박사

Kurtosis를 고려한 진동 시험 규정의 상관관계에 관한 연구 = A Study on the Correlation of Vibration Test Specification Considering the Kurtosis

홍창섭 2016년
논문상세정보
' Kurtosis를 고려한 진동 시험 규정의 상관관계에 관한 연구 = A Study on the Correlation of Vibration Test Specification Considering the Kurtosis' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Power Spectral Density
  • Vibration Endurance Test Standard
  • fatiguedamagespectrum
  • kurtosis
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
47 0

0.0%

' Kurtosis를 고려한 진동 시험 규정의 상관관계에 관한 연구 = A Study on the Correlation of Vibration Test Specification Considering the Kurtosis' 의 참고문헌

  • 첨도가 피로 수명에 미치는 영향
    오재윤 홍창섭 Journal of Korean Society of Mechanical Technology, 17(4), 675-681 [2015]
  • 자동차 부품 피로 내구해석
    김정규 이종규 장천수 자동차부품연구원 [2003]
  • 궤도차량 탑재장비의 진동 내구성 평가를 위한 시험수준 결정방법 연구
    최창하 Journal of environmental impact assessment, v.4 no.2, pp.123-130 [1995]
  • 가속화 진동내구시험 최적화
    윤성식 기계저널 제 49권 제12호, 54-59 [2009]
  • Zhao, W., & Baker, M. J. (1990, January). A new stress-range distribution model for fatigue analysis under wave loading. In Environmental Forces on Offshore Structures and Their Predictions: Proceedings of an international conference. Society of Underwater Technology.
  • Younesian, D., Solhmirzaei, A., & Gachloo, A. (2009). Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory. Journal of mechanical science and technology, 23(8), 2149-2156.
  • Yang, J. N. (1974). Statistics of random loading relevant to fatigue. J. Engineering Mechanics, 100, pp 469-475.
  • Wőhler, A. (1870) Űber die Festigkeitsversuche mit Eisen und Stahl, Zeitschrift fűr Bauwesen vol. 20 pp73-106
  • Wirsching, P.H. & Light, M.C. (1980). Fatigue under wide band random loading, J Struct. Div., ASCE, 1593-1607.
  • Wirsching, P. H. & Light, M.C. (1979). Probability based fatigue design criteria for off-shore structures. American Petroleum Institute
  • Winterstein, S. R. (1988). Nonlinear vibration models for extremes and fatigue. Journal of Engineering Mechanics, 114(10), 1772-1790.
  • Winterstein, S. R. & Cornell, C. A. (1985). Fatigue and fracture under stochastic loading. Proc. 4th Int. Conf. On Structural Safety and Reliability, 3, pp 745-749.
  • Wang, F. F. (2002). Relating sinusoid to random vibration for electronic packaging testing. In Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on (pp. 892-895). IEEE.
  • Tunna, J. M. (1986). Fatigue life prediction for Gaussian random loads at the design stage. Fatigue & Fracture of Engineering Materials & Structures, 9(3), 169-184.
  • Tovo, R. (2002). Cycle distribution and fatigue damage under broad-band random loading. International Journal of Fatigue, 24(11), 1137-1147.
  • Steinberg, D. S. (1988). Vibration analysis for electronic equipment. New York, Wiley-Interscience, 1988, 460 p. No individual items are abstracted in this volume., 1.
  • Soderberg, C. R. (1930). Factor of safety and working stress. Trans. ASME, vol.52, APM pp.13-28. 18. Matsuishi, M. & Endo, T. (1968) Fatigue of metals subjected to varying stress. Kyushu District Meeting of the Japan Society of Mechanical Engineers, Fukuoka, Japan, March.
  • Smithson, S. A. (2005). High Kurtosis Road Data. from http://www.smithson-associates.com/publications/
  • Smallwood, D. O. (2005). Generating non-Gaussian vibration for testing purposes. Sound and Vibration, 39(10), 18-23. 68. Steinwolf, A. (2012). Random vibration testing with kurtosis control by IFFT phase manipulation. Mechanical Systems and Signal Processing, 28, 561-573.
  • Smallwood, D. O. (1981). An Improved Recursive Formula for Calculating Shock Response Spectra. Shock and Vibration Bulletin, No. 51, May.
  • Shigley, J. E. & Mischke, C. R. (1989). Mechanical Engineering Design, McGraw-Hill, New York.
  • Sarkani, S., Michaelov, G., Kihl, D. P., & Bonanni, D. L. (2001). Comparative study of nonlinear damage accumulation models in stochastic fatigue of FRP laminates. Journal of Structural Engineering, 127(3), 314-322.
  • Sarkani, S., Michaelov, G., Kihl, D. P., & Beach, J. E. (1999). Stochastic fatigue damage accumulation of FRP laminates and joints. Journal of Structural Engineering, 125(12), 1423-1431.
  • Sarkani, S. (1990). Influence of high-frequency components on fatigue of welded joints. International Journal of Fatigue, 12(2), 115-120.
  • Sakai, S., & Okamura, H. (1995). On the distribution of rainflow range for Gaussian random processes with bimodal PSD. JSME international journal. Series A, mechanics and material engineering, 38(4), 440-445.
  • Rychlik, I. (1988). Rain-Flow-Cycle distribution for ergodic load processes. SIAM Journal on Applied Mathematics, 48(3), 662-679.
  • Rychlik, I. (1987). A new definition of the rainflow cycle counting method. International journal of fatigue, 9(2), 119-121.
  • Rice, S. O. (1945). Mathematical analysis of random noise. Bell System Technical Journal, The, 24(1), 46-156.
  • Poncelet, J. V. (1839). Introduction àla mécanique industrielle.
  • Paris, P. C., Gomez, M. P. & W. E. Anderson. (1961). A rational analytic theory of fatigue. The Trend in Engineering. 13, 9-14.
  • Papadimitriou, C., Fritzen, C. P., Kraemer, P., & Ntotsios, E. (2011). Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering. Structural Control and Health Monitoring, 18(5), 554-573.
  • Palmgren, A. Z. (1924). Die Lebensdauer von Kugellagern. Z. Ver. Deutsch. Ing. 68, 339
  • Ortiz, K. & Chen, N.K., (1983). Fatigue damage prediction for stationary wideband processes. Proc. 5th Int. Conf. On Application of Statistics and Probability in Soil and Struct. Eng.
  • Olagnon, M. (1994). Practical computation of statistical properties of rainflow counts. International journal of fatigue, 16(5), 306-314.
  • Newland, D. E. (1984). An Introduction to Random Vibrations and Spectral Analysis(2nd Edition), Longman Inc. pp.82-94 & 189-196.
  • Mršnik, M., Slavič, J., & Boltežar, M. (2013). Frequency-domain methods for a vibration-fatigue-life estimation–Application to real data. International journal of fatigue, 47, 8-17.
  • Miner, M. A. (1945). Cumulative Damage in Fatigue. J. Appl. Mech. 12 A159
  • Minderhoud, J., & Van Baren, P. (2010). Using KurtosionⓇ to Accelerate Structural Life Testing. Sound and Vibration, 44(10), 8.
  • Minderhoud, J. & Baren, P. V. (2010). Using Kurtosian◯R to Accelerate Structural Life Testing. Sound & Vibration Magazine
  • Miles, J. W. (1954). On Structural Fatigue Under Random Loading. Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences), Vol. 21, No. 11, pp. 753-762.
  • McNeill, S. I. (2008). Implementing the Fatigue Damage Spectrum and Fatigue Damage Equivalent Vibration Testing. In Presented at the 79th Shock and Vibration Symposium: October (Vol. 26, p. 30).
  • Mathworks, MATLAB from http://www.mathworks.com
  • Manson, S. S. (1966). Thermal Stress and Low Cycle Fatigue. McGraw Hill, New York.
  • Madsen, P.H., Frandsen, S., Hollay, W.E. & Hancen, J.C.(1983). Dynamic analysis of wind turbine rotors for lifetime prediction. RISO Cotract report 102-43-51.
  • MIL-STD-810G. (2008). Environmental Engineering Considerations and Laboratory Tests. Department of Defense. USA.
  • Lutes, L. D., & Larsen, C. E. (1990). Improved spectral method for variable amplitude fatigue prediction. Journal of Structural Engineering, 116(4), 1149-1164.
  • Lindgren, G., & Rychlik, I. (1987). Rain flow cycle distributions for fatigue life prediction under Gaussian load processes. Fatigue & Fracture of Engineering Materials & Structures, 10(3), 251-260.
  • Lin, Y. K. (1967). Probabilistic Theory of Structural Dynamics. McGraw-Hill, pp.293-337.
  • Lalanne, C. (2010). Mechanical vibration and shock. vol 1-5.
  • Lalanne, C. (2009). Mechanical Vibration and Shock Analysis. Wiley.
  • Kurtosis를 고려한 진동내구시험 규격 작성 및 상대 피로 손상도에 대한 Kurtosis의 영향 분석. 석사논문
    김성국 창원대학교 [2014]
  • Krenk, S. (1978). A double envelope for stochastic processes.
  • Kihl, D. P., Sarkani, S., & Beach, J. E. (1995). Stochastic fatigue damage accumulation under broadband loadings. International journal of fatigue, 17(5), 321-329.
  • Kam, J. C. P., & Dover, W. D. (1988, December). Fast Fatigue Assessment Procedure for Offshore Structures under Random Stress History. In ICE Proceedings (Vol. 85, No. 4, pp. 689-700). Thomas Telford.
  • Jiao, G., & Moan, T. (1990). Probabilistic analysis of fatigue due to Gaussian load processes. Probabilistic Engineering Mechanics, 5(2), 76-83.
  • Jayahari, L., & Praveen, G. (2005). Correlation of sinusoidal sweep test to field random vibrations (Doctoral dissertation, Master’s Thesis, Blekinge Institute of Technology, Karlskrona, Sweden).
  • Jayahari, L., & Praveen, G. (2005). Correlation of sinusoidal sweep test to field random vibrations (Doctoral dissertation, Master thesis, Blekinge Institute of Technology, Karlskrona, Sweden).
  • Issacson, D. L. & Madsen, R. W. (1976). Markov chains theory and applications. John Wiley & Sons, New York.
  • Irvine, T., (Oct 13, 2012). Synthesize an Acceleration Time History to Satisfy a Power Spectral Density. from http://vibrationdata.wordpress.com/2012/10/13/synthesize-an -acceleration-time-history-to-satisfy-a-power-spectraldensity/
  • IEC 60068-2-64. (2008). Environmental Testing – Part 2-64: Tests – Test FH: Vibration, Broadband Random and Guidance. International Electrotechnical Commission(IEC).
  • Harris, C. M. (2002). Harris' shock and vibration handbook (Vol. 5). New York: McGraw-Hill.
  • Halfpenny, A., & Kihm, M. F. (2010). Rainflow Cycle Counting and Acoustic Fatigue Analysis Techniques for Random Loading. RASD2010.
  • Gujar, U., & Kavanagh, R. (1968). Generation of random signals with specified probability density functions and power density spectra. Automatic Control, IEEE Transactions on, 13(6), 716-719.
  • Guidance for tailoring material to its life cycle environment profile mechanical environment. (08/02/2010). from http://www.aste.asso.fr/file/pcem5.pdf.
  • Goodman, J. (1899). Mechanics Applied to Engineering. 1899. Longmans, Green and Co, London.
  • Gerber, H. (1874). Bestimmung der zulässigen Spannungen in Eisen-Constructionen. Zeitschrift des Bayerischen Architekten unt Ingenieur-Vareins, vol. 6, no. 6, pp.101-110
  • GNU Octave 3.8.2 (Aug. 14. 2014) from http://www.gnu.org/software/octave/
  • GAM EG-13. Essais generaux en environement des materials. Ministere de la Defense, Delegation Generale pour l’Armement. France.
  • Fu, T. T., & Cebon, D. (2000). Predicting fatigue lives for bi-modal stress spectral densities. International Journal of Fatigue, 22(1), 11-21.
  • Frendahl, M., & Rychlik, I.(1993). Rainflow analysis: Markov method. International journal of fatigue, 15(4), 265-272.
  • Free Software Foundation, Inc. (Version3, 29 June 2007). GNU General Public License. from http://www.gnu.org/copyleft/gpl.html
  • Duga, J.J., Fisher, W.H., Buxbaum, R.W., Rosenfield, A.R., Buhr, A. R., Honton, E.J. & McMillan, S. C. (1983). Fracture costs US $119 billion a year, says study by battelle/NBS, International Journal of Fracture, vol. 23-3, R81-R83.
  • Dirlik, T. (1985). Application of computer in fatigue analysis. Ph.D thesis, University of Warwick.
  • De Silva, C. W. (2000). Vibration: fundamentals and practice. CRC press.
  • DEF STAN 00-35(Part 5)/3. (1999). Environmental Handbook for Defence Material, Part 5:Induced Mechanical Environments. Ministry of Defence.
  • Curtis, A. J. Tinling, N. G. & Abstein, H. T. (1971). Selection and Performance of Vibration Tests, The Shock and Vibration Information Center, United States Department of Defense, Washington, SVM 8-NRL.
  • Crandall, S. H. & Mark, C. H. (1963). Random Vibrations in Mechanical Systems. Academic Press, pp.44-53 & 103-125.
  • Coffin, L. F. (1971). A Note on Low Cycle Fatigue Laws. Journal of Materials. Vol. 6, No. 2, pp.388-402.
  • Chaudhury, G. K., & Dover, W. D. (1985). Fatigue analysis of offshore platforms subject to sea wave loadings. International Journal of Fatigue, 7(1), 13-19.
  • Butler, D. (1965). The distribution of amplitudes and mean values between two neighbouring extremes in a Gaussian broad band random vibration. English Electric Company, Technical Memo. W/M (64) u 9075.
  • Brȕel & Kj r. (2009). Kurtosis in Random Vibration Control. from http://www.bksv.com/doc/bo0510.pdf
  • Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations. Mathematics of computation, 577-593.
  • Bishop, N. W. M., Wang, R. & Lack, L. (1995). A frequency domain fatigue predictor for wind turbine blades including deterministic components. 17th British Wind Energy Association Conference, Warwick.
  • Bishop, N. W. M., Hu, Z., Wang, R. & Quarton, D. (1993). Methods for the rapid evaluation of fatigue damage on the Howden HWP330 wind turbine. 15th British Wind Energy Association Conference, York.
  • Bishop, N. W. M., & Sherratt, F. (1990). A theoretical solution for the estimation of "rainflow” ranges from power spectral density data. Fatigue & Fracture of Engineering Materials & Structures, 13(4), 311-326.
  • Bishop, N. W. M. (1988). The use of frequency domain parameters to predict structural fatigue (Doctoral dissertation, University of Warwick).
  • Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures (Vol. 729). John Wiley & Sons.
  • Bendat, J. (1964). Probability functions for random responses. NASA report CR-33.
  • Benasciutti, D., & Tovo, R. (2006). Comparison of spectral methods for fatigue analysis of broad-band Gaussian random processes. Probabilistic Engineering Mechanics, 21(4), 287-299.
  • Benasciutti, D., & Tovo, R. (2005). Spectral methods for lifetime prediction under wide-band stationary random processes. International Journal of fatigue, 27(8), 867-877.
  • Basquin, O. H. (1910). Proceedings of American Society of Testing Materials ASTEA (10), 625.
  • Ahlin, K. (1999). Shock Response Spectrum Calculation – An Improvement of the Smallwood Algorithm. 70th Shock & Vibration Symposium, Albuquerque, NM, November 15-19.
  • Abdo, S. T., Rackwitz, R. Discussion to Kam, J. C. P., & Dover, W. D. (1989). Fast Fatigue Assessment Procedure for Offshore Structures under Random Stress History. Of the Institution of Civil Engineers, Part 2, 87, pp 645-649
  • ASTM E 1049-85. (Reapproved 2005). Standard practices for cycle counting in fatigue analysis. ASTM International.