박사

MicroRNA-Mediated Regulation of Hedgehog Signaling in Liver Fibrosis : 간 섬유화 과정에서 microRNA에 의한 헤지호그 신호전달의 조절에 관한 연구

논문상세정보
' MicroRNA-Mediated Regulation of Hedgehog Signaling in Liver Fibrosis : 간 섬유화 과정에서 microRNA에 의한 헤지호그 신호전달의 조절에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Hedgehog
  • Liver fibrosis
  • hepaticstellatecell
  • microrna
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
203 0

0.0%

' MicroRNA-Mediated Regulation of Hedgehog Signaling in Liver Fibrosis : 간 섬유화 과정에서 microRNA에 의한 헤지호그 신호전달의 조절에 관한 연구' 의 참고문헌

  • Y.-S. Lim, H. C. Lee, H.-S. Lee, Switch of cadherin expression from E-to N-type during the activation of rat hepatic stellate cells. Histochem. Cell Biol. 127, 149-160 (2007).
  • Y. Zhao, C. Tong, J. Jiang, Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252-258 (2007).
  • Y. Zhang, Z. Wang, R. A. Gemeinhart, Progress in microRNA delivery. J. Controlled Release 172, 962-974 (2013).
  • Y. Suzuki, M. Nakayama, Differential profiles of genes expressed in neonatal brain of 129X1/SvJ and C57BL/6J mice: A database to aid in analyzing DNA microarrays using nonisogenic gene-targeted mice. DNA research 10, 263-275 (2003).
  • Y. Sekiya, T. Ogawa, K. Yoshizato, K. Ikeda, N. Kawada, Suppression of hepatic stellate cell activation by microRNA-29b. Biochem. Biophys. Res. Commun. 412, 74-79 (2011).
  • Y. O. Jang, B. G. Jun, S. K. Baik, M. Y. Kim, S. O. Kwon, Inhibition of hepatic stellate cells by bone marrow-derived mesenchymal stem cells in hepatic fibrosis. Clin. Mol. Hepatol. 21, 141-149 (2015).
  • Y. Nakano et al., A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341, 508-513 (1989).
  • Y. Murakami et al., The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 6, e16081 (2011).
  • Y. Lee, K. Jeon, J. T. Lee, S. Kim, V. N. Kim, MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663-4670 (2002).
  • Y. Lee et al., The role of PACT in the RNA silencing pathway. EMBO J. 25, 522- 532 (2006).
  • Y. Lee et al., The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419 (2003).
  • Y. Lee et al., MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060 (2004).
  • Y. Kim et al., Temporal trends in population-based death rates associated with chronic liver disease and liver cancer in the United States over the last 30 years. Cancer 120, 3058-3065 (2014).
  • Y. Jung, S. J. McCall, Y. X. Li, A. M. Diehl, Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology 45, 1091-1096 (2007).
  • Y. Jung, A. Diehl, Non-alcoholic steatohepatitis pathogenesis: role of repair in regulating the disease progression. Dig. Dis. 28, 225-228 (2010).
  • Y. Jung et al., Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59, 655-665 (2010).
  • Y. Hirose, T. Itoh, A. Miyajima, Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells. Exp. Cell Res. 315, 2648-2657 (2009).
  • Y. He et al., MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell. Signal. 24, 1923-1930 (2012).
  • Y. G. Suh et al., CD11b+ Gr1+ bone marrow cells ameliorate liver fibrosis by producing interleukin‐10 in mice. Hepatology 56, 1902-1912 (2012).
  • Y. Chen, C. M. Verfaillie, MicroRNAs: the fine modulators of liver development and function. Liver Int. 34, 976-990 (2014).
  • Y. Chen et al., Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 143, 1319-1329. e1311 (2012).
  • X. W. Wang, N. H. Heegaard, H. rum, MicroRNAs in liver disease. Gastroenterology 142, 1431-1443 (2012).
  • X. Tu et al., MicroRNA‐101 suppresses liver fibrosis by targeting TGFβ signaling pathway. J. Pathol. 234, 46-59 (2014).
  • X. Ma, L. E. B. Buscaglia, J. R. Barker, Y. Li, MicroRNAs in NF-κB signaling. J. Mol. Cell Biol. 3, 159-166 (2011).
  • X. Fan, L. Shao, H. Fang, W. Tong, Y. Cheng, Cross-platform comparison of microarray-based multiple-class prediction. PLoS One 6, e16067 (2011).
  • X. Cai, C. H. Hagedorn, B. R. Cullen, Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966 (2004).
  • W.-C. Tsai et al., MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884 (2012).
  • W. Zhao et al., Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int. J. Cancer 129, 2651-2661 (2011).
  • W. Q. Li et al., The rno‐miR‐34 family is upregulated and targets ACSL1 in dimethylnitrosamine‐induced hepatic fibrosis in rats. FEBS J. 278, 1522-1532 (2011).
  • W. K. Syn et al., Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137, 1478- 1488. e1478 (2009).
  • W. H. De Jong, P. J. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine 3, 133 (2008).
  • W. C. Tsai et al., MicroRNA‐122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571-1582 (2009).
  • V. N. Kim, MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376-385 (2005).
  • V. Krizhanovsky et al., Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657-667 (2008).
  • V. Carloni, T. V. Luong, K. Rombouts, Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int. 34, 834-843 (2014).
  • U. Lakshmipathy, R. P. Hart, Concise review: MicroRNA expression in multipotent mesenchymal stromal cells. Stem Cells 26, 356-363 (2008).
  • T. Wynn, Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199-210 (2007).
  • T. Luedde, R. F. Schwabe, NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 8, 108-118 (2011).
  • T. Knittel et al., Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117, 1205-1221 (1999).
  • T. Kisseleva et al., Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl. Acad. Sci. 109, 9448-9453 (2012).
  • T. G. Park, J. H. Jeong, S. W. Kim, Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 58, 467-486 (2006).
  • T. D. Schmittgen et al., Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31-38 (2008).
  • T. Amann et al., Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci. 100, 646-653 (2009).
  • S. Wang et al., Potential role of Hedgehog pathway in liver response to radiation. PLoS One 8, (2013).
  • S. Vilarinho, R. P. Lifton, Liver Transplantation: From Inception to Clinical Practice. Cell 150, 1096-1099 (2012).
  • S. V. Fleig et al., Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. Lab. Invest. 87, 1227-1239 (2007).
  • S. S. Choi, A. Omenetti, W.-K. Syn, A. M. Diehl, The role of Hedgehog signaling in fibrogenic liver repair. Int. J. Biochem. Cell Biol. 43, 238-244 (2011).
  • S. S. Choi et al., Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G1093-G1106 (2009).
  • S. Radaeva et al., Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in nkg2d-dependent and tumor necrosis factor–related apoptosis inducing ligand–dependent manners. Gastroenterology 130, 435-452 (2006).
  • S. R. Wilson et al., Hedgehog antagonist cyclopamine isomerizes to less potent forms when acidified. J. Pharm. Biomed. Anal. 52, 707-713 (2010).
  • S. R. Baglio, D. M. Pegtel, N. Baldini, Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 3, (2012).
  • S. Parveen, R. Misra, S. K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. NANOMED-NANOTECHNOL 8, 147-166 (2012).
  • S. Obad et al., Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371-378 (2011).
  • S. Li et al., Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol. 10, 132 (2012).
  • S. L. Friedman, Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125-172 (2008).
  • S. L. Friedman, F. J. Roll, J. Boyles, D. M. Bissell, Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc. Natl. Acad. Sci. 82, 8681-8685 (1985).
  • S. L. Friedman, Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol. 7, 425-436 (2010).
  • S. L. Ameres, P. D. Zamore, Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14, 475-488 (2013).
  • S. Huang et al., Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 27, 1334-1340 (2006).
  • S. Ghosh, M. J. May, E. B. Kopp, NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225-260 (1998).
  • S. Dooley, P. Ten Dijke, TGF-β in progression of liver disease. Cell Tissue Res. 347, 245-256 (2012).
  • S. Bronfenmajer, F. Schaffner, H. Popper, Fat-storing cells (lipocytes) in human liver. Archives of pathology 82, 447 (1966).
  • S. Bala et al., Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug‐induced, and inflammatory liver diseases. Hepatology 56, 1946-1957 (2012).
  • R. Yi, Y. Qin, I. G. Macara, B. R. Cullen, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011-3016 (2003).
  • R. Xia, H. Jia, J. Fan, Y. Liu, J. Jia, USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. (2012).
  • R. T. Marquez et al., Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab. Invest. 90, 1727-1736 (2010).
  • R. Sun, B. Jaruga, S. Kulkarni, H. Sun, B. Gao, IL-6 modulates hepatocyte proliferation via induction of HGF/p21cip1: Regulation by SOCS3. Biochem. Biophys. Res. Commun. 338, 1943-1949 (2005).
  • R. S. Nagalingam et al., Deficiency of Cardiomyocyte-specific MicroRNA-378 Contributes to the Development of Cardiac Fibrosis Involving a Transforming Growth Factor β (TGFβ1)-dependent Paracrine Mechanism. J. Biol. Chem. 289, 27199-27214 (2014).
  • R. K. Moreira, Hepatic stellate cells and liver fibrosis. Arch. Pathol. Lab. Med. 131, 1728 (2007).
  • R. Fukunaga et al., Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell 151, 533-546 (2012).
  • R. E. Lanford et al., Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198-201 (2010).
  • R. C. Lee, R. L. Feinbaum, V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993).
  • R. Bataller, D. A. Brenner, Liver fibrosis. J. Clin. Invest. 115, 209-218 (2005).
  • R. Bataller, D. A. Brenner, Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin. Liver Dis. 21, 437-452 (2001).
  • P. W. Ingham, A. P. McMahon, Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059-3087 (2001).
  • P. A. Beachy, S. S. Karhadkar, D. M. Berman, Tissue repair and stem cell renewal in carcinogenesis. Nature 432, 324-331 (2004).
  • P. A. Beachy, S. G. Hymowitz, R. A. Lazarus, D. J. Leahy, C. Siebold, Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev. 24, 2001-2012 (2010).
  • O. Cheung et al., Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48, 1810-1820 (2008).
  • N. Horiguchi et al., Cell type–dependent pro-and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 134, 1148-1158 (2008).
  • N. Denef, D. Neub ser, L. Perez, S. M. Cohen, Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521-531 (2000).
  • N. Beyer Nardi, L. Silva Meirelles, Mesenchymal stem cells: isolation, in vitro expansion and characterization. Stem Cells 174, 249-282 (2006).
  • M. Takeji et al., Smooth muscle α-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. J. Biol. Chem. 281, 40193-40200 (2006).
  • M. S. Ascha et al., The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972-1978 (2010).
  • M. J. Lee et al., Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl4-injured liver: Potential application to the treatment of hepatic diseases. J. Cell. Biochem. 111, 1453-1463 (2010).
  • M. Ha, V. N. Kim, Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524 (2014).
  • M. Charlton, Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin. Gastroenterol. Hepatol. 2, 1048-1058 (2004).
  • M. C. Hu et al., GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133, 569- 578 (2006).
  • M. Arthur, D. A. Mann, J. P. Iredale, Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J. Gastroenterol. Hepatol. 13, S33-38 (1998).
  • L.-J. Zhang et al., Antifibrotic effects of interleukin-10 on experimental hepatic fibrosis. Hepato-gastroenterology 54, 2092-2098 (2006).
  • L.-A. MacFarlane, P. R. Murphy, MicroRNA: biogenesis, function and role in cancer. Curr. Genomics 11, 537-561 (2010).
  • L. Yang et al., Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J. Hepatol. 48, 98-106 (2008).
  • L. Piao et al., Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Mol. Ther. 20, 1261- 1269 (2012).
  • L. Li, Q. Gao, X. Wang, Z. Guo, [miR-378 suppresses HBV-related hepatocellular carcinoma tumor growth by directly targeting the insulin-like growth factor 1 receptor]. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology 21, 609-613 (2013).
  • L. Guo, R. C. Zhao, Y. Wu, The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp. Hematol. 39, 608-616 (2011).
  • L. F. Gebert et al., Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42, 609-621 (2014).
  • L. Buttitta, R. Mo, C.-C. Hui, C.-M. Fan, Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development 130, 6233-6243 (2003).
  • L. Barraud et al., Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J. Hepatol. 42, 736-743 (2005).
  • K. Sun, Q. Wang, X. h. HUANG, PPAR gamma inhibits growth of rat hepatic stellate cells and TGF beta‐induced connective tissue growth factor expression1. Acta Pharmacol. Sinica 27, 715-723 (2006).
  • K. Si-Tayeb, F. P. Lemaigre, S. A. Duncan, Organogenesis and development of the liver. Dev. Cell 18, 175-189 (2010).
  • K. H. Jung et al., Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model. Liver Int. 29, 898-909 (2009).
  • K. D. Lee et al., In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275-1284 (2004).
  • J. Varga, D. Brenner, S. H. Phan, Fibrosis research: methods and protocols. (Springer Science & Business Media, 2005), vol. 117.
  • J. Shi, K. Aisaki, Y. Ikawa, K. Wake, Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am. J. Pathol. 153, 515-525 (1998).
  • J. S. Troeger et al., Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073-1083. e1022 (2012).
  • J. S. McLellan et al., The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature 455, 979-983 (2008).
  • J. Pritchett et al., Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology 56, 1108-1116 (2012).
  • J. Li et al., miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J. Hepatol. 58, 522-528 (2013).
  • J. Li et al., Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J. Biol. Chem. 288, 23586-23596 (2013).
  • J. Kr tzfeldt et al., Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685-689 (2005).
  • J. K. Sicklick et al., Role for hedgehog signaling in hepatic stellate cell activation and viability. Lab. Invest. 85, 1368-1380 (2005).
  • J. K. Sicklick et al., Hedgehog signaling maintains resident hepatic progenitors throughout life. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G859-G870 (2006).
  • J. K. Dowman, J. Tomlinson, P. Newsome, Pathogenesis of non-alcoholic fatty liver disease. Qjm 103, 71-83 (2010).
  • J. Iredale, Tissue inhibitors of metalloproteinases in liver fibrosis. Int. J. Biochem. Cell B. 29, 43-54 (1997).
  • J. Hyun, S. Wang, J. Kim, G. J. Kim, Y. Jung, MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci. Rep. 5, 14135 (2015).
  • J. Hyun, S. S. Choi, A. M. Diehl, Y. Jung, Potential role of Hedgehog signaling and microRNA-29 in liver fibrosis of IKKβ-deficient mouse. J. Mol. Histol. 45, 103-112 (2014).
  • J. Hayes, P. P. Peruzzi, S. Lawler, MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20, 460-469 (2014).
  • J. Elmen et al., Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153-1162 (2008).
  • J. E. Hooper, M. P. Scott, The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59, 751-765 (1989).
  • J. Bruix, L. Boix, M. Sala, J. M. Llovet, Focus on hepatocellular carcinoma. Cancer cell 5, 215-219 (2004).
  • J. Briscoe, P. P. Th rond, The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416-429 (2013).
  • J. An et al., A Genetic Variant in Primary miR-378 Is Associated with Risk and Prognosis of Hepatocellular Carcinoma in a Chinese Population. PLoS One 9, e93707 (2014).
  • J. A. Broderick, P. D. Zamore, MicroRNA therapeutics. Gene Ther. 18, 1104- 1110 (2011).
  • I. S. Chan et al., Paracrine Hedgehog signaling drives metabolic changes in hepatocellular carcinoma. Cancer Res. 72, 6344-6350 (2012).
  • H.-S. Yi et al., Treatment with 4-Methylpyrazole Modulated Stellate Cells and Natural Killer Cells and Ameliorated Liver Fibrosis in Mice. PLoS One 10, e0127946 (2015).
  • H. Xin et al., Exosome‐Mediated Transfer of miR‐133b from Multipotent Mesenchymal Stromal Cells to Neural Cells Contributes to Neurite Outgrowth. Stem Cells 30, 1556-1564 (2012).
  • H. Wu, C. Ye, D. Ramirez, N. Manjunath, Alternative processing of primary microRNA transcripts by Drosha generates 5′ end variation of mature microRNA. PLoS One 4, e7566 (2009).
  • H. Sasaki, Y. Nishizaki, C.-c. Hui, M. Nakafuku, H. Kondoh, Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126, 3915-3924 (1999).
  • H. Park et al., Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127, 1593-1605 (2000).
  • H. L. Reeves, S. L. Friedman, Activation of hepatic stellate cells-a key issue in liver fibrosis. Front. Biosci. 7, 808-826 (2002).
  • H. Choi, R. H. Lee, N. Bazhanov, J. Y. Oh, D. J. Prockop, Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood 118, 330-338 (2011).
  • G. Szabo, S. Bala, MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 542-552 (2013).
  • G. Carpino et al., Activated hepatic stellate cells in liver cirrhosis. A morphologic and morphometrical study. Italian journal of anatomy and embryology= Archivio italiano di anatomia ed embriologia 109, 225-238 (2003).
  • G. A. Michelotti et al., Smoothened is a master regulator of adult liver repair. J. Clin. Invest. 123, 2380-2394 (2013).
  • F. Rangwala et al., Increased production of sonic hedgehog by ballooned hepatocytes. J. Pathol. 224, 401-410 (2011).
  • F. Ozsolak et al., Chromatin structure analyses identify miRNA promoters. Genes Dev. 22, 3172-3183 (2008).
  • F. Oakley et al., Inhibition of inhibitor of κB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 128, 108-120 (2005).
  • F. Collino et al., Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5, e11803 (2010).
  • E. Wandzioch, . Kolterud, M. Jacobsson, S. L. Friedman, L. Carlsson, Lhx2–/– mice develop liver fibrosis. Proc. Natl. Acad. Sci. U S A 101, 16549-16554 (2004).
  • E. Huntzinger, E. Izaurralde, Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99-110 (2011).
  • E. Ferretti et al., Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 27, 2616-2627 (2008).
  • E. Bellafante et al., Hepatic‐specific activation of peroxisome proliferator‐activated receptor γ coactivator‐1β protects against steatohepatitis. Hepatology 57, 1343-1356 (2013).
  • D.-C. Zhao et al., Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J. Gastroenterol. 11, 3431 (2005).
  • D. S. Schwarz et al., Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208 (2003).
  • D. P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
  • D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
  • D. J. Prockop, Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol. Ther. 17, 939-946 (2009).
  • D. Betel, M. Wilson, A. Gabow, D. S. Marks, C. Sander, The microRNA. org resource: targets and expression. Nucleic Acids Res. 36, D149-D153 (2008).
  • C.-c. Hui, S. Angers, Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol. 27, 513-537 (2011).
  • C. Yin, K. J. Evason, K. Asahina, D. Y. Stainier, Hepatic stellate cells in liver development, regeneration, and cancer. J. Clin. Invest. 123, 1902-1910 (2013).
  • C. Th ry, S. Amigorena, G. Raposo, A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 3.22, 1-29 (2006).
  • C. Roderburg et al., Micro-RNA profiling reveals a role for miR‐29 in human and murine liver fibrosis. Hepatology 53, 209-218 (2011).
  • C. N sslein-Volhard, E. Wieschaus, Mutations affecting segment number and polarity in Drosophila. Nature 287, 795-801 (1980).
  • C. Metcalfe, F. J. de Sauvage, Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists. Cancer Res. 71, 5057-5061 (2011).
  • C. Kordes, I. Sawitza, D. H ussinger, Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem. Biophys. Res. Commun. 367, 116-123 (2008).
  • C. J. Chang et al., Placenta-Derived Multipotent Cells Exhibit Immunosuppressive Properties That Are Enhanced in the Presence of Interferon- γ. Stem Cells 24, 2466-2477 (2006).
  • C. Coulouarn, V. M. Factor, J. B. Andersen, M. E. Durkin, S. S. Thorgeirsson, Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526-3536 (2009).
  • B. Smedsr d, H. Pertoft, Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J. Leukoc. Biol. 38, 213-230 (1985).
  • B. Parekkadan et al., Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem. Biophys. Res. Commun. 363, 247-252 (2007).
  • B. Ozpolat, A. Sood, G. Lopez‐Berestein, Nanomedicine based approaches for the delivery of siRNA in cancer. J. Intern. Med. 267, 44-53 (2010).
  • B. Ochoa et al., Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51, 1712-1723 (2010).
  • B. B. Yang, P. K. Lum, M. M. Hayashi, L. K. Roskos, Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J. Pharm. Sci. 93, 1367-1373 (2004).
  • A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, H. Car, Nanoparticles as drug delivery systems. Pharmacol. Rep. 64, 1020-1037 (2012).
  • A. Rohner et al., Effective targeting of Hedgehog signaling in a medulloblastoma model with PF-5274857, a potent and selective Smoothened antagonist that penetrates the blood–brain barrier. Mol. Cancer Ther. 11, 57-65 (2012).
  • A. Pratap et al., Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling. J. Drug Target. 20, 770-782 (2012).
  • A. Omenetti, S. Choi, G. Michelotti, A. M. Diehl, Hedgehog signaling in the liver. J. Hepatol. 54, 366-373 (2011).
  • A. Omenetti et al., The hedgehog pathway regulates remodelling responses to biliary obstruction in rats. Gut 57, 1275-1282 (2008).
  • A. Omenetti et al., Hedgehog-mediated mesenchymal–epithelial interactions modulate hepatic response to bile duct ligation. Lab. Invest. 87, 499-514 (2007).
  • A. Omenetti et al., Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J. Clin. Invest. 118, 3331-3342 (2008).
  • A. Oeckinghaus, S. Ghosh, The NF-κB family of transcription factors and its regulation. Cold Spring Harbor Perspect. Biol. 1, a000034 (2009).
  • A. M. Zorn, Liver development. (2008).
  • A. M. Monteys et al., Structure and activity of putative intronic miRNA promoters. RNA 16, 495-505 (2010).
  • A. Khvorova, A. Reynolds, S. D. Jayasena, Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-216 (2003).
  • A. J. Ditto, P. N. Shah, L. R. Gump, Y. H. Yun, Nanospheres formulated from Ltyrosine polyphosphate exhibiting sustained release of polyplexes and in vitro controlled transfection properties. Mol. Pharm. 6, 986-995 (2009).
  • A. J. Ditto et al., In vivo gene delivery with l-tyrosine polyphosphate nanoparticles. Mol. Pharm. 10, 1836-1844 (2013).
  • A. Ijpenberg et al., Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev. Biol. 312, 157-170 (2007).
  • A. G. Bader, D. Brown, M. Winkler, The promise of microRNA replacement therapy. Cancer Res. 70, 7027-7030 (2010).
  • A. F. Ibrahim et al., MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71, 5214-5224 (2011).
  • A. Cargnoni et al., Transplantation of allogeneic and xenogeneic placentaderived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 18, 405- 422 (2009).
  • A. Bouchie, First microRNA mimic enters clinic. Nat. Biotechnol. 31, 577-577 (2013).