박사

The Influence of Wake-Wake Interaction on Unsteady Aerodynamic Performance of Floating Offshore Wind Turbine = 부유식 해상 풍력 터빈의 비정상 공력 성능에 대한 후류-후류 상호 작용의 영향

논문상세정보
' The Influence of Wake-Wake Interaction on Unsteady Aerodynamic Performance of Floating Offshore Wind Turbine = 부유식 해상 풍력 터빈의 비정상 공력 성능에 대한 후류-후류 상호 작용의 영향' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Blade-tower interaction
  • Blade-wake interaction
  • DFBI
  • Dynamic Fluid Body Interaction
  • cfd
  • floatingoffshorewindturbine
  • fluidstructureinteraction
  • fsi
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
776 0

0.0%

' The Influence of Wake-Wake Interaction on Unsteady Aerodynamic Performance of Floating Offshore Wind Turbine = 부유식 해상 풍력 터빈의 비정상 공력 성능에 대한 후류-후류 상호 작용의 영향' 의 참고문헌

  • ye S, 1991. Dynamic stall simulated as a time lag of separation, in K. F. McAnulty (ed) Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines, ETSU-N-118, Harwell Laboratory, Harwell, UK.
  • Zhang D, Paterson E, 2015. System-Level Simulation of Floating Platform and Wind Turbine Using High-Fidelity and Engineering Models. North American Wind Energy Academy Symposium, Virginia Tech, Blacksburg, Virginia, USA.
  • Zhang D, Paterson E, 2015. A study of wave forces on an offshore platform by direct CFD and Morison equation. E3S Web of Conferences, Vol. 5: 04002. DOI:10.1051/e3sconf/20150504002
  • Zarmehri A, 2012. Aerodynamic Analysis of Wind Turbine. Master's thesis, Department of Applied Mechanics, Chalmers University of Technology, Sweden.
  • Zamora-Rodriguez R, Gomez-Alonso P, Amate-Lopez J, De-Diego-Martin V, Dinoi P, Simos A N, Souto-Iglesias A, 2014. Model Scale Analysis of a TLP Floating Offshore Wind Turbine. ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA. Paper No. OMAE2014-24089. DOI:10.1115/OMAE2014-24089
  • Wind & Water Power Technologies Newsletter June/ July 2015. http://content.govdelivery.com/accounts/USDOESNLEC/bulletins/108ea6f
  • Wilson JM, Davis CJ, Venayagamoorthy SK, Heyliger PR, 2015. Comparisons of Horizontal-Axis Wind Turbine Wake Interaction Models. J. Sol. Energy Eng. Vol. 137(3): 031001. DOI:10.1115/1.4028914.
  • Wayman E, 2006. Coupled dynamics and economic analysis of floating wind turbine systems. PhD Thesis, Massachusetts Institute of Technology.
  • Viselli AM, Goupee AJ, Dagher HJ, 2015. Model Test of a 1:8-Scale Floating Wind Turbine Offshore in the Gulf of Maine. ASME Journal of Offshore Mechanics and Arctic Engineering, Vol. 137(4): 041901. Paper No: OMAE-14- 1051. DOI: 10.1115/1.4030381.
  • Vermeera LJ, S rensenb JN, Crespoc A, 2003. Wind turbine wake aerodynamics. Progress in Aerospace Sciences, Vol. 39(6–7): 467–510. DOI: 10.1016/S0376- 0421(03)00078-2
  • Vandemark D, Chapron B, Elfouhaily T, Campbell JW, 2005. Impact of highfrequency waves on the ocean altimeter range bias. Journal of Geophysical Research, Vol. 110: C11006. DOI: 10.1029/2005JC002979.
  • Vaal JB, Hansen MOL, Moan T, 2014. Effect of wind turbine surge motion on rotor thrust and induced velocity. Wind Energy, Vol. 17(1): 105-121. DOI: 10.1002/we.1562
  • User manual, STAR-CCM+ Ver.9.06, CD-Adapco, 2014.
  • UMassAmherst. Early Offshore Wind Research. URL http://www.umass.edu/windenergy/about.history.earlyresearch.php.
  • Transportation Research Board, 2011. Structural Integrity Offshore Wind Turbines Oversight of Design Fabrication and Installation: Oversight of Design, Fabrication, and Installation. Special Report 305, Washington, D.C.
  • Thiagarajan KP, Dagher HJ, 2014. A Review of Floating Platform Concepts for Offshore Wind Energy Generation. Journal of Offshore Mechanics and Arctic Engineering, Vol. 136(2): 020903. Paper No: OMAE-13-1010. DOI: 10.1115/1.4026607
  • Tezdogan T, 2015. Potential Flow and CFD-Based Hydrodynamic Analyses of Mono- and Multi-Hull Vessels. PhD thesis, University of Strathclyde, Glasgow, UK.
  • Snel H, Houwink R, Bosschers J, 1994. Sectional prediction of lift coefficients on rotating wind turbine blades in stall. ECN-C--93-052, Petten.
  • Skaare B, Hanson TD, Nielsen FG, Yttervik R, Hansen AM, Thomesn K, Larsen TJ, 2007. Integrated Dynamic Analysis of Floating Offshore Wind Turbines. European Wind Energy Conference and Exhibition, Milan, Italy.
  • Sivalingam K, Narasimalu S, 2015. Floating Offshore Wind Turbine Rotor Operating State - Modified Tip Loss Factor in BEM and Comparison with CFD. International Journal of Technical Research and Applications, Vol. 3(5): 179-189.
  • Sivalingam K, Bahuguni A, Gullman-Strand J, Davies P, NGUYEN VT, 2015. Effects of Platform Pitching Motion on Floating Offshore Wind Turbine (FOWT) Rotor. Offshore Technology Conference, Houston, Texas, USA. Paper ID: OTC- 25962-MS. DOI:10.4043/25962-MS
  • Shim S, 2007. Coupled dynamic analysis of floating offshore wind farms. Master’s thesis, Texas A & M University, U.S.A.
  • Shan T, Yang J, Li X, Xiao L, 2011. Experimental investigation on wave run-up characteristics along columns and air gap response of semi-submersible platform. Journal of Hydrodynamics, Ser. B, Vol. 23 (5): 625-636. DOI: 10.1016/S1001- 6058(10)60158-8.
  • Sebastian T, Lackner MA, 2012. Development of a free vortex wake method code for offshore floating wind turbines. Renewable Energy, Vol. 46: 269-275. DOI: 10.1016/j.renene.2012.03.033.
  • Sebastian T, Lackner MA, 2012. Characterization of the Unsteady Aerodynamics of Offshore Floating Wind Turbines. Wind Energy, Vol. 16(3): 339-352. DOI: 10.1002/we.545.
  • Sebastian T, Lackner MA, 2012. Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine. Energies: Special Issue on Wind Energy 2012, Vol. 5(4): 968-1000. DOI: 10.3390/en5040968.
  • Sebastian T, 2012. The aerodynamic and near wake of an offshore floating horizontal axis wind turbine. Ph.D. thesis, University of Massachusetts, Amherst, MA, USA.
  • Schlipf D, Sandner F, Raach S, Matha D, Cheng PW, 2013. Nonlinear Model Predictive Control of Floating Wind Turbines. Proceedings of the Twenty-third International Offshore and Polar Engineering, Anchorage, Alaska, USA.
  • Schepers JG, Snel H, 1995. Dynamic inflow: Yawed conditions and partial span pitch control. ECN-C- 95-056, Petten, The Netherlands.
  • Sarun B, 2006. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models. Doctor of Philosophy in the School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • SIMPACK News Edition July 2013, Accessed on 22 May 2014: http://www.simpack.com/fileadmin/simpack/doc/newsletter/2013/Jul_2013/SN- 2013-Jul_all_full-issue_Spreads_HQ150dpi.pdf
  • Roddier D, Cermelli C, Aubault A, Weinstein A, 2010. WindFloat: A floating foundation for offshore wind turbines. Journal of Renewable and Sustainable Energy, Vol. 2(3): 33104. DOI: 10.1063/1.3435339.
  • Roddier D, Carmelli C, Weinstin A, 2009. A Floating Foundation for Offshore Wind Turbines, Part I: Design Basis and Qualification Process. ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA. Paper No. OMAE2009-79229. DOI: 10.1115/OMAE2009-79229.
  • Rockel S, Camp E, Schmidt J, Peinke J, Cal RB, H lling M, 2014. Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model. Energies, Vol. 7(4): 1954-1985. DOI: 10.3390/en7041954
  • Robertson A, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, Luan C, 2014. Definition of the Semisubmersible Floating System for Phase II of OC4. NREL/TP-5000-60601, National Renewable Energy Laboratory, Golden, CO, USA.
  • Reiso M, 2013. The Tower Shadow Effect in Downwind Wind Turbines, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim.
  • Ramirez J, Frigaard P, Andersen TL, Christensen DE, 2011. Numerical Modeling of Wave Run-Up: Regular Waves. Proceedings of the Twenty-first International Offshore and Polar Engineering, Maui, Hawaii, USA.
  • Quallen S, Xing T, Carrica P, Li Y, Xu J, 2014. CFD Simulation of a Floating Offshore Wind Turbine System Using a Quasi-Static Crowfoot Mooring-Line Model. Journal of Ocean and Wind Energy, Vol. 1(3): 143-152.
  • Powles SJR, 1983. The Effects of Tower Shadow on the Dynamics of Horizontal Axis Wind Turbines. Wind Engineering, Vol. 7(1): 26-42.
  • Pirzadeh SZ, 1999. An Adaptive Unstructured Grid Method by Subdivision, Local Remeshing, and Grid Movement. 14TH Computational Fluid Dynamics Conference, Norfolk, VA, USA. AIAA Paper 99-3255. DOI: 10.2514/6.1999-3255
  • Ping C, Wan D, 2015. Hydrodynamic Analysis of the Semi-Submersible Floating Wind System for Phase II of OC4. The Twenty-fifth International Offshore and Polar Engineering Conference, Kona, Hawaii, USA.
  • Pierce KG, 1996. Wind Turbine Load Prediction Using the Beddoes-Leishman Model for Unsteady Aerodynamics and Dynamic Stall. Salt Lake City: Department of Mechanical Engineering, University of Utah.
  • Peters D, Chen S, 1982. Momentum theory, dynamic inflow, and the vortex-ring state. Journal of the American Helicopter Society, Vol. 27(3): 18-24. DOI: 10.4050/JAHS.27.18
  • Perez LR, 2014. Design, Testing and Validation of A Scale Model Semisubmersible Offshore Wind Turbine under Regular/Irregular Waves and Wind Loads. Master thesis, University of Strathclyde, Glasgow, UK.
  • Pereira R, Schepers G, Pavel MD, 2013. Validation of the Beddoes–Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data. Wind Energy, Vol. 16(2): 207–219. doi: 10.1002/we.541
  • Nur-E-Mostafa Md, 2012. A study on dynamic response of spar-type floating wind turbine in waves using 3-D green function method considering rotation of windmill blades. Ph.D. thesis, Yokohama National University, Japan
  • Naqvi SK, 2012. Scale Model Experiments on Floating Offshore Wind Turbines. Master thesis, Worcester Polytechnic Institute, Worcester, MA 01609, United States.
  • Muzaferija S, Peric M, 1999. Computation of free surface flows using interfacetracking and interface-capturing methods. Chap. 2 in O. Mahrenholtz and M. Markiewicz (eds.), Nonlinear Water Wave Interaction, Computational Mechanics Publications, WIT Press, Southampton.
  • Mostafa N, Murai M, Nishimura R, Fujita O, Nihei Y, 2012. Study of motion of spar-type floating wind turbines in waves with effect of gyro moment at inclination. Journal of Naval Architecture and Marine Engineering, Vol. 9(1): 67-79. DOI: 10.3329/jname.v9i1.10732.
  • Moriarty PJ, Hansen CA, 2005. AeroDyn Theory Manual. Tech. Rep. NREL/EL- 500-36881, National Renewable Energy Laboratory, Golden, CO.
  • Minnema JE, 1998. Pitching Moment Predictions on Wind Turbine Blades Using the Beddoes-Leishman Model for Unsteady Aerodynamics and Dynamic Stall. Salt Lake City: Department of Mechanical Engineering, University of Utah.
  • Micallef D, Sant T, 2015. Loading effects on floating offshore horizontal axis wind turbines in surge motion. Renewable Energy, Vol. 83:737-748. DOI:10.1016/j.renene.2015.05.016
  • Menter FR, 1994. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, Vol. 32(8): 1598-1605. DOI: 10.2514/3.12149
  • Meng F, Masarati P, van Tooren M, 2009. Free/Open Source Multibody and Aerodynamic Software for Aeroelastic Analysis of Wind Turbines. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA. AIAA-2009-1040. DOI: 10.2514/6.2009-1040
  • Matha D, Nygaard TA, 2014. Discussion, Journal of Ocean and Wind Energy, Vol. 1(3): 185-188.
  • Matha D, Cordle A, Jonkman J, Pereira R, Schlipf M, 2011. Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines. The 21st Offshore and Polar Engineering Conference, Maui, Hawaii, USA.
  • Masciola M, Robertson A, Jonkman J, Coulling A, Goupee A, 2013. Assessment of the Importance of Mooring Dynamics on the Global Response of the DeepCWind Floating Semisubmersible Offshore Wind Turbine. Proceedings of the Twentythird International Offshore and Polar Engineering, Anchorage, Alaska, USA.
  • Martin HR, 2011. Development of a scale model wind turbine for testing of offshore floating wind turbine systems. M.S. Thesis, University of Maine, Orono, ME, USA.
  • Martin H, 2011. Development of a scale model wind turbine for testing of offshore floating wind turbine systems. Master’s thesis. University of Maine, USA.
  • Maine International Consulting LLC report, 2013. Floating Offshore Wind Foundations: Industry Consortia and Projects in the United States, Europe and Japan.
  • Madsen HA, Riziotis V, Zahle F, Hansen MOL, Snel H, Grasso F, Larsen TJ, Politis E, Rasmussen F, 2012. Blade element momentum modeling of inflow with shear in comparison with advanced model results. Wind Energy, Vol. 15(1), 63–81. DOI: 10.1002/we.493
  • M rch HJ, Enger S, Peric M, Schreck E, 2008. Simulation of lifeboat launching under storm conditions. 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, SINTEF/NTNU, Trondheim, Norway.
  • Luo N, Pacheco L, Vidal Y, Li H., 2012. Smart Structural Control Strategies for Offshore Wind Power Generation with Floating Wind Turbines. International Conference on Renewable Energies and Power Quality, Santiago de Compostela, Spain.
  • Luan C, Gao Z, Moan T, 2013. Modelling and Analysis of a Semi-Submersible Wind Turbine with a Central Tower with Emphasis on the Brace System, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE2013), Nantes, France. Paper No. OMAE2013- 10408. DOI:10.1115/OMAE2013-10408
  • Liu C, Hu C, 2014. CFD Simulation of a Floating Wind Turbine Platform in Rough Sea Conditions. Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea.
  • Lindenburg C, 2004. Modeling of rotational augmentation based on engineering considerations and measurements, European Wind Energy Conference, London.
  • Li Y, Castro AM, Sinokrot T, Prescott W, Carrica PM, 2015. Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence. Renewable Energy, Vol. 76: 338-361. DOI:10.1016/j.renene.2014.11.014
  • Leonard B, 1997. Bounded higher-order upwind multidimensional finite volume convection-diffusion algorithms. Advances in Numerical Heat Transfer, chap 1:1– 57.
  • Leishman J, 2006. Principles of Helicopter Aerodynamics, Cambridge University Press, chap. 9.
  • Lee C, Newman J, Kim M, Yue D, 1991. The computation of second-order wave loads. In: Proceedings of the 10th International Conference on Offshore Mechanics and Arctic Engineering, Vol. 1(A): 113, Stavanger, Norway.
  • Lassig J, Colman J, 2012. Wind Turbines Aerodynamics, Applied Aerodynamics, Dr. Jorge Colman Lerner (Ed.), ISBN: 978-953-51-0611-1, InTech, DOI: 10.5772/38874. Available from: http://www.intechopen.com/books/appliedaerodynamics/ wind-turbines-aerodynamics
  • Laino DJ. Craig Hansen A, 2002. AeroDyn user guide, Version 12.50. Windward Engineering.
  • Koo BJ, Goupee AJ, Kimball RW, Lambrakos KF, 2012. Model Tests for a Floating Wind Turbine on Three Different Floaters. ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil. Paper No. OMAE2012-83642. DOI:10.1115/OMAE2012-83642
  • Kim MH, Yue DKP, 1991. Sum- and Difference-Frequency Wave Loads on a Body in Unidirectional Gaussian Seas. Journal of Ship Research Vol. 35: 127-140.
  • Khosravi M, Sarkar P, Hu H, 2015. An Experimental Investigation on the Performance and the Wake Characteristics of a Wind Turbine Subjected to Surge Motion. AIAA SciTech 2015, 33rd Wind Energy Symposium, Kissimmee, Florida. AIAA 2015-1207. DOI: 10.2514/6.2015-1207
  • Karimirad M, Moan T, 2012. A simplified method for coupled analysis of floating offshore wind turbines. Marine Structures, Vol. 27(1): 45-63. DOI: 10.1016/j.marstruc.2012.03.003
  • Jonkman JM, Robertson AN, Hayman GJ, 2014. HydroDyn User’s Guide and Theory Manual, NREL. Available online. Assessed on Dec 2014: https://nwtc.nrel.gov/system/files/HydroDyn_Manual_0.pdf.
  • Jonkman JM, Butterfield S, Musial W, Scott G, 2009. Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO.
  • Jonkman JM, Buhl MLJr, 2007. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation. WINDPOWER 2007 Conference and Exhibition, Los Angeles, California [CD-ROM], Washington, D.C.: American Wind Energy Association, NREL/CP-500-41714, Golden, CO: National Renewable Energy Laboratory.
  • Jonkman JM, 2009. Dynamics of Offshore Floating Wind Turbines-Model Development and Verification. Wind Energy, Vol. 12: 459-492. DOI: 10.1002/we.347.
  • Jonkman JM, 2008. Influence of Control on the Pitch Damping of a Floating Wind Turbine, Presented at the 2008 ASME Wind Energy Symposium, Reno, Nevada, USA.
  • Jeon M, Lee SM, Lee SG, 2014. Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method. Renewable Energy, Vol. 65: 207–212. DOI:10.1016/j.renene.2013.09.009
  • International Standard IEC 61400-1. Wind turbines, part 1: design requirements.
  • Huijs F, Ridder EJ, Savenije F, 2014. Concept design verification of a semisubmersible floating wind turbine using coupled simulations. Energy Procedia. Vol. 53: 2 – 12. DOI:10.1016/j.egypro.2014.07.210
  • Huijs F, Ridder EJ, Savenije F, 2014. Comparison of Model Tests and Coupled Simulations For A Semi-Submersible Floating Wind Turbine. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA. Paper No. OMAE2014-23217. DOI:10.1115/OMAE2014-23217
  • Hu C, Sueyoshi M, Liu C, Liu Y, 2014. Hydrodynamic Analysis of a Semi- Submersible-Type Floating Wind Turbine. Journal of Ocean and Wind Energy, Vol. 1(4): 202-208.
  • Hochkirch K, Mallol B, 2013. On the Importance of Full-Scale CFD Simulations for Ships. The 12th International Conference on Computer Applications and Information Technology in the Maritime Industries (COMPIT 2013), Cortona, Italy.
  • Hansen MOL, 2000. Aerodynamics of wind turbines. James and James Ltd: Science Publishers.
  • Hadzic H, 2005. Development and Application of Finite Volume Method for the Computation of Flows around Moving Bodies on Unstructured, Overlapping Grids. PhD Thesis, Technical University Hamburg-Harburg.
  • Haans W, Santy T, 2006. Stall in Yawed Flow Conditions: a Correlation of blade element momentum predictions with experiments. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA. AIAA 2006-200. DOI: 10.2514/6.2006- 200
  • Guideline for the Certification of Wind Turbines, Edition 2010, published by Germanischer Lloyd, Hamburg.
  • Gueydon S, Weller S, 2013. Study of a Floating Foundation for Wind Turbines. Journal of Offshore Mechanics and Arctic Engineering, Vol. 125 (3): 031903. Paper No: OMAE-12-1103. DOI: 10.1115/1.4024271
  • Goupee AJ, Koo BJ, Kimball RW, Lambrakos KF, 2014. Experimental Comparison of Three Floating Wind Turbine Concepts. ASME Journal of Offshore Mechanics and Arctic Engineering, Vol. 136(2): 020906. 83645. Paper No: OMAE-13-1003. DOI: 10.1115/OMAE2012-
  • Gomez A, Seume JR, 2009. Aerodynamic Coupling of Rotor and Tower in HAWTs, Proceedings of European Wind Energy Conference (EWEC), Marseille, France.
  • Global Wind Energy Council report, 2014. Global wind report annual market update 2014. Last accessed on Dec, 2015: http://www.gwec.net/wpcontent/ uploads/2015/03/GWEC_Global_Wind_2014_Report_LR.pdf
  • Forristall GZ, 1981. Measurements of a Saturated Range in Ocean Wave Spectra. Journal of Geophysical Research, Vol. 86(C9): 8075-8084. DOI: 10.1029/JC086iC09p08075
  • Ferziger JH, Peric M, 2002. Computational Methods for Fluid Dynamics. 3rd rev. ed., Springer-Verlag, Berlin, Germany.
  • Farrugia R, Sant T, Micallef D, 2016. A study on the aerodynamics of a floating wind turbine rotor. Renewable Energy Vol. 86:770-784. DOI:10.1016/j.renene.2015.08.063
  • Farrugia R, Sant T, Micallef D, 2014. Investigating the aerodynamic performance of a model offshore floating wind turbine. Renewable Energy, Vol. 70: 24-30. doi:10.1016/j.renene.2013.12.043
  • Faltinsen OM, 1998. Sea Loads on Ships and Offshore Structures. Cambridge University Press, UK.
  • European Wind Energy Association report. The European offshore wind industry - key trends and statistics 1st half 2013. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_Offshor eStats_July2013.pdf, July 2013.
  • European Wind Energy Association report, 2015. The European offshore wind industry - key trends and statistics 1st half 2015. Last accessed on Dec, 2015: http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEAEuropean- Offshore-Statistics-H1-2015.pdf.
  • Eliassen L, 2015. Aerodynamic loads on a wind turbine rotor in axial motion. PhD thesis, University of Stavanger, N-4036 Stavanger, NORWAY
  • Dunbar AJ, Craven AB, Paterson EG, Brasseur JG, 2015. Application of a Tightly- Coupled CFD/6-DOF Solver for Simulating Offshore Wind Turbine Platforms. 2nd Symposium on OpenFoam in Wind Energy, Boulder, Colorado, USA.
  • Donnelly DJ, Neu WL, 2011. Numerical Simulation of Flow About a Surface- Effect Ship. 11th International Conference on Fast Sea Transportation, FAST 2011, Honolulu, Hawaii, USA.
  • Diaconu S, 2013. Wave Run-Up Simulations and Comparison with Experimental Data on a Semisubmersible. Mechanical Testing and Diagnosis, Vol. 1: 32-37.
  • Det Norske Veritas (DNV), 2010. DNV-RP-C205: Environmental Conditions and Environmental Loads. DNV, H vik, Norway.
  • Demirdzic I, Muzaferija S, 1995. Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Computer Methods in Applied Mechanics and Engineering, Vol. 125(1-4): 235-255. doi:10.1016/0045-7825(95)00800-G
  • Demirdzic I, Lilek Z, Peric M, 1993. A collocated finite volume method for predicting flows at all speeds. Int. J. for Numerical Methods in Fluids, Vol. 16: 1029-1050. DOI: 10.1002/fld.1650161202
  • Davis D, Hansen A, 2002. Operation and Load Measurements during Extreme Wind Events for a Southwest Windpower Whisper h40. Windpower 2002, American Wind Energy Association.
  • Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM, Dagher DJ, 2013. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. J. Renewable Sustainable Energy, Vol. 5: 023116. DOI: 10.1063/1.4796197
  • Cordle A, Jonkman J, 2011. State-of-the-art in design tools for floating offshore wind turbines. NREL/CP-5000-50543.
  • Corbus D, Hansen A, Minnema J, 2006. Effect of Blade Torsion Effects on Modeling Results for the Small Wind Research Turbine (swrt). The 44th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reno, Nevada, USA. DOI: 10.2514/6.2006-787
  • Christensen DE, Bredmose H, Hansen AE, 2005. Extreme wave forces and wave run-up on offshore wind turbine foundations. Copenhagen Offshore Wind, Hellerup, Denmark.
  • Chen CH, Yu K, 2008. CFD simulations of wave–current-body interactions including green water and wet deck slamming. Computers & Fluids, Vol. 38(5): 970-980. DOI:10.1016/j.compfluid.2008.01.026
  • Chaney E, Eggers A, Moriarty P, Holley W, 2001. Skewed Wake Induction Effects on Thrust Distribution on Small Wind Turbine Design. ASME Journal Solar Energy Engineering, Vol. 123 (4): 290-295. DOI:10.1115/1.1410109
  • Calderer A, Guo X, Shen L, Sotiropoulos F, 2014. Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: A large eddy simulation approach. Journal of Physics: Conference Series, Vol. 524 (1), art. no. 012091.
  • Butterfield S, Musial W, Jonkman J, Sclavounos P, 2007. Engineering Challenges for Floating Offshore Wind Turbines. National Renewable Energy Laboratory, Golden CO, Technical Report No. NREL/CP-500-38776.
  • Bruijn R, Huijs F, Bunnik T, Huijsmans R, Gerritsma M, 2011. Calculation Of Wave Forces And Internal Loads On A Semi-Submersible At Shallow Draft Using An Ivof Method. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011), Rotterdam, the Netherlands. Paper No. OMAE2011-49236. DOI:10.1115/OMAE2011-49236
  • Bredmose H, Mikkelsen RF, Hansen AM, Laugesen R, Heilskov N, Jensen B, Kirkegaard J, 2015. Experimental study of the DTU 10 MW wind turbine on a TLP floater in waves and wind. European Wind Energy Association (EWEA). [Sound/Visual production (digital)]. EWEA Offshore 2015 Conference, Copenhagen, Denmark.
  • Blom FJ, 2000. Considerations on the Spring Analogy. International Journal for Numerical Methods in Fluids, Vol. 32(6): 647-668. DOI: 10.1002/(SICI)1097- 0363(20000330)32:6<647::AID-FLD979>3.0.CO;2-K
  • Beyer F, Arnold M, Cheng PW, 2013. Analysis of Floating Offshore Wind Turbine Hydrodynamics Using coupled CFD and Multibody Methods. Proceedings of the Twenty-third International Offshore and Polar Engineering, Anchorage, Alaska, USA.
  • Benitz MA, Schmidt DP, Lackner MA, Stewart GM, Jonkman J, Robertson A, 2015. Validation of Hydrodynamic Load Models Using CFD for the OC4- DeepCwind Semisubmersible. NREL/CP-5000-63751.
  • Benitz MA, Schmidt DP, Lackner MA, Stewart GM, Jonkman J, Robertson A, 2014. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi- Submersible. ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA.
  • Bekiropoulos D, Rie RM, Lutz Th, Kr mer E, 2012. Simulation of unsteady aerodynamic effects on floating offshore wind turbines, Available online: http://www.iag.unistuttgart. de/arbeitsgebiete/lfzaero/veroeffentlichungen/pdf/2012_bekiropoulos_dew ek.pdf. (Accessed online on 25 July, 2014).
  • Bazilevs Y, Hsu MC, Akkerman I, Wright S, Kakizawa K, Henicke B, Spielman T, Tezduyar TE, 2011. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, International journal for numerical methods in fluids, Vol. 65(1-3): 207–235. DOI: 10.1002/fld.2400
  • Bak C, Aagaard Madsen H, Johansen J, 2001. Influence from blade-tower interaction on fatigue loads and dynamics (poster). Wind energy for the new millennium. Proceedings. 2001 European wind energy conference and exhibition (EWEC '01). Copenhagen (DK).
  • Bahuguni A, Sivalingam K, Davies P, Gullman-Strand J, NGUYEN VT, 2014. Implementation of Computational Methods to Obtain Accurate Induction Factors for Offshore Wind Turbines. ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA. Paper No. OMAE2014-23992, pp. V09BT09A007. DOI:10.1115/OMAE2014-23992
  • Bagbanci H, 2011. Dynamic analysis of offshore floating wind turbines. Master’s thesis, Lisbon Technical University, Portugal.
  • Bae YH, Kim MH, 2013. Rotor-floater-tether coupled dynamics including secondorder sum–frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine). Ocean Engineering, Vol.61: 109–122. DOI:10.1016/j.oceaneng.2013.01.010
  • ANSYS, 2012. AQWA Reference Manual. ANSYS, Inc., Canonsburg, PA.