박사

생체역학적 분석을 통한 하지 절단자용 인공발 설계에 관한 연구

조현석 2016년
논문상세정보
' 생체역학적 분석을 통한 하지 절단자용 인공발 설계에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 응용 물리
  • composite material
  • gait analysis
  • prosthetic foot
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
589 0

0.0%

' 생체역학적 분석을 통한 하지 절단자용 인공발 설계에 관한 연구' 의 참고문헌

  • Zmitrewicz, R.J., et al., The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Arch Phys Med Rehabil, 2006. 87(10): p. 1334-1339.
  • Whittle, M.W., Gait analysis: an introduction. 2014: Butterworth-Heinemann.
  • Versluys, R., et al., Prosthetic feet: State-of-the-art review and the importance of mimicking human ankle-foot biomechanics. Disability & Rehabilitation: Assistive Technology, 2009. 4(2): p. 65-75.
  • Ventura, J.D., Klute, G.K., and Neptune, R.R., The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking. Gait Posture, 2011. 33(2): p. 220-226.
  • Van Jaarsveld, H., et al., Stiffness and hysteresis properties of some prosthetic feet. Prosthetics and Orthotics International, 1990. 14(3): p. 117-124.
  • Tesio, L., Lanzi, D., and Detrembleur, C., The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds. Clinical Biomechanics, 1998. 13(2): p. 77-82.
  • Strbac, M. and Popovic, D.B., Software tool for the prosthetic foot modeling and stiffness optimization. Comput Math Methods Med, 2012. 2012: p. 421769.
  • South, B.J., et al., Manufacture of energy storage and return prosthetic feet using selective laser sintering. J Biomech Eng, 2010. 132(1): p. 015001.
  • Postema, K., et al., Energy storage and release of prosthetic feet Part 1: Biomechanical analysis related to user benefits. Prosthetics and Orthotics International, 1997. 21(1): p. 17-27.
  • Perry, J. and Shanfield, S., Efficiency of dynamic elastic response prosthetic feet. Journal of rehabilitation research and development, 1993. 30(1): p. 137-143.
  • Oleson, M.A., Comparison of human and prosthetic forefoot stiffness. 2000, University of Calgary.
  • Nielsen, D.H., et al., Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet-a preliminary report. JPO: Journal of Prosthetics and Orthotics, 1988. 1(1): p. 24- 31.
  • Mummolo, C., Mangialardi, L., and Kim, J.H., Quantifying dynamic characteristics of human walking for comprehensive gait cycle. Journal of biomechanical engineering, 2013. 135(9): p. 091006.
  • Mizuno, N., et al., Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees. Prosthetics and Orthotics International, 1992. 16(3): p. 174-182.
  • Miller, L.A. and Childress, D.S., Analysis of a vertical compliance prosthetic foot. Journal of rehabilitation research and development, 1997. 34: p. 52-57.
  • Miff, S.C., et al., Roll-over shapes of the able-bodied knee-ankle-foot system during gait initiation, steady-state walking, and gait termination. Gait Posture, 2008. 27(2): p. 316-322.
  • Major, M.J., et al., Amputee Independent Prosthesis Properties—A new model for description and measurement. Journal of biomechanics, 2011. 44(14): p. 2572-2575.
  • Lee, D.G. and Suh, N.P., Axiomatic design and fabrication of composite structures-applications in robots, machine tools, and automobiles. Axiomatic Design and Fabrication of Composite Structures-Applications in Robots, Machine Tools, and Automobiles, by Dai Gil Lee and Nam Pyo Suh, pp. 732. Foreword by Dai Gil Lee and Nam Pyo Suh. Oxford University Press, Nov 2005. ISBN-10: 0195178777. ISBN-13: 9780195178777, 2005. 1.
  • Laferrier, J.Z. and Gailey, R., Advances in lower-limb prosthetic technology. Phys Med Rehabil Clin N Am, 2010. 21(1): p. 87-110.
  • Klute, G.K., Perry, J.C., and Czernicki, J.M., Variable Stiffness Prosthesis for Transtibial Amputees. Dept of Veteran Affairs, Seattle, WA USA. 2.
  • Klute, G.K., Czerniecki, J.M., and Hannaford, B., Artificial muscles: Actuators for biorobotic systems. The International Journal of Robotics Research, 2002. 21(4): p. 295-309.
  • Klute, G.K., Berge, J.S., and Segal, A.D., Heel-region properties of prosthetic feet and shoes. Journal of rehabilitation research and development, 2004. 41(4): p. 535-546.
  • Klute, G. and Berge, J., Modelling the effect of prosthetic feet and shoes on the heel-ground contact force in amputee gait. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2004. 218(3): p. 173-182.
  • Klodd, E., et al., Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users. The Journal of Rehabilitation Research and Development, 2010. 47(9): p. 899-910.
  • Kim, D.-H., Choi, D.-H., and Kim, H.-S., Design optimization of a carbon fiber reinforced composite automotive lower arm. Composites Part B: Engineering, 2014. 58: p. 400-407.
  • Kim, B.C., Park, D.C., and Kim, H.S., Development of composite spherical bearing. Composite Structures, 2006. 75(1): p. 231-240.
  • Kadaba, M.P., Ramakrishnan, H., and Wootten, M., Measurement of lower extremity kinematics during level walking. Journal of orthopaedic research, 1990. 8(3): p. 383-392.
  • Jang, T., et al., Systematic methodology for the design of a flexible keel for energy-storing prosthetic feet. Medical and Biological Engineering and Computing, 2001. 39(1): p. 56-64.
  • Hoaglund, F., et al., Evaluation of problems and needs of veteran lower-limb amputees in the San Francisco Bay Area during the period 1977-1980. Journal of rehabilitation R&D/Veterans Administration, Department of Medicine and Surgery, Rehabilitation R&D Service, 1983. 20(1): p. 57-71.
  • Hansen, A.H., et al., The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users. Prosthet Orthot Int, 2006. 30(3): p. 286- 299.
  • Hansen, A.H., et al., Alignment of trans-tibial prostheses based on roll-over shape principles. Prosthet Orthot Int, 2003. 27(2): p. 89-99.
  • Hansen, A.H., Childress, D.S., and Miff, S.C., Roll-over characteristics of human walking on inclined surfaces. Hum Mov Sci, 2004. 23(6): p. 807-821.
  • Hansen, A.H., Childress, D.S., and Knox, E.H., Roll-over shapes of human locomotor systems: effects of walking speed. Clin Biomech (Bristol, Avon), 2004. 19(4): p. 407-414.
  • Hansen, A.H., Childress, D.S., and Knox, E.H., Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses. Prosthet Orthot Int, 2000. 24(3): p. 205-215.
  • Hansen, A.H. and Childress, D.S., Effects of adding weight to the torso on rollover characteristics of walking. J Rehabil Res Dev, 2005. 42(3): p. 381-390.
  • Hafner, B.J., et al., Transtibial energy-storage-and-return prosthetic devices: a review of energy concepts and a proposed nomenclature. Journal of rehabilitation research and development, 2002. 39(1): p. 1-12.
  • Haberman, A., Mechanical properties of dynamic energy return prosthetic feet. 2008.
  • Geil, M.D., et al., Comparison of methods for the calculation of energy storage and return in a dynamic elastic response prosthesis. Journal of biomechanics, 2000. 33(12): p. 1745-1750.
  • Geil, M.D., Energy loss and stiffness properties of dynamic elastic response prosthetic feet. JPO: Journal of Prosthetics and Orthotics, 2001. 13(3): p. 70-73.
  • Gage, J., An overview of normal walking. Instructional course lectures, 1990. 39: p. 291-303.
  • Fey, N.P., et al. Topology Optimization and Freeform Fabrication Framework for Developing Prosthetic Feet. in Solid Freeform Fabrication Symposium. 2009. Austin, TX.
  • Fey, N.P., Klute, G.K., and Neptune, R.R., The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech (Bristol, Avon), 2011. 26(10): p. 1025-1032.
  • Fey, N.P., Klute, G.K., and Neptune, R.R., Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study. J Biomech Eng, 2012. 134(11): p. 111005.
  • Fey, N.P., Klute, G.K., and Neptune, R.R., Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis. J Biomech, 2013. 46(4): p. 637-644.
  • Fatone, S. and Hansen, A.H., Effect of ankle-foot orthosis on roll-over shape in adults with hemiplegia. J Rehabil Res Dev, 2007. 44(1): p. 11-20.
  • Eilenberg, M.F., Geyer, H., and Herr, H., Control of a powered ankle–foot prosthesis based on a neuromuscular model. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2010. 18(2): p. 164-173.
  • De Cock, A., et al., Temporal characteristics of foot roll-over during barefoot jogging: reference data for young adults. Gait Posture, 2005. 21(4): p. 432-439.
  • Curtze, C., et al., Determining asymmetry of roll-over shapes in prosthetic walking. Journal of Rehabilitation Research & Development, 2011. 48(10): p. 1249-1260.
  • Choi, H., Park, H., and Kim, Y., Foot-Ankle Roll-Over Characteristics in Different Heel Heights during Walking. Conf Proc IEEE Eng Med Biol Soc, 2005. 7: p. 6882-6884.
  • Bennett, W., History of Amputation Surgery and Prosthetics. Atlas of Limb Prosthetics: Surgical and Prosthetic Principles, 1981.
  • Au, S.K., Weber, J., and Herr, H. Biomechanical design of a powered ankle-foot prosthesis. in Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on. 2007. IEEE.
  • Au, S.K. and Herr, H., Powered ankle-foot prosthesis, in Robotics & Automation Magazine, IEEE. 2008. p. 52-59.
  • Au, S., Berniker, M., and Herr, H., Powered ankle-foot prosthesis to assist levelground and stair-descent gaits. Neural Netw, 2008. 21(4): p. 654-666.