박사

현장타설 연결부를 갖는 철근 콘크리트 휨 부재의 인장증강효과를 고려한 처짐 평가

최진웅 2016년
논문상세정보
' 현장타설 연결부를 갖는 철근 콘크리트 휨 부재의 인장증강효과를 고려한 처짐 평가' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 곡률
  • 연결부
  • 인장증강효과
  • 처짐
  • 평균 변형률
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
75 0

0.0%

' 현장타설 연결부를 갖는 철근 콘크리트 휨 부재의 인장증강효과를 고려한 처짐 평가' 의 참고문헌

  • 철근콘크리트 휨부재의 성능기반 사용성 모델 개발, 박사학위논문
    이기열 전남대학교, pp. 14∼43, 68∼77 [2005]
  • 사용성 평가를 위한 철근콘크리트 보의 처짐과 균열 거동에 대한 연구, 박사학위논문
    이승배 인하대학교, pp. 4∼28 [2010]
  • 부착응력과 상대슬립을 고려한 철근 콘크리트 부재의 휨균열폭 산정, 박사학위논문
    고원준 성균관대학교, pp. 3∼59, 110 [2002]
  • 모듈러 슬래브교량의 횡방향 연결부 구조적 거동 및 사용성 평가
    박선규 이상승 최진웅 홍성남 한국구조물진단유지관리공학회 논문집, Vol. 18, No. 6, pp. 139∼146 [2014]
  • 긴장된 탄소섬유 보강재로 표면매립 보강된 RC 보의 부착 및 휨 거동 평가, 박사학위논문
    홍성남 성균관대학교, pp. 170∼190 [2010]
  • 국토교통부 , 콘크리트구조설계기준
    한국콘크리트학회, pp. 63∼92 [2012]
  • 국토교통부 , 도로교설계기준(한계상태설계법)
    한국도로교통협회, pp. 5-14 ∼5-32, 5-131∼5-158 [2015]
  • “고강도콘크리트 휨부재의 처짐에 관한 연구”
    김우 이기열 정선희 대한토 목학회논문집, Vol. 22, No. 3A, pp. 631∼640 [2002]
  • “고강도 콘크리트 인장부재의 부착특성과 균열거동에 관한 연구(1) - 인장증강효과를 중심으로
    김우 염환석 이기열 대한토목학회논문집, Vol. 21, No. 5A, pp. 687-697 [2001]
  • Yu, W. and Winter, G. (1960), "Instantaneous and Long-Time Deflections of Reinforced Concrete Beams under Working Loads," ACI Journal, Proceedings Vol. 57, No. 1, pp. 29~50.
  • Yang, S. and Chen, J. (1988), "Bond Slip and Cracking Width Calculations of Tension Members," ACI Struct. J., Vol. 85, No. 4, pp. 414∼422.
  • Wenkenbach, I. (2011), Tension Stiffening in Reinforced Concrete Members with Large Diameter Reinforcement, Masters thesis, Durham University, pp. 17∼33, 45∼65.
  • Vecchio, F. J. and Collins, M. P. (1986), "The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear", ACI structural Journal, Vol. 83, No. 2, pp. 219∼231.
  • Tan, K. H. Pramasivam, P., Tan, K. C. (1994), "Instantaneous and Long-Term Deflections of Steel Fiber Reinforced Concrete Beams", ACI Structural Journal, Vol. 91, No. 4, pp. 384∼393
  • Soltani, A. (2011), Bond and serviceability characterization of concrete reinforced with high strength steel, Ph.D Thesis, University of Pittsburgh, pp. 69∼83.
  • Sokolov, A. (2010), Tension stiffening model for reinforced concrete beams, Ph.D Thesis, Vilniaus Gedimino technikos universitetas, pp. 21~34.
  • Saliger, R. (1936), "High grade steel in reinforced concrete", Pub. of IABSE, Vol. 2, pp. 293∼115.
  • Rehm, G. (1968), “The basic principles of the bond between steel and concrete”, Translation No. 134, Cement and Concrete Association, pp. 1-31.
  • Rashid, M. A., and Mansur. M. A. (2005), "Reinforced high-strength concrete beam in flexure", ACI Structural Journal, Vol. 102, No. 3, pp. 462∼471.
  • Rangan, B. V. (1982), "Control of beam deflections by allowable span-depth ratios", ACI Journal Proceedings, Vol. 79, No. 5, pp. 372∼377.
  • Prakhya, G. K. V. and Morley, C. T. (1990), "Tension-stiffening and moment-curvature relations of reinforced concrete elements", ACI Structural Journal, Vol. 87, No. 5, pp. 597∼605.
  • Piyasena, R. (2002). Crack Spacing, Crack Width and Tension Stiffening Effect in Reinforced Concrete Beams and One-Way Slabs, Ph.D Dissertation. School of Engineering, Griffith University, Chapter 4 and 8.
  • Perry, E. S. and Thompson, J. N. (1966), "Bond Stress Distribution on Reinforcing Steel in Beams and Pullout Specimens," ACI Journal Proceedings, Vol. 63, No. 8, pp. 865∼876.
  • NIIZhB (Concrete and Reinforced Concrete Research and Technology Institute) (2006), Concrete and Reinforced Concrete Structures without Pre-Stressing, SP 52-101-2003, pp 1∼53.
  • Li, L., Ma, Z., and Oesterle, R. (2010) "Improved Longitudinal Joint Details in Decked Bulb Tees for Accelerated Bridge Construction: Fatigue Evaluation", J. Bridge Eng., Vol. 15, No. 5, pp. 511∼522.
  • Li, L., Ma, Z., Griffey, M. and Oesterle, R. (2010), "Improved Longitudinal Joint Details in Decked Bulb Tees for Accelerated Bridge Construction: Concept Development", J. Bridge Eng., Vol. 15, No. 3, pp. 327∼336.
  • Leonhardt, F. (1977), "Crack Control in Concrete Structures", IABSE Surveys No. S-4/77, pp. 1∼26.
  • Kim, D., Kim, W., and White. R. N. (1999), "Arch Action in Reinforced Concrete Beams-A Rational Prediction of Shear Strength", ACI Structural Journal, Vol. 96, No. 4, pp. 586∼593.
  • Kim, D., Kim, W., and White, R. N. (1998), "Prediction of reinforcement tension produced by arch action in RC beams", Journal of Structural Engineering, Vol 124, No. 6, pp. 611∼622.
  • Karr, P. H. and Mattock, A. H. (1963), "High-Strength Bars as Concrete Reinforcement-Part 4:Control of Cracking", Journal, PCA Research and Development Laboratories, Vol 5, No. 1, pp. 15~38.
  • Kaklauskas, G. and Ghaboussi, J. (2001), "Stress-strain relations for cracked tensile concrete from RC beam tests" Journal of Structural Engineering, Vol. 127, No. 1, pp. 64∼73.
  • James M. Gere (2004), Mechanics of Materials, 6th Edition, Thomson, pp. 594∼658.
  • International Federation for Structural Concrete(fib) (2010), fib Model Code 2010, pp. 114∼201, 248∼269, 333∼343, 476∼498.
  • International Federation for Structural Concrete(fib) (2004), fib Bulletin, No. 29 Precast concrete bridges, pp. 3∼8.
  • International Federation for Structural Concrete(fib) (1999), Structural Concrete Textbook on Behaviour, Design and Performance, pp. 67∼139, 161∼224.
  • Grossman J. S. (1981), "Simplified Computations for Effective Moment of Inertia and Minimum Thickness to Avoid Defection Computations.", ACI Journal, Vol. 78, No. 6, pp. 423~434.
  • Graybeal, B. A. (2010), "Behavior of Ultra-High Performance Concrete connections between precast bridge deck elements", 2010 Concrete Bridge Conference: Achieving Safe, Smart & Sustainable Bridges, pp. 24~26.
  • Grace, N., Ushijima, K., Baah, P., and Bebawy, M. (2013), "Flexural Behavior of a Carbon Fiber–Reinforced Polymer Prestressed Decked Bulb T-Beam Bridge System", J. Compos. Constr., Vol. 17, No. 4, pp. 497∼506.
  • Gergely, P. and Lutz, L. A. (1968), "Maximum Crack Width in Reinforced Concrete Flexural Members," ACI Special publication, No. 20, pp. 87~117.
  • Frosch, R. J. (1999), “Another Look at Cracking and Crack Control in Reinforced Concrete”, ACI Structural Journal, Vol. 96, No. 3, pp. 437~442.
  • Fikry, A. M. and Thomas, C. (1998), "Development of a Model for the Effective of Inertia of One-Way Reinforced Concrete Elements.", ACI Structural Journal, V. 95, No. 4, pp. 444~455.
  • Eurocode 2 (2007), Design of Concrete Structures, European Committee for Standardization. Brussels, pp. 703~710.
  • Culmo, M. P. (2011), Accelerated Bridge Construction-Experience in Design, Fabrication and Erection of Prefabricated Bridge Elements and Systems, FHWA-HIF-12-013, pp. 57∼68, 171∼202.
  • Choi, J., Park, S. K, Kim, H. Y. and Hong, S. (2015), "Behavior of high-performance mortar and concrete connections in precast concrete elements: Experimental investigation under static and cyclic loadings" Engineering Structures, Vol. 100, pp.633∼644.
  • Branson D. E. and Metz, G. A. (1963/1965), Instantaneous and Time-Dependent Deflections of Simple and Continuos Reinforced Concrete Beams, Department of Civil Engineering and Auburn Research Foundation, Auburn University(HPR Report No. 7, Part 1, Alabama Highway Department, Bureau of Public Roads), pp. 1∼78.
  • Borges, J. F. (1966), "Cracking and Deformability of Reinforced Concrete Beams", Pub. of IABSE, Vol. 26, pp. 75∼79.
  • Bal zs, L. G. (1993), "Cracking Analysis Based on Slip and Bond Stresses," ACI Mat. J., Vol. 90, No. 4, pp. 340∼348.
  • Badwan, I. and Liang, R. (2007), "Performance Evaluation of Precast Posttensioned Concrete Multibeam Deck", J. Perform. Constr. Facil., Vol. 21, No. 5, pp. 368∼374.
  • Azizinamini, A., Darwin, D., Eligehausen, R., Pavel, R. and Ghosh, S. K. (1999), "Proposed Modifications to ACI 318-95 Tension Development and Lap Splice for High-Strength Concrete," ACI Structural Journal, V. 96, No. 6, pp. 922∼926.
  • Alwis, W. A. M. (1990), "Trilinear Moment-Curvature Relationship for Reinforced Concrete Beams", ACI Structural Journal, Vol. 87, No. 3, pp. 276∼283
  • Al-Zaid, R. Z., Al-Shaikh, A. H. and Abu-Hussein, M. M. (1991), “Effect of Loading Type on the Effective Moment of Inertia of Reinforced Concrete Beams", ACI Structural Journal, Vol. 88, No. 2, pp. 184~190.
  • Al-Shaikh, A. H. and Al-Zaid, R. Z. (1993), “Effect of Reinforcement Ratio on the Effective Moment of Inertia of Reinforced Concrete Beams", ACI Structural Journal, Vol. 65, No. 9, pp. 144~149.
  • Adams, R. J. (2014), “Comparison of deflection and vibration limits for high performance steel bridges", 9th International Conference on Structural Dynamics (EURODYN 2014), Jun 30-July 2, pp. 1281∼1288.
  • Abrishami H. H. and Mitchell D. (1996), “Influence of Splitting Cracks on Tension Stiffening”, ACI Structural Journal, Vol. 93, No. 6, pp. 703~710.
  • ACI Committee 435 (1995), Control of Deflection in Concrete Structures, 435R-95, American Concrete Institute, pp. 9∼13, 77∼88.
  • ACI Committee 318 (2011), Building Code Requirements for Structural Concrete, ACI 318-11, ACI 318R-11, American Concrete Institute, pp. 107∼160, 175∼182.
  • AASHTO (2010), AASHTO LRFD Bridge design specifications 5th Edition, pp. 5-1∼5-58.