D. Thesis, Chonnam National University,
  • M.B. Choi, B. Singh, E.D. Wachsman, and S.J. Song, “Performance of La0.1Sr0.9Co0.8Fe0.2O3−δ and La0.1Sr0.9Co0.8Fe0.2O3−δ–Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells” J. Power Sources 239, 361-373 (2013).
  • M.-B. Choi, D.-K. Lim, E.D. Wachsman, S.-J. Song, “Oxygen nonstoichiometry and chemical expansion of mixed conducting La0.1Sr0.9Co0.8Fe0.2O3 – δ”, Solid State Ionics, 221(3), 22-27, (2012)
  • M. Kuznecov, P. Otschik, N. Trofimenko, K. Eichler, Russian J. Electrochem. 40, 1355 (2004).
  • M. Katama and T. Esaka, “Thermodynamic descriptions of oxygen redistribution in a nuclear fuel pellet: Heat of transport of oxygen in mixed conductors,” J. Appl. Electrochem., 24, 390-395 (1994).
  • M. Jost, in “Diffusion in Solids, Liquids, Gases,”, Academic Press Inc. New York, (1960).
  • L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, “Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3.”, Solid State Ionics, 76(3–4), 259–271, (1995)
  • L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, “Structure and electrical properties of La1−xSrxCo1-yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3”, Solid State Ionics, 76(3-4), 273-283 (1995)
  • Khan S, Oldman RJ, Cor F, Catlow CR, French SA, Axon SA, “A computational modelling study of oxygen vacancies at LaCoO3 perovskite surfaces.”, Phys Chem Chem Phys., 8(44), 5207-5222, (2006)
  • Kanchan Gaur, S. C. Verma, H. B. Lal, “Defects and electrical conduction in mixed lanthanum transition metal oxides”, Journal of Materials Science, 23(5), 1725-1728, (1998)
  • K.-C. Lee and H.-I. Yoo, “Hebb-Wagner-type Polarization/Relaxation in the Presence of Cross Effect between Electronic and Ionic Flows in a Mixed Conductor,” J. Phys. Chem. Solids., 60, 911-927 (1999).
  • K. Sasaki and J. Maier,” Re-analysis of defect equilibria and transport parameters in Y2O3-stabilized ZrO2 using EPR and optical relaxation” Solid State Ionics, 134, 303- 321 (2000).
  • K. S. Cole and R. H. Cole, “Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics” J. Chem. Phys. 9, 341-351 (1941).
  • K. Nomura, Y. Mizutani, M. Kawaia, Y. Nakamuraa, O. Yamamoto, “Aging and Raman scattering study of scandia and yttria doped zirconia” Solid State Ionics 132 235–239 (2000)
  • K. G. Denbigh, “The thermodynamics of the steady state”, Methuen, London, (1951)
  • Junichiro Mizusaki, Tadashi Sasamoto, W. Roger Cannon, H. Kent Bowen, “Electronic Conductivity, Seebeck Coefficient, and Defect Structure of La1-xSrxFeO3 (x=0.l, 0.25)”, journal of the American Ceramic Society, 66(4), 247-252, (1983)
  • Junichiro Mizusaki, Junji Tabuchi, Takashi Matsuura, Shigeru Yamauchi and Kazuo Fueki, “Electrical Conductivity and Seebeck Coefficient of Nonstoichiometric La1−xSrxCoO3−δ”, J. Electrochem. Soc., 136(7), 2082-2088, (1989)
  • Jung-Hoon Song, Myung Geun Jung, Hye Won Park, Hyung-Tae Lim, “The Effect of Fabrication Conditions for GDC Buffer Layer on Electrochemical Performance of Solid Oxide Fuel Cells” Nano-Micro Lett. 5(3), 151-158 (2013)
  • John B. Goodenough, “Metallic oxides”, Progress in Solid State Chemistry, 5, 145– 399, (1971)
  • Jochen Joos, Moses Ender, Thomas Carraro, Andr Weber, Ellen Ivers-Tiff e, “Representative volume element size for accurate solid oxide fuel cell cathode reconstructions from focused ion beam tomography data”, Electrochim. acta 82 (2012) 268
  • Jianxin Yi, Jochen Brendt, Michael Schroeder, Manfred Martin “Oxygen permeation and oxidation states of transition metals in (Fe, Nb) - doped BaCoO3-δ perovskites” Journal of Membrane Science 387– 388, 17– 23 (2012)
  • Jiang Liu, Brian D. Madsen, Zhiqiang Ji, Scott A. Barnett, “A Fuel-Flexible CeramicBased Anode for Solid Oxide Fuel Cells” Electrochemical Solid-State Letters, 5. A122-A124 (2002).
  • Jeffrey W. Fergus, “Perovskite oxides for semiconductor-based gas sensors”, Sensors and Actuators B: Chemical, 123(2), 1169–1179, (2007)
  • J.T.S. Irvine, A. Sauvet, “Improved Oxidation of Hydrocarbons with New Electrodes in High Temperature Fuel Cells” Fuel Cells, 1, 205-210 (2001).
  • J.P.P. Huijsmans, “Ceramics in solid oxide fuel cells”, Current Opinion in Solid State and Materials Science, 5, 317-323, (2001)
  • J.E. ten Elshof, M.H.R. Lankhorst, and H.J.M. Bouwmeester, “Oxygen Exchange and Diffusion Coefficients of Strontium‐Doped Lanthanum Ferrites by Electrical Conductivity Relaxation”, J. Electrochem. Soc. 144, 1060-1067 (1997).
  • J. van Herle, A.J. McEvoy, K. Ravindranathan Thampi, “A study on the La1 −xSrxMnO3 oxygen cathode”, Electrochimica Acta, 41, 1447-1454 (1996).
  • J. S. Lee, H. I. Yoo, “Direct measurement of partial ionic conductivity of Co1−δO via impedence spectroscopy combined with dc relaxation” Solid State Ionics 68, 139- 149 (1994)
  • J. R. Macdonald “Impedance Spectroscopy”, John Wiley & Sons, New York (1987).
  • J. N. Agar, “The Rate of Attainment of Soret Equilibrium,” Trans, Faraday Soc., 53, 167-178 (1957).
  • J. N. Agar and W. G. Breck, “Thermal Diffusion Potentials and the Soret Effect,” Nature, 175(4450), 298-299 (1995).
  • J. M Bassat, P. Doer, A. villesuzanne, C. Marin and M. Pouchard, “Anisotropic ionic transport properties in La2NiO4+δ single crystals”, Solid State Ionics 167 341-347 2004
  • J. Janek and C. Korte, “Study of the Soret Effect in Mixed Conductors by the Measurement of Ionic and Electronic Thermopower,” Solid State Ionics., 92, 193- 204 (1996).
  • J. Jamnik, M. Gaberscek, and S. Pejovnik, “Interpretation of ac impedance spectroscopy of the anodic passive layer in Li/SOCl2 batteries” Electrochim. Acta 35, 423-426 (1990).
  • J. H. Kuo, H. U. Anderson, and D. M. Sparlin, “Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: Defect structure, electrical conductivity, and thermoelectric power”, Journal of Solid State Chemistry, 87, 55-63 (1990)
  • J. Chipman, “The Soret Effects,” J. Am. Chem. Soc., 48(10), 2577-2589 (1926)
  • J. A. Kilner and C. K. M. Shaw, “Mass transport in La2Ni1−xCoxO4+δ oxides with the K2NiF4 structure”, Solid State Ionics, 154-155, 523-527 (2002)
  • Isamu Yasuda, Kei Ogasawara, Masakazu Hishinuma, Tatsuya Kawada, Masayuki Dokiya, “Oxygen tracer diffusion coefficient of (La, Sr)MnO3 δ” Solid State Ionics 86-88, 1197-1201 (1996).
  • IUPAC, Oxygen, “International Thermodynamic Table of the Fluid State-9”, Blackwell, Oxfkrd, 1987, pp.30-35.
  • I.D. Raistrick, D.R. Franceschetti, J.R. Macdonald in: E. Barsoukov, J.R. Macdonald (Eds.), “Impedance Spectroscopy-Theory, Experiment, and Applications”, WileyInterscience, New Jersey USA, (2005)
  • Hong-Seok Kim, Han-Ill Yoo, “Complete representation of isothermal mass and charge transport properties of mixed ionic–electronic conductor La2NiO4+δ.”, Physical Chemistry Chemical Physics, 12, 12951-12955, (2010)
  • Hiroyuki Kamata, Akio Hosaka, Junichiro Mizusaki, Hiroaki Tagawa, “High temperature electrocatalytic properties of the SOFC air electrode La0.8Sr0.2MnO3/YSZ”, Solid State Ionics, 106, 237-245 (1998).
  • H.J.M. Bouwmeester, M.W. den Otter, and B.A. Boukamp, “Oxygen transport in La0.6Sr0.4Co1- yFeyO 3-δ” J. Solid State Electrohem., 8(9), 599-605 (2004)
  • H.-I. Yoo and J.-H. Hwang, “Thermoelectric Behavior of Single Crystalline ZrO2 (+8m/o Y2O3),” J. Phys. Chem. Solids, 53[7], 973-981 (1991)
  • H. Schmalzried, “Chemical Kinetics of Solids”, VCH Verlagsgesellschaft, Weinheim, Germany, (1995).
  • H. Schichlein, A. C. M ller, M. Voigts, A. Kr gel, and E. Ivers-Tiffee, “Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells”, Journal of Applied Electrochemistry, 32(8), 875-882 (2002)
  • H. S. Kim, “Defect Structure and Mass/charge Transport Properties of La2NiO4+δ Systems, Ph.D. Thesis, Seoul National University, (2011)
  • H. S. Kim, H. I. Yoo, “Compilation of all the isothermal mass/charge transport properties of the mixed conducting La2NiO4+δ at elevated temperatures”, Phys. Phys. Chem. Chem. Phys. 13, 4651-4658, (2011).
  • H. Rickert, “Electrochemistry of Solids”, Springer-Verlag, Berlin Heidelberg New York, 1982,
  • H. Rickert, “Electrochemistry of Solids” Springer-Verlag, Berlin, Germany, (1982)
  • H. I. Yoo, H. Schmalzried, M. Martin, J. Janek, “Cross effect between electronic and ionic flows in semiconducting transition metal oxides”, Z. Phys. Chem. N. F., 168, 129-142, (1990).
  • G.J.K. Acres, “Recent advances in fuel cell technology and its applications”, Journal of Power Sources, 100, 60–66 (2001)
  • Frank S. Baumann, J rgen Fleig, Mitsuharu Konuma, Ulrich Starke, Hanns-Ulrich Habermeier and Joachim Maier, “Strong Performance Improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC Cathodes by Electrochemical Activation” J. Electrochem. Soc. 152, A2074-A2079 (2005).
  • Frank S. Baumann, J rgen Fleig, Hanns-Ulrich Habermeier, Joachim Maier, „Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes“ Solid State Ionics 177, 1071-1081 (2006).
  • F.A. Kr ger, The Chemistry of Imperfect Crystals Vol. 2 2nd revised edition, NorthHolland Publishing Company, Netherlands, (1974) .
  • E.N. Naumovich, M.V. Patrakeev, V.V. Kharton , A.A. Yaremchenko, D.I. Logvinovich, F.M.B. Marques, “Oxygen nonstoichiometry in La2Ni(M)O4+δ (M = Cu, Co) under oxidizing Conditions”, Solid State Sciences, 7, 1353–1362, (2005)
  • E.C. Shin, P.A. Ahn, H.H. Seo, J.M. Jo, S.D. Kim, S.K. Woo, J.H. Yu, J. Mizusaki, and J.S. Lee, “Polarization mechanism of high temperature electrolysis in a Ni– YSZ/YSZ/LSM solid oxide cell by parametric impedance analysis” Solid State Ionics 232, 80-96 (2013).
  • E. Siebert, A. Hammouche, M. Kleitz, “Impedance spectroscopy analysis of La1−xSrxMnO3-δ yttria-stabilized zirconia electrode kinetics”, Electrochimica Acta, 40 1741-1753 (1995).
  • E. D. Eastman, “Thermodynamics of Non-Isothermal Systems”, J. Am. Chem. Soc., 48 (6), 1482–1493, (1926)
  • Doh-Kwon Lee, Han-Ill Yoo, “Measurement of the Onsager coefficients of mixed ionic-electronic conduction in oxides.”, Phys. Rev. B, 75, 235110, (2007)
  • Doh-Kwon Lee, Han-Ill Yoo, “Electron-Ion Interference and Onsager Reciprocity in Mixed Ionic-Electronic Transport in TiO2.”, PHYSICAL REVIEW LETTERS, 97, 255901, (2006)
  • Dionissios Mantzavinos, Anne Hartley, Ian S. Metcalfe, Mortaza Sahibzada “Oxygen stoichiometries in La1−xSrxCo1−yFeyO3−δ perovskite reduced oxygen partial pressures” Solid State Ionics, 134, 103 –109, (2000)
  • D.D. Macdonald and M. Urquidi-Macdonald, “Application of Kramers‐Kronig Transforms in the Analysis of Electrochemical Systems I . Polarization Resistance” J. Electrochem. Soc. 132, 2316-2319 (1985).
  • D.A. Noren and M.A. Hoffman, “Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models” J. Power Sources ,152, 175-181 (2005).
  • D.-K. Lee and H.-I. Yoo, “Measurement of the Onsager coefficients of mixed ionicelectronic conduction in oxides”, Physical Review B 75, 235110-235115 (2007)
  • D.-K. Lee and H.-I. Yoo, “Electron-Ion Interference and Onsager Reciprocity in Mixed Ionic-Electronic Transport in TiO2”, Phys. Rev. Lett., 2006, 97, 255901-255904.
  • Chunwen Sun, Ulrich Stimming, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, 171(2), 247–260, (2007)
  • Chunwen Sun, Rob Hui, Justin Roller, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solid State Electrochemistry, 14(7), 1125-1144 (2010)
  • Changjing Fu, Kening Sun, Naiqing Zhang, Xinbing Chen, Derui Zhou “Electrochemical characteristics of LSCF–SDC composite cathode for intermediate temperature SOFC”, Electrochimica Acta, 52 , 4589–4594 (2007)
  • C.W. Keep, R.T.K. Baker, J.A. France, “Origin of filamentous carbon formation from the reaction of propane over nickel” Journal of Catalysis, 47, 232-248 (1977).
  • C.N. Satterfield and T.K. Sherwood, “The Role of Diffusion in Catalysis”, AddisonWesley, Boston, 1963
  • C. Wagner, “The Thermoelectric Power of Cells with Ionic Compounds Involving Ionic and Electronic Conduction,” Prog. Solid State Chem., 7, 1-37, (1972).
  • C. Wagner, Prog. Solid state Ch., 10, 3-16 (1975)
  • C. Wagner, Naturwissenschaften 31, 265-268 (1943).
  • C. Korte and J.Janek, “Ionic Conductivity, Partial Thermopowers. Heats of Transport and the Soret Effect of α-Ag2+δSe – an Experimental Study,” Z. Phys. Chem., 206, 129-163 (1998).
  • C. Korte and J. Janek, “Nonisothermal Transport properties of α-Ag2S; Partial Thermopower of Electrons and Ions, the Soret Effect and Heats of Transport,” J. Phys, Chem. Solids., 58(4), 623-637 (1997).
  • C. Chatzichristodoulou, W. S. Park, H. S. Kim, P. V. Hendriksen, H. I. Yoo, “Experimental determination of the Onsager coefficients of transport for Ce0.8Pr0.2O2- δ”, Phys.Chem.Chem.Phys.,12, 9637–9649, (2010).
  • Brian C. H. Steele, Angelika Heinzel, “Materials for fuel-cell technologies”, Nature, 414(6861), 345-352, (2001)
  • B.C.H. Steele, I. Kelly, P.H. Middleton, R. Rudkin, “Oxidation of methane in solid state electrochemical reactors”, Solid State Ionics, 28, 1547-1557 (1988).
  • B.A. Boukamp, “Practical application of the Kramers-Kronig transformation on impedance measurements in solid state electrochemistry” Solid State Ionics 62, 131- 141 (1993).
  • B.A. Boukamp, “A Linear Kronig‐Kramers Transform Test for Immittance Data Validation”, J. Electrochem. Soc. 142, 1885-1894 (1995).
  • B. A. Boukamp, M. Verbraeken, D.H.A. Blank, and P. Holtappels, “SOFC-anodes, proof for a finite-length type Gerischer impedance?” Solid State Ionics 177, 2539 - 2541(2006).
  • Ashley S. Harvey, F. Jochen Litterst, Zhen Yang, Jennifer L. M. Rupp, Anna Infortuna, Ludwig J. Gauckler, “Oxidation states of Co and Fe in Ba1−xSrxCo1−yFeyO3−δ (x, y = 0.2–0.8) and oxygen desorption in the temperature range 300–1273 K”, Physical Chemistry Chemical Physics, 11(17), 3090-3098, (2009)
  • Alevtina L. Smirnova, Kevin R. Ellwood and Gary M. Crosbie, “Application of Fourier-Based Transforms to Impedance Spectra of Small-Diameter Tubular Solid Oxide Fuel Cells” J. Electrochem. Soc., 148(6), A610-A615 (2001)
  • A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, and A.G. Yagola, “Numerical methods for the solution of ill-posed problems”, Kluwer, Dordrecht, (1995).
  • A.D. Franklin and H.J. de Bruin, “The fourier analysis of impedance spectra for electroded solid electrolytes”, Phys. Status Solidi (a) 75(2), 647-656 (1983).
  • A. Mitterdorfer, L.J. Gauckler, “Identification of the reaction mechanism of the Pt, O2(g) yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation”, Solid State Ionics, 117(3-4), 203-217 (1999).
  • A. Leonid, B. Ruger, A. Weber, W.A. Meulenberg, and E. Ivers-Tiffee, “Impedance Study of Alternative  ( La , Sr ) FeO3 − δ and  ( La , Sr )  ( Co , Fe ) O3 − δ MIEC Cathode Compositions” J. Electrochem. Soc. 157, B234-B239 (2010).
  • A. Hammouche, E. Siebert, M. Kleitz, “Electrocatalytic Properties and Nonstoichiometry of the High Temperature Air Electrode La1–xSrxMnO3”, Journal of the Electrochemical Society, 138, 1212-1216 (1991).
  • A. D. LeClaire, “Some Predicted Effects of Temperature Gradients on Diffusion in Crystals,” Phys Rev., 93(2), 344, (1954).