박사

Biomechanical Investigation of Spinal Cord Injury and Disease in Cervical Spine: A Finite Element Analysis

논문상세정보
' Biomechanical Investigation of Spinal Cord Injury and Disease in Cervical Spine: A Finite Element Analysis' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 기술과 연합작용
  • biomechanics
  • finite element analysis
  • spinal cord injury
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
7,664 0

0.0%

' Biomechanical Investigation of Spinal Cord Injury and Disease in Cervical Spine: A Finite Element Analysis' 의 참고문헌

  • saki, M., Okuda, S., Miyauchi, A., Sakaura, H., Mukai, Y., Yonenobu, K., & Yoshikawa, H. (2007). Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: Part 1: Clinical results and limitations of laminoplasty. Spine, 32(6), 647-653.
  • Zhao, X., Xue, Y., Pan, F., Zhao, H., Li, P., Wang, P., & Ma, X. (2012). Extensive laminectomy for the treatment of ossification of the posterior longitudinal ligament in the cervical spine. Archives of Orthopaetic and Trauma Surgery, 132(2), 203-209.
  • Yoshii, T., Yamada, T, Hirai, T., Taniyama, T., Kato, T., Enomoto, M., Inose, H., Sumiya, S., Kawabata, S., Shinomiya, K., & Okawa, A. (2014). Dynamic changes in spinal cord compression by cervical ossification of the posterior longitudinal ligament evaluated by kinematic computed tomography myelography. Spine, 39(2): 113-119.
  • Yoon, S. H., Kim, W. H., Chung, S. B., Jin, Y. J., Park, K. W., Lee, J. W., Chung, S. K., Kim, K. J., Yeom, J. S., Jahng, T. A., Chung, C. K., Kang, H. S., & Kim, H. J. (2011). Clinical analysis of thoracic ossified ligamentum flavum without ventral compressive lesion. European Spine Journal, 20(2), 216-223.
  • Yliniemi, E.M., Pellettiere, J.A., Doczy, E.J., Nuckley, D.J., Perry, C.E., & Ching, R.P. (2009). Dynamic tensile failure mechanics of the musculoskeletal neck using a cadaver model. Journal of Biomechanical Engineering 131(5): 051001.
  • Xia, G., Tian, R., Xu, T., Li, H., & Zhang, X. (2011). Spinal posterior movement after posterior cervical decompression surgery: clinical findings and factors affecting postoperative functional recovery. Orthopedics, 34(12), e911-918.
  • Wu, F.L., Sun, Y., Pan, S.F., Zhang, L., & Liu, Z.L. (2014). Risk factors associated with upper extremity palsy after expansive open-door laminoplasty for cervical myelopathy. The Spine Journal 14(6): 909-1015.
  • Wolfla, C.E., Snell, B.E., & Honeycutt, J.H. (2004). Cervical ventral epidural pressure response to graded spinal canal compromise and spinal motion. Spine, 29(14): 1524- 1529.
  • Wilcox, R. K., Boerger, T. O., Hall, R. M., Barton, D. C., Limb, D., & Dickson, R. A. (2002). Measurement of canal occlusion during the thoracolumbar burst fracture process. Journal of Biomechanics, 35(3), 381-384.
  • Wilcox, R. K., Boerger, T. O., Allen, D. J., Barton, D. C., Limb, D., Dickson, R. A., & Hall, R. M. (2003). A dynamic study of thoracolumbar burst fracture. Journal of Bone and Joint Surgery, American Volume, 85(11), 2184-2189.
  • Wilcox, R. K., Allen, D. J., Hall, R. M., Limb, D., Barton, D. C., & Dickson, R. A. (2004). A dynamic investigation of burst fracture process using a combined experimental and finite element approach. European Spine Journal, 13(6), 481-488.
  • Vaccaro, A.R., Hulbert, R.J., Patel, A.A., Fisher, C., Dvorak, M., Lehman, R.A. Jr., Anderson, P., Harrop, J., Oner, F.C., Arnold, P., Fehlings, M., Hedlund, R., Madrazo, I., Rechtine, G., Aarabi, B., Shainline, M., Spine Trauma Study Group. (2007). The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine, 32(21): 2365-2374.
  • Tsuzuki, N., Zhongshi, L., Abe, R., & Saiki, K. (1993). Paralysis of the arm after posterior decompression of the cervical spinal cord. I. Anatomical investigation of the mechanisms of paralysis. European Spine Journal, 2(4): 191-196.
  • Tsuzuki, N., Abe, R., Saiki, K., & Zhongshi, L. (1996) Extradural tethering effect as one mechanisms of radiculopathy complicating posterior decompression of the cervical spinal cord. Spine, 21(2): 203-211.
  • Tsuyama, N. (1984). Ossification of the posterior longitudinal ligament of the spine. Clinical Orthopaetics and Related Research, 184, 71–84.
  • Tsuji, T., Azuma, T., Masuoka, K., Tasuoka, H., Motosuneya, T., Sakai, T., & Nemoto, K. (2007). Retrospective cohort study between selective and standart C3-7 laminoplasty. Minimum 2-year follow-up. European Spine Journal, 16(12), 2072- 2077.
  • Tashjian, V.S., Kohan, E., McArthur, D.L., & Holly, L.T. (2009). The relationship between preoperative cervical alignment and postoperative spinal cord drift after decompressive laminectomy and arthrodesis for cervical spondylotic myelopathy. Surgical Neurology, 72(2): 122-117
  • Surgue, P.A., McClendon, J. Jr., Halpin, R. J., Liu, J. C., Koski, T. R., & Ganju, A. (2011). Surgical management of cervical ossification of the posterior longitudinal ligament: natural history and the role of surgical decompression and stabilization, Neurosurgical Focus, 30(2), E3.
  • Suda, K., Abumi, K., Ito, M., Shono, Y., Kaneda, K., & Fujiya, M. (2013). Local kyphosis reduces surgical outcomes of expansive open-door laminoplasty for cervical myelopathy. Spine, 28(12): 1258-1262.
  • Streijger, F., Beernink, T. M., Lee, J. H., Bhatnagar, T., Park, S., Kwon, B. K., & Tetzlaff, W. (2013). Characterization of a cervical spinal cord hemicontusion injury in mice using the infinite horizon impactor. Journal of Neurotrauma, 30(10), 869-883.
  • Stokes, B. T., Noyes, D. H., & Behrmann, D. L. (1992). An electromechanical spinal injury technique with dynamic sensitivity. Journal of Neurotrauma, 9(3), 189–195.
  • Stokes, B. T., & Jakeman, L. B. (2002). Experimental modelling of human spinal cord injury: a model that crosses the species barrier and mimics the spectrum of human cyctopathology. Spinal Cord, 40(3), 101-109.
  • Stevens, M. J. (1995). Imaging of the spinal cord. Journal of Neurology, Neurosurgery and, Psychiatry, 58(4), 403-416.
  • Sparrey, C. J., Choo, A. M., Liu, J., Tetzlaff, W., & Oxland, T. R. (2008). The distribution of tissue damage in the spinal cord is influenced by the contusion velocity. Spine, 33(22), E812-E819.
  • Sparrey, C. J., & Keaveny, T. M. (2011). Compression behavior of porcine spinal cord white matter. Journal of Biomechanics, 44(14), 1078-1082.
  • Song, K.J., Choi, B.W., Kim, S.J., Kim, G.H, Kim, Y.S., Song, J.H. (2009). The relationship between spinal stenosis and neurological outcome in traumatic cervical spine injury: an analysis using Pavlov’s ratio, spinal cord area, and spinal canal area. Clinics in Orthopedic Surgery, 1: 11–8.
  • Sodeyama, T., Goto, S., Mochizuki, M., Takahashi, J., & Moriya, H. (1999). Effect of decompression enlargement laminoplasty for posterior shifting of the spinal cord. Spine, 24(15), 1527-1531.
  • Smith, Z. A., Buchanan, C. C., Raphael, D., and Khoo, L. T., 2011, “Ossification of the posterior longitudinal ligament: pathogenesis, management, and current surgical approaches. a review” Neurosurgical Focus, 30(3), pp. E10.
  • Singh, S. P., Tanwar, Y. S., Habib, M., Jaiswal, A., & Lal, H. (2013). Surgical technique: hemilaminectomy and unilateral mass fixation for cervical ossification of the posterior longitudinal ligament. Clinical Orthopaedics and Related Research 471(12): 4093.
  • Shibuya, S., Komatsubara, S., Oka, S., Kanda, Y., Arima, N., & Yamamoto, T. (2010). Differences between subtotal corpectomy and laminoplasty for cervical spondylotic myelopathy. Spinal Cord, 48(3): 214-220.
  • Sheng, S. R., Wang, X. Y., Xu, H. Z., Zhu. G. Q., & Zhou, Y. F. (2010). Anatomy of large animal spines and its comparison to the human spine: a systematic review. European Spine Journal, 19(1), 46-56.
  • Sharif-Alhoseini, M., & Rahimi-Movaghar, V. (2014). Topics in Paraplegia: Animal models in traumatic spinal cord injury. doi: 10.5772/57189
  • Sekhon, L. H., & Fehlings, M. G. (2001). Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine, 26(24), S2-S12.
  • Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A., & Lumpp, JE. Jr. (2003). Experimental modeling of spinal cord injury: characterization of a force-defined injury device. Journal of Neurotrauma, 20(2), 179–193
  • Sasai, K., Saito, T., Akagi, S., Kato, I., Ohnari, H., & Iida, H. (2003). Preventing C5 palsy after laminoplasty. Spine, 28(17): 1972-1977.
  • Sakaura, H., Hosono, N., Mukai, Y., Ishii, T., & Yoshikawa, H. (2003). C5 palsy after decompression surgery for cervical myelopathy: review of the literature. Spine, 28(21), 2447-2451.
  • Saetia, K., Cho, D., Lee, S., Kim, D. H., & Kim, S. D. (2011). Ossification of the posterior longitudinal ligament: review. Neurosurgical Focus, 30(3), E1.
  • Russell, C. M., Choo, A. M., Tetzlaff, W., Chung, T. E, & Oxland, T. R. (2012). Maximum principal strain correlates with spinal cord tissue damage in contusion and dislocation injuries in the rat cervical spine. Journal of Neurotrauma, 29(8), 1574–85.
  • Radcliff, K.E., Limthongkul, W., Kepler, C.K., Sidhu, G.D., Anderson, D.G., Rihn, J.A., Hilibrand, A.S., Vaccaro, A.R., & Albert, T.J. (2014). Cervical laminectomy width and spinal cord drift are risk factors for postoperative C5 palsy. Journal of Spinal Disorders & Techniques, 27(2): 86-92.
  • Rabchevsky, A. G., Sullivan, P. G., Fugaccia, I., & Scheff, S.W. (2003). Creatine diet supplement for spinal cord injury: influences on functional recovery and tissue sparing in rats. Journal of Neurotrauma, 20(7), 659-669.
  • Qizhi, S., Lili, Y., Ce, W., Yu, C., & Wen, Y. (2015). Factors associated with intramedullary MRI abnormalities in patients with ossification of the posterior longitudinal ligament. Journal of Spinal Disorders & Techniques, 28(5): E304-309.
  • Polg r, F. (1920). ber interakuelle wirbelverkalkung. Fortschr Geb Rontgenstr Nuklearmed. 40, 292-298.
  • Polak, K., Czyż, M., Ścigała, K., Jarmundowicz, W., & Będziński, R. (2014). Biomechanical characteristics of the porcine denticulate ligament in different vertebral levels of the cervical spine-preliminary results of an experimental study. Journal of the Mechanical Behavior of Biomedical Materials, 34: 165-170.
  • Pickett, G. E., Campos-Benitez, M., Keller, J. L., & Duggal, N. (2006). Epidemiology of traumatic spinal cord injury in Canada. Spine, 31(7), 799-805.
  • Persson, C., Summers, J., & Hall, R. M. (2011b). The importance of fluid-structure interaction in spinal trauma models. Journal of Neurotrauma, 28(1), 113-125.
  • Persson, C., Summers, J., & Hall, R. M. (2011a). The effect of cerebrospinal fluid thickness on traumatic spinal cord deformation. Journal of Applied Biomechanics, 27(4), 330-335.
  • Persson, C., McLure, S. W., Summers, J., & Hall, R. M. (2009). The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study. Journal of Neurosurgery: Spine, 10(4), 315-323.
  • Persson, C., Evans, S., Marsh, R., Summers, J.L., & Hall, R.M. (2010). Poisson’s ratio and strain rate dependency of the constitutive behavior of spinal dura mater. Annals of Biomedical Engineering, 38(3): 975-983.
  • Penning, L., Wilmink, J.T., van Woerden, H.H., & Knol, E. (1986). CT myelographic findings in degenerative disorders of the cervical spine: clinical significance. American Journal of Roentgenology, 146(4):793-801.
  • Patel, C. K., Cunningham, B. J., & Herkowits, H. N. (2002). Techniques in cervical laminoplasty. The Spine Journal, 2(6), 450-455.
  • Park, J. Y., Chin, D. K., Kim, K. S, Cho, Y. E. (2008). Thoracic ligament ossification in patients with cervical ossification of the posterior longitudinal ligaments: tandem ossification in the cervical and thoracic spine. Spine 33(13), E407-E410.
  • Ouyang, H., Galle, B., Li, J., Nauman, E., & Shi, R. (2008). Biomechanics of spinal cord injury: A multimodal investigation using ex vivo guinea pig spinal cord white matter. Journal of Neurotrauma, 25(1), 19-29.
  • Onishi, E., Sakamoto, A., Murata, S., & Matsushita, M. (2012). Risk factors for acute cervical spinal cord injury associated with ossification of the posterior longitudinal ligament. Spine, 37(8), 660-666.
  • Okayama, T., Murakami, H., Demura, S., Kawahara, N., Tomita, K., & Tsuchiya, H. (2013). A biomechanical study on laminectomy and dekyphosis for thoracic ossification of the posterior longitudinal ligament. Advances in Mechanical Engineering, 2013, 928071.
  • Okada, Y., Ikada, T., Sakamoto, R., Yamada, H., Sakamoto, R., & Katoh, S. (1993). Magnetic resonance imaging study on the results of surgery for cervical compression myelopathy. Spine, 18(14): 2024–2029.
  • Ogino, H., Tada, K., Okada, K., Yonenobu, K., Yamamoto, T., Ono, K., & Namiki, H. (1983). Canal diameter, anteroposterior compression ratio, and spondylotic myelopathy of the cervical spine. Spine, 8(1), 1-15.
  • Ogden, R. W. (1972). Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A, 326(1567), 565-584.
  • Ogawa, Y., Chiba, K., Matsumoto, M., Nakamura, M., Takaishi, H., Hirabayashi, H. Hirabayashi, K., Nishiwaki, Y., & Toyama, Y. (2005). Long-term results after expansive open-door laminoplasty for the segmental-type of ossification of the posterior longitudinal ligament of the cervical spine: a comparison with nonsegmentaltype lesions. Journal of Neurosurgery Spine, 3(3), 198-204.
  • Odate, S., Shikata, J., Yamamura, S., & Soeda, T. (2013). Extremely wide and asymmetric anterior decompression causes postoperative C5 palsy. Spine, 38(25): 2184-2189.
  • Noyes, D. H. (1987). Electromechanical impactor for producing experimental spinal cord injury in animals. Medical & Biological Engineering & Computing, 25(3), 335– 340.
  • Nishida, N., Kato, Y., Imajo, Y., Kawano, S., & Taguchi, T. (2011). Biomechanical study of the spinal cord in thoracic ossification of the posterior longitudinal ligament. Journal of Spinal Cord Medicine, 34(5), 518-522.
  • Nishi, R. A., Liu, H., Chu, Y., Hamamura, M., Su, M. Y., Nalcioglu, O., & Anderson, A.J. (2007). Behavioral, histological, and ex vivo magnetic resonance imaging assessment of graded contusion spinal cord injury in mice. Journal of Neurotrauma, 24(4), 674–689.
  • Ngo, L.M., Aizawa, T., Hoshikawa, T., Tanaka, Y., Sato, T., Ishii, Y., & Kokubun, S. (2012). Fracture and contralateral dislocation of the twin facet joints of the lower cervical spine. European Spine Journal, 21(2): 282-288.
  • Nassr, A., Eck, J.C., Ponnappan, R.K., Zanoun, R.R., Donaldson, W.F 3rd., & Kang, J.D. (2012). The incidence of C5 palsy after multilevel cervical decompression procedures: a review of 750 consecutive cases. Spine, 37(3) 174-178.
  • Muhle, C., Metzner, J., Weinert, D., Falliner, A., Brinkmann, G., Mehdorn, M.H., Heller, M., & Resnick, D. (1998). Classification system based on kinematic MR imaging in cervical spondylitic myelopathy. AJNR American Journal of Neuroradiology, 19(9): 1763-1771.
  • Mizuno, J., & Nakagawa, H. (2006). Ossified posterior longitudinal ligament: management strategies and outcomes. Spine Journal, 6(6), 282S-288S.
  • Miller, J.A., Lubelski, D., Alvin, M.D., Benzel, E.C., & Mroz, T.E. (2014). C5 palsy after posterior decompression and fusion: cost and quality-of-life implications. The Spine Journal, 14(12): 2854-2860.
  • Meves, R., & Avanzi, O. (2006). Correlation among canal compromise, neurologic, deficit, and injury severity in thoracolumbar burst fractures. Spine, 31(18): 2137-2141.
  • Metz, G. A. S., Curt, A., Meent, H. V., Klusman, I., Schwab, M. E., & Dietz, V. (2000). Validation of the weigth-drop contusion model in rats: a comparative study of human spinal cord injury, Journal of Neurotrauma, 14(1), 1-17.
  • Matsunaga, S., Nakamura, K., Seichi, A., Yokoyama, T., Toh, S., Ichimura, S., Satomi, K., Endo, K., Yamamoto, K., Kato, Y., Ito, T., Tokuhashi, Y., Uchida, K., Baba, H., Kawahara, N., Tomita, K., Matsuyama, Y., Ishiguro, N., Iwasaki, M., Yoshikawa, H., Yonenobu, K., Kawakami, M., Yoshida, M., Inoue, S., Tani, T., Kaneko, K., Taguchi, T., Imakiire, T., & Komiya, S. (2008). Radiographic predictors for the development of myelopathy in patients with ossification of the posterior longitudinal ligament. A multicenter cohort study. Spine, 33(24), 2648-2650.
  • Matsunaga, S., & Sakou, T. (2012). Ossification of the posterior longitudinal ligament of the cervical spine. Spine, 37(5), E309-E314.
  • Maruo, K., Moriyama, T., Tachibana, T., Inoue, S., Arizumi, F., Daimon, T., & Yoshiya, S. (2014). The impact of dynamic factors on surgical outcomes after doubledoor laminoplasty for ossification of the posterior longitudinal ligament of the cervical spine. Journal of Neurosurgery: Spine, 21(6), 938-943.
  • Maiman, D.J., Myklebust, J.B., & Ho, K.C. (1989). Coats J. Experimental spinal cord injury produced by axial tension. Journal of Spinal Disorders & Techniques, 2(1): 6– 13.
  • Maikos, J. T., Qian, Z., Metaxas, D., & Shreiber, D. I. (2008). Finite element analysis of spinal cord injury in the rat. Journal of Neurotrauma, 25(7), 795-816.
  • Machino, M., Yukawa, Y., Ito, K., Nakashima, H., & Kato, F. (2011). Dynamic changes in dural sac and spinal cord cross-sectional area in patients with cervical spondylotic myelopathy: cervical spine. Spine, 36(5): 399-403.
  • Lubelski, D., Derakhshan, A., Nowacki, A.S., Wang, J.C., Steinmetz, M.P., Benzel, E.C., & Mroz, T.E. (2014). Predicting C5 palsy via the use to preoperative anatomic measurements. Spine Journal, 14(9): 1895-1901.
  • Lohman, C.M., Gilbert, K.K., Sobczak, S., Brism e, J.M., James, C.R., Day, M., Smith, M.P., Taylor, L., Dugailly, P.M., Pendergrass, T., & Sizer, P.J. (2015). 2015 Young investigator award winner: Cervical nerve root displacement and strain during upper limb neural tension testing: part 1: a minimally invasive assessment in unembalmed cadavers. Spine, 40(11): 793-800.
  • Liu, K., Shi, J., Jia, L., & Yuan W. (2013). Surgical technique: hemilaminectomy and unilateral mass fixation for cervical ossification of the posterior longitudinal ligament. Clinical Orthopaetics Related Research, 471(7), 2219-2224.
  • Li, X. F., & Dai, L. Y. (2009). Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis. Spine, 34(11), 1140- 1147.
  • Li, H., & Dai, L.Y. (2011). A systematic review of complications in cervical spine surgery for ossification of the posterior longitudinal ligament. The Spine Journal, 11(11): 1049-1057.
  • Lee, S. H., Kim, K. T., Suk, K. S., Lee, J. H., Shin, J. H., So, D. H., & Kwack, Y. H. (2010). Asymptomatic cervical cord compression in lumbar spinal stenosis patients: a whole spine magnetic resonance imaging study. Spine, 35(23), 2057-2063.
  • Lee, J., Satkunendrarajah, K., & Fehlings, M. G. (2012). Development and characterization of a novel rat model of cervical spondylotic myelopathy: the impact of chronic cord compression on clinical, neuroanatomical, and neurophysiological outcomes. Journal of Neurotrauma, 29(5), 1012-1027.
  • Lam, C. J., Assinck, P., Liu, J., Tetzlaff, W., & Oxland, T. R. (2014). Impact depth and the interaction with impact speed affect the severity of contusion spinal cord injury in rats. Journal of Neurotrauma, 31(24), 1985-1997.
  • Kwon, B. K., Oxland, T. R., & Tetzlaff, W. (2002). Animal models used in spinal cord regeneration research. Spine, 27(14), 1504-1510.
  • Kundi, S., Bicknell, R., & Ahmed, Z. (2013). Spinal cord injury: current mammalian models. American Journal of Neuroscience, 4(1), 1-12.
  • Kuh, S. U., Kim, Y. S., Cho, Y. E., Jin, B. H., Kim, K. S., Yoon, Y. S., & Chin, D. K. (2006). Contributing factors affecting the prognosis surgical outcome for thoracic OLF. European Spine Journal, 15(4), 485-491.
  • Kreoker, S.G., & Ching, R.P. (2013). Coupling between the spinal cord and cervical column under tensile loading. Journal of Biomechanics 46(4):773-779.
  • Koyanagi, I., Iwasaki, Y., Hida, K., Imamura, H., Fujimoto, S., & Akino, M. (2003). Acute cervical cord injury associated with ossification of the posterior longitudinal ligament. Neurosurgery, 53(4), 887-891.
  • Kong, Q., Zhang, L., Liu, L., Li, T., Gong, Q., Zeng, J., Song, Y., Liu, H., Wang, S., Sun, Y., Zhang, F., Li, M., & Chen, Z. (2011). Effect of the decompressive extent on the magnitude of the spinal cord shift after expansive open-door laminoplasty. Spine, 36(13), 1030-1036.
  • Ko, H.Y., Park, J.H., Shin, Y.B., & Beak, S.Y. (2004). Gross quantitative measurements of spinal cord segments in human. Spinal cord, 42(1): 35–40.
  • Kim, Y. H., Khuyagbaatar, B., & Kim, K. (2013). Biomechanical effects of spinal cord compression due to ossification of posterior longitudinal ligament and ligamentum flavum: A finite element analysis. Medical Engineering & Physics, 35(9), 1266-1271.
  • Kim, S.W., Hai, D.M., Sundaram, S., Kim, Y.C., Park, M.S., Paik, S.H., Kwak, Y.H., & Kim, T.H. (2013). Is cervical lordosis relevant in laminoplasty? Spine, 13(8): 914- 921.
  • Kim, J. H., Tu, T. W., Bayly, P. V., & Song, S. K. (2009). Impact speed does not determine severity of spinal cord injury in mice with fixed impact displacement. Journal of Neurotrauma, 26(8), 1395-1404.
  • Khuyagbaatar, B., Kim, K., Park, W.M., & Kim, Y.H. (2015). Influence of sagittal and axial types of ossification of posterior longitudinal ligament on mechanical stress in cervical spinal cord: A finite element analysis. Clinical Biomechanics, pii: S0268- 0033(15)00225-9.
  • Khuyagbaatar, B., Kim, K., & Kim, Y. H. (2014). Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study. Journal of Biomechanics, 47(11), 2820-2825.
  • Key, C. A. (1838). On paraplegia, depending on disease of the ligaments of the spine. Guy’s Hospital Report, 3, 17-34.
  • Kearney, P. A., Ridella, S. A., Viano, D. C., & Anderson, T. E. (1988). Interaction of contact velocity and cord compression in determining the severity of spinal cord injury. Journal of Neurotrauma, 5(3), 187-208.
  • Katsumi, K., Yamazaki, A., Watanabe, K., Ohashi, M., & Shoji, H. (2013). Analysis of C5 palsy after cervical open-door laminoplasty. Journal of Spinal Disorders & Techniques, 26(4): 177-182.
  • Kato, Y., Kanchiku, T., Imajo, Y., Kimura, K., Ichihara, K., Kawano, S., Hamanaka, D., Yaji, K., & Taguchi, T. (2010). Biomechanical study of the effect of degree of static compression of the spinal cord in ossification of the posterior longitudinal ligament. Journal of Neurosurgery: Spine, 12(3), 301-305.
  • Kato, Y., Iwasaki, M., Fuji, T., Yonenobu, K., & Ochi, T. (1998). Long-term followup of laminectomy for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Journal of Neurosurgery, 89(2), 217-223.
  • Kaneko, K., Hashiguchi, A., Kato, Y., Kojima, T., Imajyo, Y., & Taguchi, T. (2006). Investigation of motor dominant C5 paralysis after laminoplasty from the results of evoked spinal cord responses. Journal of Spinal Disorders & Techniques, 19(5): 358- 361.
  • Kameyama, T., Hashizume, Y., Ando, T., Takahashi, A., Yanagi, T., & Mizuno, J. (1995). Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament. Brain, 118(Pt1): 263-278.
  • Kameyama, T., Hashizume, Y., & Sobue, G. (1996). Morphologic features of the normal human cadaveric spinal cord. Spine, 21(11), 1285-1290.
  • Jones, C. F., Kroeker, S. G., Cripton, P. A., & Hall, R. M. (2008). The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord. Spine, 33(17), E580-588.
  • Ito, K., Yukawa, Y., Machino, M., & Kato, F. (2013). Spinal cord cross-sectional area during flexion and extension in the patients with cervical ossification of posterior longitudinal ligament. European Spine Journal, 22(11), 2564-2568.
  • Imagama, S., Matsuyama, Y., Yukawa, Y., Kawakami, N., Kamiya, M., Kanemura, T., Ishiguro, N., & Nagoya Spine Group. (2010). C5 palsy after cervical laminoplasty: a multicentre study. The Journal of Bone & Joint Surgery (British Volume), 92(3): 393-400.
  • Ichihara, K., Taguchi, T., Shimada, Y., Sakuramoto, I., Kawano, S., & Kawai, S. (2001). Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. Journal of Neurotrauma, 18(3), 361-367.
  • Hung, T. K., Lin, H. S., Bunegin, L., & Albin, M. S. (1982). Mechanical and neurological response of cat spinal cord under static loading. Surgical Neurology, 17(3), 213-217.
  • Houten, J.K. & Cooper, P.R (2003). Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome. Neurosurgery, 52(5): 1081-1087.
  • Holsheimer, J., den Boer, J. A., Struijk, J. J., & Rozeboom, A. R. (1994). MR assessment of the normal position of the spinal cord in the spinal canal. AJNR America Journal of Neuroradiology, 15(5), 951-959.
  • Hirabayashi, S., Yamada, H., Motosuneya, T., Watanabe, Y., Miura, M., Sakai, H., & Matsishita, T. (2012). Comparison of enlargement of the spinal canal after cervical laminoplasty: open-door type and double-door type. European Spine Journal, 19(10), 1690-1694.
  • Henderson, F.C., Geddes, J.F., Vaccora, A.R., Woodard, E., Berry, K.J., & Benzel, E.C. (2005). Stretch-associated injury in cervical spondylotic myelopathy: new concept and review. Neurosurgery, 56(5): 1101-1113.
  • Hatta, Y., Shiraishi, T., Hase, H., Yato, Y., Ueda, S., Mikami, Y., Harada, T., Ikeda, T., & Kubo, T. (2005). Is posterior spinal cord shifting by extensive posterior decompression clinically significant for multisegmental cervical spondylotic myelopathy? Spine, 30(21), 2414-2419.
  • Hall, R. M., Oakland, R. J., Wilcox, R. K., & Barton, D. C. (2006). Spinal cordfragment interactions following burst fracture: an in vitro model. Journal of Neurosurgery: Spine, 5(3), 243-250.
  • Guzman, J.Z., Baird, E.O., Fields, A.C., McAnany, S.J., Qureshi, S.A., Hecht, A.C., & Cho, S.K. (2014). C5 nerve root palsy following decompression of the cervical spine: a systematic evaluation of the literature. The Journal of Bone & Joint Surgery (British Volume) 96-B(7): 950-955
  • Guo, J. J., Luk, K. D., Karppinen, J., Yang, H., & Cheung, K. M. (2010). Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans. Spine, 35(1), 51-56.
  • Gu, Y., Shi, J., Cao, P., Yuan, W., Wu, H., Yang, L., Tian, Y., & Liang, L. (2015). Clinical and imaging predictors of surgical outcomes in multilevel cervical ossification of posterior longitudinal ligament: an analysis of 184 patients. PloS One, 10(9):e0136042.
  • Gu, Y., Cao, P., Gao, R., Tian, Y., Liang, L., Wang, C., Yang, L., & Yuan, W. (2014) Incidence and risk factors of C5 palsy following posterior cervical decompression: a systematic review. PloS One, 9(8): e101933.
  • Gruner, J. A. (1992). A monitored contusion model of spinal cord injury in the rat, Journal of Neurotrauma, 9(2), 123-128
  • Greaves, C. Y., Gadala, M. S., & Oxland, T. R. (2008). A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms. Annals of Biomedical Engineering, 36(3), 396-405.
  • Gray, H., & W. H. Lewis. (2000). Anatomy of the human body, (20th edition), New York: Bartleby.com
  • Goldberg, A. L., & Kershah, S. M. (2010). Advances in imaging of vertebral and spinal cord injury. The Journal of Spinal cord Medicine, 33(2), 105-116.
  • Glaser, J. A., Cure, J. K., Bailey, K. L., & Morrow, D. L. (2001). Cervical cord compression and the Hoffmann sign. Iowa Orthopaedic Journal, 21, 49-52.
  • Ghasemlou, N., Kerr, B. J., & David, S. (2005). Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury. Experimental Neurology, 196(1), 9–17.
  • Galle, B., Ouyang, H., Shi, R., & Nauman, E. (2010). A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. Journal of Biomechics, 43(14), 2839-2843.
  • Galle, B., Ouyang, H., Shi, R., & Nauman, E. (2007). Correlations between tissuelevel stresses and strains and cellular damage within the guinea pig spinal cord white matter. Journal of Biomechanics, 40(13), 3029-3033.
  • Fujiyoshi. T., Yamazaki, M., Okawa, A., Kawabe, J., Hayashi, K., Endo, T., Furuya, T., Koda, M., & Takahashi, K. (2010). Static versus dynamic factors for the development of myelopathy in patients with cervical ossification of the posterior longitudinal ligament. Journal of Clinical Neuroscience. 17(3): 320-324.
  • Fujiyoshi, T., Yamazaki, M., Kawabe, J., Endo, T., Furuya, T., Koda, M., Okawa, A., Takahashi, K., & Konishi H. (2008). A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine, 33(26), E990-E993.
  • Fujiwara, K., Yonenobu, K., Hiroshima, K., Ebara, S., Yamashita, K., & Ono, K. (1988). Morphometry of the cervical spinal cord and its relation to pathology in cases with compression myelopathy. Spine,13(11), 1212-1216
  • Fujimori, T., Iwasaki, M., Okuda, S., Takenaka, S., Kashii, M., Kaito, T., & Yoshikawa, H. (2014). Long-term results of cervical myelopathy due to ossification of the posterior longitudinal ligament with an occupying ratio of 60% or more. Spine, 39(2), 58-67.
  • Flynn, J. R., & Bolton, P. S. (2007). Measurement of the vertebral canal dimensions of the neck of the rat with a comparison to the human. The Anatomical Record, 290(7), 893-899.
  • Fiford, R.J., Bilston, L.E., Waite, P., & Lu, J. (2004). A vertebral dislocation model of spinal cord injury in rats. Journal of Neurotrauma, 21(4): 451-458.
  • Fehlings, M. G., & Skaf, G. A. (1998). A review of the pathophysiology of cervical spondylotic myelopathy with insights for potential novel mechanisms drawn from traumatic spinal cord injury. Spine, 23(24), 2730-2737.
  • Evans-Martin, F. Fay. (2010). The nervous system, New York: Infobase Publishing.
  • Eskander, M.S., Balsis, S.M., Balinger, C., Howard, C.M., Lewing, N.W., Eskander, J.P., Aubin, M.E., Lange, J., Eck, J., Connolly, P.J., & Jenis, L.G. (2012). The association between preoperative spinal cord rotation and postoperative C5 nerve palsy. The Journal of Bone And Joint (American Volume) 94(17): 1605-1609.
  • Epstein, N.E., & Hollingsworth, R. (2015). C5 nerve root palsies following cervical spine surgery: a review. Surgical Neurology International, 6(Suppl 4): S154-163.
  • Epstein, N. E. (2003). Laminectomy for cervical myelopathy. Spinal cord, 41(6), 317- 327.
  • Ehara, S., Shimamura, T., Nakamura, R., & Yamazaki, K. (1998). Paravertebral ligamentous ossification: DISH, OPLL and OLF. European Journal of Radiology, 27(3), 196-205. Matsunaga, S., Nakamura, K., Seichi, A., Yokoyama, T., Toh, S., Ichimura, S., Satomi, K., Endo, K., Yamamoto, K., Kato, Y., Ito, T., Tokuhashi, Y., Uchida, K., Baba, H., Kawahara, N., Tomita, K., Matsuyama, Y., Ishiguro, N., Iwasaki, M., Yoshikawa, H., Yonenobu, K., Kawakami, M., Yoshida, M., Inoue, S., Tani, T., Kaneko, K., Taguchi, T., Imakiire, T., & Komiya, S. (2008). Radiographic predictors for the development of myelopathy in patients with ossification of the posterior longitudinal ligament. A multicenter cohort study. Spine, 33(24), 2648-2650.
  • Dunham, K.A., Siriphorn, A., Chompoopong, S., & Floyd, C.L. (2010). Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rates. Journal of Neurotrauma, 27(11), 2091-2106.
  • Dumont, R.J., Okonkwo, D.O., Verma, S., Hurlbert, R.J., Boulos, P.T., Ellegala, D.B., & Dumont, A.S. (2001). Acute spinal cord injury, part I: pathophysiologic mechanisms. Clinical Neuropharmacology, 24(5):254–64.
  • Dumont, R. J., Okonkwo D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., & Dumont, A. S. (2001). Acute spinal cord injury, part 1: Pathophysiologic mechanism. Clinical Neuropharmacology, 24(5), 254-264.
  • Denis, F. (1983). The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine, 8(8), 817-831.
  • Dai, L., Ni, B., Yuan, W., & Jia, L. (1998). Radiculopathy after laminectomy for cervical compression myelopathy. The Journal of Bone & Joint Surgery (British Volume), 80(5): 846-849.
  • Constantini, S., & Young, W. (1994). The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. Journal of Neurosurgery, 80(1), 97– 111.
  • Clark, E.C., Choo, A.M., Liu, J., Lam, C.K., Bilston, L.E., Tetzlaff, W., & Oxland, T.R. (2008). Anterior fracture-dislocation is more severe than lateral: A biomechanical and neuropathological comparison in rat thoracolumbar spine. Journal of Neurotrauma, 25(4): 371-83.
  • Choo, A.M., Liu, J., Lam, C.K., Dvorak, M., & Tetzlaff W, Oxland, T.R. (2007). Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. Journal of NeuroSurgery. Spine, 6(3): 255–66.
  • Choo, A. M., Liu, J., Liu, Z., Dvorak, M., Tetzlaff, W., & Oxland, T. R. (2009). Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of ranvier deformations. Journal of Neuroscience Methods, 181(1), 6–17.
  • Chiba, K., Toyama, Y., Watanabe, N., Maruiwa, H., Matsumoto, M., & Hirabayashi, K. (2010). Impact of longitudinal distance of the cervical spine on the results of expansive open-door lamioplasty. Spine. 25(22):2893-2898.
  • Chiba, K., Ogawa, Y., Ishii, K., Takaishi, H., Nakamura, M., Maruiwa, H., Matsumoto, M., & Toyama Y. (2006). Long-term results of expansive open-door laminoplasty for cervical myelopathy: average 14-year follow-up. Spine, 31(26), 2998-3005.
  • Chen, Y., Liu, X., Chen, D., Wang, X., Yuan, W. (2012) Surgical strategy for ossification of the posterior longitudinal ligament in the cervical spine. Orthopedics, 35(8), e1231-1237.
  • Chen, Y., Guo, Y., Chen, D., Wang, X., Lu, X., & Yuan, W. (2009). Long-term outcome of laminectomy and instrumented fusion for cervical ossification of the posterior longitudinal ligament. International Orthopaedics, 33(5):1075-1080.
  • Chen, Y., Chen, D., Wang, X., Guo, Y., & He, Z. (2007). C5 palsy after laminectomy and posterior cervical fixation for ossification of posterior longitudinal ligament. Journal of Spinal Disorders & Techniques 2007; 20(7): 533-535.
  • Chen, J., Guo, Y., Lu, X., Chen, D., Song, D., Shi, J., &Yuan, W. (2011). Surgical strategy for multilevel severe ossification of posterior longitudinal ligament in the cervical spine. Journal of Spinal Disorders & Techniques, 24(1), 24-30.
  • Ceylan, D., Tatarli, N., Abdullaev, T., Seker, A., Yildiz, S. D., Keles, E., Konya, D., Bayri, Y., Kilic, T., & Cavdar, S. (2012). The denticulate ligament: anatomical properties, functional and clinical significance. Acta Neurochirurgica, 154(7), 1229- 34.
  • Cao, Q., Zhang, Y.P., Iannotti, C., DeVries, W.H., Xu, X.M., Shields, C.B., & Whittemore, S.R. (2005). Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rats. Experimental Neurology. Supp 1, S3-S16.
  • Cadotte, D. W., & Fehlings M. G. (2011). Spinal cord injury: a systematic review of current treatment options. Clinical Orthopaedics and Related Research, 469(3), 732- 741.
  • Brydon, H. L., Hayward, R., Harkness, W., & Bayston, R. (1995). Physical properties of cerebrospinal fluid of relevance to shunt function 1: the effect of protein upon CSF viscosity. British Journal of Neurosurgery, 9(5), 639-644.
  • Bono, C.M., Vaccaro, A.R., Fehlings, M., Fisher, C., Dvarok, M., Ludwig, S., & Harrop. J. (2006). Measurement technique for lower cervical spine injuries: consensus statement of the spine trauma study group. Spine, 31(5), 603-609.
  • Bloomfield, I. G., Johnston, I. H., & Bilston, L. E. (1998). Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatric Neurosurgery, 28(6), 246-251.
  • Basso, D. M., Beattie, M. S., & Bresnahan, J. C. (1996). Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Experimental Neurology, 139(2), 244– 256.
  • Bain, A. C., & Meaney, D. F. (2000). Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. Journal of Biomechanical Engineering, 122(6), 615–622.
  • Azuma, Y., Kato, Y., & Taguchi, T. (2010). Etiology of cervical myelopathy induced by ossification of the posterior longitudinal ligament: determining the responsible level of OPLL myelopathy by correlating static compression and dynamic factors. Journal of Spinal Disorders & Techniques, 23(3), 166-169.
  • Anderson, T. E. (1985). Spinal cord contusion injury: experimental dissociation of hemorrhagic necrosis and subacute loss of axonal conduction. Journal of Neurosurgery 62(1), 115-119
  • Anderson, K.D., Sharp, K.G., & Steward, O. (2009). Bilateral cervical contusion spinal cord injury in rats. Experimental Neurology. 220(1), 9-22.
  • An, H. S., Al-Shihab, L., & Kurd, M. (2014). Surgical treatment of ossification of the posterior longitudinal ligament in the cervical spine. Journal of American Academy of Orthopaedic Surgeon, 22(7), pp. 420-429.
  • Alleyne, C.H Jr., Cawley, C.M., Barrow, D.L., & Bonner, G.D. (1998). Microsurgical anatomy of the dorsal cervical nerve roots and the cervical dorsal root ganglion/ventral root complexes. Surgical Neurology, 50(3): 213-218.
  • Aita, I., Hayashi, K., Wadano, Y., & Yabuki, T. (1998). Posterior movement and enlargement of the spinal cord after cervical laminoplasty. The Journal of Bone & Joint Surgery (British Volume), 80(1), 33-37.
  • Aebli, N., Ruegg, T.B., Wicki, A.G., Petrou, N., & Krebs, J. (2013). Predicting the risk and severity of acute spinal cord injury after a minor trauma to the cervical spine. The Spine Journal, 13(6): 597-604.
  • Aarabi, B., Walters, B.C., Dhall, S.S., Gelb, D.E., Hurlbert, R.J., Rozzelle, C.J., Ryken, T.C., Theodore, N., & Hadley, M.N. Subaxial cervical spine injury classification systems. (2013) Neurosurgery, 72(Suppl 2): 170-186.