박사

생물전기화학적 하ㆍ폐수 질소제거 = Bio-electrochemical removal of nitrogen from wastewater

김지연 2016년
논문상세정보
' 생물전기화학적 하ㆍ폐수 질소제거 = Bio-electrochemical removal of nitrogen from wastewater' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • Bio-electrochemical system
  • Denitrification
  • Microbial fuel cell
  • Nitrogen removal
  • biocathode
  • power density
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
126 0

0.0%

' 생물전기화학적 하ㆍ폐수 질소제거 = Bio-electrochemical removal of nitrogen from wastewater' 의 참고문헌

  • 환경부 에너지자립화계획 [2010]
  • Zhou, M., Wang, W., and Chi, M. (2009). Enhancement on the Simultaneous Removal of Nitrate and Organic Pollutants from Groundwater by a Three-dimensional Bio-electrochemical Reactor, Bioresource Technology, 100(20), pp. 4662-4668.
  • Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., and Sugiura, N. (2011). Nitrate Removal from Groundwater by Cooperating Heterotrophic with Autotrophic Denitrification in a Biofilm–Electrode Reactor, Journal of Hazardous Materials, 192, pp. 1033-1039.
  • Zhang, X., Cheng, S., Liang, P., Huang, X., and Logan. B. E. (2011). Scalable Air Cathode Microbial Fuel Cells Using Glass Fiber Separators, Plastic Mesh Supporters, and Graphite Fiber Brush Anodes, Bioresource Technology, 102 pp. 372–375.
  • Zhang, L., Zhou, S., Zhuang, L., Lia, W., Zhang, J., Lu, N., and Deng, L. (2008). Microbial Fuel Cell Based on Klebsiella Pneumoniae Biofilm, Electrochemistry Communications, 10(10), pp. 1641-1643.
  • Zhang, L., Jia, J., Zhu, Y., Zhu, N., Wang, Y., and Yang, J. (2005). Electro-chemically Improved Bio-degradation of Municipal Sewage, Biochemical Engineering Journal, 22(3), pp. 239-244.
  • Zhang, G., Zhang, H., Zhang, C., Yang, F., Yuan, G., and Gao, F. (2013). Simultaneous Nitrogen and Carbon Removal in a Single Chamber Microbial Fuel Cell with a Rotating Biocathode, Process Biochemistry, 48(5/6), pp. 893-900.
  • Zhang, G., Zhang, H., Ma, Y., Yuan, G., Yang, F., and Zhang, R. (2014). Membrane Filtration Biocathode Microbial Fuel Cell for Nitrogen Removal and Electricity Generation, Enzyme and Microbial Technology, 60, pp. 56-63.
  • Zhang, F., and He, A. (2012). Simultaneous Nitrification and Denitrification with Electricity Generation in Dual-cathode Microbial Fuel Cells, Journal of Chemical Technology and Biotechnology, 87(1), pp. 53-159.
  • Xu, J., Sheng, G., Luo, H., Li, W., Wang, L., and Yu, H. (2012). Fouling of Proton Exchange Membrane (PEM) Deteriorates the Performance of Microbial Fuel Cell, Water Research, 46, pp. 1817-1824.
  • Xie, S., Liang, P., Chen, Y., Xia, X., and Huang, X. (2011). Simultaneous Carbon and Nitrogen Removal Using a Oxic/Anoxic-biocathode Microbial Fuel Cells Coupled System, Bioresource Technology, 102, pp. 348–354.
  • Watanabe, T., Motoyama, H., and Kuroda, M. (2001). Denitrification and Neutralization Treatment by Direct Feeding of an Acidic Wastewater Containing Copper Ion and High-strength Nitrate to a Bio-electrochemical Reactor Process, Water Research, 35, pp. 4102–4110.
  • Wang, L., Zheng, P., Chen, T., Chen, J., Xing, Y., Ji, Q., Zhang, M., and Zhang, J. (2012). Performance of Autotrophic Nitrogen Removal in the Granular Sludge Bed Reactor, Bioresource Technology, 123, pp. 78-85.
  • Wang, H., and Qu, J. (2003). Combined Bioelectrochemical and Sulfur Autotrophic Denitrification for Drinking Water Treatment, Water Research, 37(15), pp. 3767-3775.
  • Wan, D., Liu, H., Qu, J., Lei, P., Xiao, S., and Hou, Y. (2009). Using the Combined Bioelectrochemical and Sulfur Autotrophic Denitrification System for Groundwater Denitrification, Bioresource Technology, 100(1), pp. 142-148.
  • Virdis, B., Rabaey, K., Yuan, Z., and Keller, J. (2008). Microbial Fuel Cells for Simultaneous Carbon and Nitrogen Removal, Water Research, 42, pp. 3013-3024.
  • Van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G. (1997). Metabolic Pathway of Anaerobic Ammonium Oxidation on the Basis of 15N Studies in a Fluidized Bed Reactor. Microbiology (UK), 143(7), pp. 2415–2421.
  • Van Loosdrecht M. C. M. (2004). Recent Development on Biological Wastewater Nitrogen Removal Technologies, In Proceedings of the presentation in international conference on wastewater treatment for nutrient removal and reuse (ICWNR’04).
  • U.S. EPA. (1993). Manual of Nitrogen Control, EPA/725/R-93/010, Washington DC.
  • Third, K. A., Sliekers, A. O., Kuenen, J. G., and Jetten, M. S. M. (2001). The CANON System(Completely Autotrophic Nitrogen-Removal Over Nitrite) under Ammonium Limitation : Interaction and Competition between Three Groups of Bacteria, Systematic and Applied Microbiology, 24, pp.588-596.
  • The Renewable Makes Difference (2011). www.energy.eu
  • The Energy Report 100% Renewable Energy by 2050 (2011). www.energy.eu
  • Takahashi, M., Yamada, T., Tanno, M., Tsuji, H., and Hiraishi, A. (2011). Nitrate Removal Efficiency and Bacterial Community Dynamics in Denitrification Processes Using Poly (L-lactic acid) as the Solid Substrate, Microbes and Environments, 26(3), pp. 212–219.
  • Szekeres, S., Kiss, I., Bejearano, T. T., Soares, M. I., and I. M. (2001). Hydrogen - Dependent Denitrification in a Two-reactor Bio-electrochemical System, Water Research, 35(3), pp. 715-719.
  • Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M. (1998). The Sequencing Batch Reactor as a Powerful Tool for the Study of Slowly Growing Anaerobic Ammonium-oxidizing Microorganisms, Applied Microbiology and Biotechnology, 50(5), pp. 589–596.
  • Shrimali, M., and Singh, K. P. (2001). New Methods of Nitrate Removal from Water. Environmental Pollution. 112(3), pp. 351-359.
  • Shin, J. H., Sang, B. I., Chung, Y. C., and Choung, Y. K. (2005). Nitrogen Removal Using Autotrophic Microorganism in Membrane-attached Biofilm Reactor (MABR), Journal of Korean Society on Water Quality, 21(6), pp. 624-629. [Korean Literature]
  • Shimoyama, T., Komukai, S., Yamazawa, A., Ueno, Y., Logan, B. E., and Watanabe, K. (2008). Electricity Generation from Model Organic Wastewater in a Cassette-electrode Microbial Fuel Cell, Applied Microbiology and Biotechnology., 80, pp. 325–330.
  • Schoeman, J., and Steyn, A. (2003). Nitrate Removal with Reverse Osmosis in a Rural Area in South Africa, Desalination, 155, pp. 15-26.
  • Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J. G., Jetten, M. S. M., and Strous, M. (2003). New Concepts of Microbial Treatment Processes for the Nitrogen Removal in Wastewater, FEMS Microbiology Reviews, 27, pp. 481-492.
  • Sakakibara, Y., and Nakayama, T. (2001). A Novel Multi-electrode System for Electrolytic and Biological Water Treatments: Electric Charge Transfer and Application to Denitrification, Water Research, 35, pp. 768-778.
  • Sakakibara, Y., Flora, R. V., Suidan, T., and Kuroda, M. (1994). Modeling of Electrochemically Activated Denitrifying Biofilm, Water Research, 28, pp. 1077–1086.
  • Sakakibara, Y., Araki, K., Watanabe, T., and Kuroda, M., (1997). The Denitrification and Neutralization Performance of an Electrochemically Activated Biofilm Reactor Used to Treat Nitrate-contaminated Groundwater, Water Science and Technology, 36(1), pp. 61-68.
  • Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V. M., and Buisman, C. J. N. (2008). Hydrogen Production with a Microbial Biocathode, Environmental Science and Technology, 42(2), pp. 629-634.
  • Rozendal, R. A., Hamelers, H. V. M., and Buisman, C. J. N. (2006 b). Effects of Membrane Cation Transport on pH and Microbial Fuel Cell Performance, Environmental Science and Technology, 40(17), pp. 5206–5211.
  • Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J., and Buisman, C. J. N. (2008). Towards Practical Implementation of Bioelectrochemical Wastewater Treatment, Trends in Biotechnology, 26(8), pp. 450-459.
  • Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., and Buisman, C. J. N. (2006 a). Principal and Perspectives of Hydrogen Production through Biocatalyzed Electrolysis, Int. J. Hydrogen Energy, 31(12), pp. 1632-1640.
  • Rabaey, K., and Verstraete, W. (2005). Microbial Fuel Cells : Novel Biotechnology for Energy Generation, Trends Biotechnology, 23, pp. 291–298.
  • Rabaey, K., Ossieur, W., Verhaege, M., and Verstraete, W. (2005). Continuous Microbial Fuel Cells Convert Carbohydrates to Electricity, Water Science and Technology, 52, pp. 515-523.
  • Puig, S., Serra, M., Vilar-Sanz, A., Cabre, M., Baneras, L., Colprim, J., and Balaguer, M. D. (2011). Autotrophic Nitrite Removal in the Cathode of Microbial Fuel Cells, Bioresource Technology, 102, pp. 4462–4467.
  • Prosnansky, M., Sakakibara, Y., and Kuroda, M. (2002). High-Rate Denitrification and SS Rejection by Biofilm-electrode Reactor (BER) Combined with Microfiltration, Water Research, 36(19), pp. 4801-4810.
  • Pous, N., Koch, C., Colprim, J., Puig, S., and Harnisch, F. (2014). Extracellular electron Transfer of Biocathodes : Revealing the Potentials for Nitrate and Nitrite Reduction of Denitrifying Microbiomes Dominated by Thiobacillus sp., Electrochemistry Communications, 49, pp. 93–97.
  • Potter, M. C. (1991). Electrical Effects Accompanying the Decomposition of Organic Compounds, Proc. Roy. Soc., London Ser. B 84, pp. 260-276.
  • Park, H. I., Kim, J. S., Kim, D. K., and Pak, D. (2004). Autohydrogentrophic Denitrification of High Nitrate Concentration in a Glass Bead Biofilm Reactor, J. of Korean Society on Water Quality, 20(3), pp. 236-240. [Korean Literature]
  • Park, H. I., Kim, D. K., Choi, Y. J., and Pak, D. (2005). Nitrate Reduction Using an Electrode as Direct Electron Donor in a Biofilm-electrode Reactor, Process Biochemistry, 40, pp. 3383–3388.
  • Pant, D., Bogaert, G. V., Diels, L., and Vanbroekhoven, K. (2010). A Review of the Substrates used in Microbial Fuel Cells (MFCs) for Sustainable Energy Production, Bioresource Technology, 101 pp. 1533–1543.
  • Oh, S., Min, B., and Logan, B. E. (2004). Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells, Environmental Science and Technology, 38, pp. 4900–4904.
  • Oh, S. E., and Logan, B. E. (2005). Hydrogen and Electricity Production from a Food Processing Wastewater Using Fermentation and Microbial Fuel Cell Technologies, Water Researh, 39(19), pp. 4673–4682.
  • Nam, Y. H., An, S. W., and Park, J. W. (2011). Nitrogen Budget of South Korea in 2008: Evaluation of Non-point Source Pollution and N2O Emission, Journal of Korean Society of Environmental Engineers, pp. 103-112. [Korean Literature]
  • Mousavi, S., Ibrahim, S., Aroua, M. K., and Ghafari, S. (2012). Development of Nitrate Elimination by Autohydrogenotrophic Bacteria in Bio -electrochemical Reactors – a review, Biochemical Engineering Journal, 67, pp. 251–264.
  • Mousavi, S. A. R., Ibrahim, S., Aroua, M. K., and Ghafari, S. (2011). Bio-electrochemical Denitrification – a Review, International Journal of Chemical and Environmental Engineering, 2(2), pp. 140-146.
  • Min, B., Rom n, . B., and Angelidaki, I. (2008). Importance of Temperature and Anodic Medium Composition on Microbial Fuel Cell (MFC) Performance, Biotechnology letters, 30, pp. 1213-1218.
  • Min, B., Kim, J., Oh S., Regan J. M., and Logan, B. E. (2005). Electricity Generation from Swine Wastewater Using Microbial Fuel Cells, Water Research, 39, pp. 4961–4968.
  • Lovely, D. R. (2006). Microbial Fuel Cells : Novel Microbial Physiologies and Engineering Approaches, Current Opinion in Biotechnology, 17(3), pp.327-332.
  • Logan, B., Cheng, S., Watson, V., and Estadt, G. (2007). Graphite Fiber Brush Anodes for Increased Power Production in Air-cathode Microbial Fuel Cells, Environmental Science and Technology, 41(9), pp. 3341–3346.
  • Logan, B. E., Aelterman, P., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguiac, S., Verstraete, W., and Rabaey, K. (2006). Microbial Fuel Cells : Methodology and Technology, Environmental Science and Technology, 40, pp.5181–5192.
  • Logan, B. E. (2009). Exoelectrogenic Bacteria That Power Microbial Fuel Cells. Nature Reviews Microbiology, 7(5), pp. 375-381.
  • Logan, B. E. (2008). Microbial Fuel Cells, John Wiley & Sons, New Jersey, pp. 4-6.
  • Logan, B. E. (1999). Environmental Transport Processes, Wiley InterScience, New York.
  • Liu. H, Ramnarayanan, R., and Logan, B. E. (2004). Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell, Environmental Science and Technology, 38(7), pp. 2281-2285.
  • Liu, H., and Logan, B. E. (2004). Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environment Science and Technology, 38(14), pp. 4040–4046.
  • Liu, H., Cheng, S., and Logan, B. E. (2005). Power Generation in Fedbatch Microbial Fuel Cells as a Function on Ionic Strength, Temperature, and Reactor Configuration, Environmental Science and Technology, 39(14), pp. 5488-5493.
  • Liang, P., Wei, J., Li, M., and Huang, X. (2013). Scaling up a Novel Denitrifying Microbial Fuel Cell with an Oxic-anoxic Two Stage Biocathode, Frontiers of Environmental Science and Engineering, 7(6), pp. 913-919.
  • Li, W., Zhang, S., Chen, G., and Hua, Y. (2014). Simultaneous Electricity Generation and Pollutant Removal in Microbial Fuel Cell with Denitrifying Biocathode over Nitrite, Applied Energy, 126, pp. 136–141.
  • Lefebvre, O., Al-Mamun, A., and Ng, H. Y. (2008). A Microbial Fuel Cell Equipped with a Biocathode for Organic Removal and Denitrification, Water Science and Technology, 58(4), pp. 881-885.
  • Lee, M. E., Jo, S. Y., Chung, J. W., Song, Y. C., Woo, J. H., Yoo, K. S., and Lee, C. Y. (2011). Effect of External Resistance on Electrical Properties of Two-chamber Type Microbial Fuel Cells, Korean Society of Environmental Engineers, 33(3), pp. 167-173. [Korean Literature]
  • Lee, K. C., and Rittmann, B. E. (2002). Applying a Novel Autohydrogenotrophic Hollow-fiber Membrane Biofilm Reactor for Denitrification of Drinking Water, Water Res, 36, pp. 2040-2052.
  • Kwon, S., Kim, T. S., Yu, G. H., Jung, J. H., and Park, H. D. (2010). Bacterial Community Composition and Diversity of a Full-scale Integrated Fixed-film Activated Sludge System as Investigated by Pyrosequencing, Journal of Microbiology and Biotechnology, 20(12), pp. 1717-1723.
  • Kimura, Z., Chung, K. M., Itoh, H., Hiraishi, A., and Okabe, S. (2014). Raoultella Electricum sp. nov., Isolated from Anodic Biofilms of a Glucose-fed Microbial Fuel Cell, International Journal of Systematic and Evolutionary Microbiology, 64(Pt4), pp. 1384-1388.
  • Kim, T. S., Jeong, J. Y., Wells, G. F., and Park, H. D. (2013). General and Rare Bacterial taxa Demonstrating Different Temporal Dynamic Patterns in an Activated Sludge Bioreactor, Applied Microbiology and Biotechnology, 97(4), pp. 1755-1765.
  • Kim, J., Kim, B., Kim, H., and Yun, Z. (2014). Effects of Ammonium Ions from the Anolyte within Bio-cathode Microbial Fuel Cells on Nitrate Reduction and Current Density, International Biodeterioration and Biodegradation, 95, pp. 122-126.
  • Kim, J. R., Zuo, Y., Regan, J. M., and Logan, B. E. (2008). Analysis of Ammonia Loss Mechanisms in Microbial Fuel Cells Treating Animal Wastewater, Biotechnology and Bioengineering, 99, pp. 1120-1127.
  • Kim, J. R., Cheng, S., Oh, S. E., and Logan, B. E. (2007). Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells, Environmental Science and Technology, 41, pp. 1004-1009.
  • Kim, J. G., Jung, Y. G., and Park, S. I. (2010). Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell, Journal of Korea Organic Resource Recycling Association, 18(1), pp. 57-65. [Korean Literature]
  • Kim, H. J., Hyun, M. S, Chan, I. S., Kim, M., and Kim, B. H. (1999). A Microbial Fuel Cell Type Lactate Biosensor Using a Metal-reducing Bacterium, Shewanella Putrefaciens. Journal of Microbiology and Biotechnology, 9(3), pp. 365-367
  • Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., and Lee, J. (2004). Enrichment of Microbial Community Generating Electricity Using a Fuel-cell-type Electrochemical Cell, Applied Microbiology and Biotechnology, 63, pp. 672–681.
  • Kim, B. H., Chan, I. S., Moon, H. S., and Jang, J. K. (2009). Microbial Fuel Cell, a Wastewater Treatment Technology for Green Development, Korean Society of Civil Engineers Magazine, 57(8), pp. 22-28. [Korean Literature]
  • Ji, Z., and Chen, Y. (2010). Using Sludge Fermentation Liquid To Improve Wastewater Short-cut Nitrification-denitrification and Denitrifying Phosphorus Removal via Nitrite, Environmental Science and Technology, 44(23), pp. 8957-8963.
  • Jetten, M. S. M., Schmid, M., Schmidt, I., Wubben, M., Van Dongen, U., Abma, W., Sliekers, O., Revsbech, N. P., Beaumont, H. J., E., Van Loosdrecht, M., Mulder, J. W., Furest, J., Richardson, D., Van de Pas, K., Mendez-Pampin, R., Third, K., Cirpus, I., Van Spanning, R., Bollmann, A., Nielsen, L. P., den Camp, H. P., Schultz, C., Gundersen, J., Vanrolleghem, P., Strous, M., Wagner, M., and Kuenen, J. G. (2002). Improved Nitrogen Removal by Application of New Nitrogen-cycle Bacteria- Review, Environmental Science and Bio/Technology, 1, pp. 51–63.
  • Jeremiasse, A. W., Hamelers, H. V. M., and Buisman, C. J. N. (2010). Microbial Electrolysis Cell with a Microbial Biocathode, Bioelectrochemistry, 78, pp. 39-43.
  • Jang, J. K., Lee, E. Y., Ryou, Y. S., Lee, S. H., Hwang, J., Lee, H. M., Kim, J. G., Kang, Y. K., and Kim, Y. H. (2011). Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate, Korean Journal of Microbial and Biotechnology, 39(4), pp. 382-386. [Korean Literature]
  • Islam, S., and Suidan, M. T. (1998). Electrolytic Denitrification: Long Term Performance and Effect of Current Intensity, Water Research, 32(2), pp. 528-536.
  • Ishii, S., Suzuki, S., Norden-Krichmar, T., Phan, T., Wanger, G., Nealson, K., Sekiguchi, Y., Gorby Y. A., and Bretschger, O. (2014). Microbial Population and Functional Dynamics Associated with Surface Potential and Carbon Metabolism, International Society for Microbial Ecology Journal, 8, pp. 963–978.
  • Howarth, R. W. (2008). Coastal Nitrogen Pollution : A Review of Sources and Trends Globally and Regionally, Harmful Algae, 8(1), pp. 14-20.
  • Henze, M., Kristensen, G. H., and Strube, R. (1994). Rate-capacity Characterization of Wastewater for Nutrient Removal Processes, Water Science and Technology, 29, pp. 101–102.
  • Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., Van Loosdrecht, M. C. M., and Heijnen, J. J. (1998). The Sharon Process : an Innovative Method for Nitrogen Removal from Ammonium-rich Wastewater. Water Science and Technology, 37, pp. 135–142.
  • Heijne, A. T., Liu, F., Weijden, R., Weijma, J., Buisman, C. J., and Hamelers, H. V. (2010). Copper Recovery Combined with Electricity Production in a Microbial Fuel Cell, Environmental Science and Technology, 44, pp. 4376-4381.
  • He, Z., and Angenent, L. T. (2006). Application of Bacterial Biocathodes in Microbial Fuel Cells, Electroanalysis, 18(19-20), pp. 2009-2015.
  • Han, S., and Chang, I. (2013). Comparison of Nitrate and Fluoride Removals between Reverse - osmosis, Nano - flitration, Electro - adsorption, Electro -coagulation in Small Water Treatment Plants, Journal of the Korea Academia-Industrial cooperation Society, 14, pp. 2027-2036. [Korean Literature]
  • Gregory, K. B., Bond, D. R., and Lovley, D. R. (2004). Graphite Electrodes as Electron Donors for Anaerobic Respiration, Environ Microbiol, 6(6), pp. 596–604.
  • Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., and Kim, H. J. (2003). Operational Parameters Affecting the Performance of a Mediator-less Microbial Fuel Cell, Biosens Bioelectron, 18, pp. 327–334.
  • Gil, D-S., Lee, B-H., Choi, H-K., and Kwon, D-M. (1999). Removing High Concentration Nitrogen by Electrolysis, Journal of Korean Society of Environmental Engineers, 22(2), pp. 265-277. [Korean Literature]
  • Ghafari, S., Hasan, M., and Aroua, M. K. (2009). Nitrate Remediation in a Novel Upflow Bio-electrochemical Reactor (UBER) Using Palm Shell Activated Carbon as Cathode Material, Electrochimica Acta, 54(17), pp. 4164-4171.
  • Ghafari, S., Hasan, M., and Aroua, M. K. (2008). Bio-electrochemical Removal of Nitrate from Water and Wastewater – a Review, Bioresource Technology, 99, pp. 3965–3974.
  • Gabrielli, C., Maurin, G., Francy-Chausson, H., Thery, P., Tran, T. T. M., and Tlili, M. (2006). Electrochemical Water Softening: Principle and Application, Desalination, 201, pp. 150-163.
  • Feng, Y., Yang, Q., Wang, X., and Logan, B. E. (2010). Treatment of Carbon Fiber Brush Anodes for Improving Power Generation in Air–cathode Microbial Fuel Cells, Journal of Power Sources, 195, pp. 1841–1844.
  • Feleke, Z., and Sakakibara, Y. (2002). A Bio-electrochemical Reactor Coupled with Adsorber for the Removal of Nitrate and Inhibitory Pesticide, Water Research, 36(12), pp. 3092-3102.
  • Fang, C., Min, B., and Angelidaki, I. (2011). Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for both Power Generation and Nutrient Removal Purposes, Applied Biochemistry and Biotechnology, 164, pp. 464–474.
  • Falk, M. W., Song, K-G., Matisasek, M., G., Wuertz, S. (2009). Microbial Community Dynamics in Replication Membrane Bioreactors – Natural Reproducible Fluctuations, Water Research, 43(3), pp. 842-852.
  • Energy Star Project, www.energystar.gov.
  • D-DASH project, www.env.go.jp.
  • Cooper, N. B., Marshall, J. W., Hunt, K., and Reidy, J. G. (2007). Less Power, Great Performance, Water Environmental Technology, 19(2), pp. 63-66.
  • Clauwaert, P., Rabaey, K., Aelterman, P., Schamphelaire, L. D., Pham, T. H., Boeckx, P., Boon, N., and Verstraete, W. (2007). Biological Denitrification in Microbial Fuel Cells, Environment Science Technology, 41, pp. 3354-3360.
  • Chio, C. S., Lim, B. S., Xu, L., and Sung, G. H. (2009). Electric Power Generation and Treatment Efficiency of Organic Matter on Hydraulic Retention Time in Microbial Fuel Cell Reactor, Journal of Korean Society on Water Environment, 25(1), pp. 159-166. [Korean Literature]
  • Cheng, S., and Logan, B. E. (2007). Ammonia Treatment of Carbon Cloth Anodes to Enhance Power Generation of Microbial Fuel Cells, Electrochem Commun, 9(3), pp. 49-496.
  • Chen, S., and Logan, B. E. (2011). Increasing Power Generation for Scaling up Single-chamber Air Cathode Microbial Fuel Cells, Bioresource Technology, 102, pp. 4468–4473.
  • Chen, G. W., Choi, S. J., Lee, T. H., Lee, G. Y., Cha, J. H., and Kim, C. W. (2008). Application of Biocathode in Microbial Fuel Cells : Cell Performance and Microbial Community, Applied Microbiology and Biotechnology, 79(3), pp. 379-388.
  • Chang, C. C., Tseng, S. K., and Huang, H. K. (1999). Hydrogenotrophic Denitrification with Immobilized Alcaligenes Eutrophus for Drinking Water Treatment, Bioresource Technology, 69, pp. 53-58.
  • Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., and Kim, I. S. (2009). Effect of Different Substrates on the Performance, Bacterial Diversity, and Bacterial Viability in Microbial Fuel Cells. Bioresource Technology, 100, pp. 3518–3525.
  • Chae, K. C., Choi, M., Ajayi, F. F., Park, W., Chang, I. S., and Kim, I. S. (2008). Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells, Energy and Fuels, 22, pp. 169–176.
  • Borole, A. P., Hamilton, C. Y., Vishnivetskaya, T. A., Leak, D., Andras, C., Morrell-Falveya, J., Keller, M., and Davison, B. (2009). Integrating Engineering Design Improvements with Exoelectrogen Enrichment Process to Increase Power Output from Microbial Fuel Cells, Journal of Power Sources, 191(2), pp. 520–527.
  • Biswas, S., and Bose, P. (2005). Zero-valent Iron-assisted Autotrophic Denitrification, J. Environ. Eng, 131, pp. 1212-1220.
  • Ahn, Y., and Logan, B. E. (2010). Effectiveness of Domestic Wastewater Treatment Using Microbial Fuel Cells at Ambient and Mesophilic Temperatures, Bioresource Technology, 101(2), pp. 469-475.
  • Ahn, Y. H., and Choi, H. C. (2006). Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed (AUSB) reactor, Korean Society of Environmental Engineers, 28(8), pp. 852-859. [Korean Literature]
  • Ahn, Y. H. (2006). Sustainable Nitrogen Elimination Biotechnologies : A Review, Process Biochemistry, 41, pp. 1709–1721.
  • Abma, W. R., Schultz, C. E., Mulder, J. W., van der Star, W. R. L., Strous, M., Tokutomi, T., and van Loosdrecht, M. C. M. (2007). Full-scale Granular Sludge Anammox Process, Water Science and Technology, 55(8), pp. 27-33.