박사

Well-posedness of Keller-Segel system related to Angiogenesis and homogenization of Navier-Stokes equation with damping effect : 혈관 생성과 관련된 켈러-시겔 방정식의 해의 존재성, 정칙성, 점근성과 감쇠효과를 가지는 나비어-스톡스 방정식의 균질화 이론

Ahn, jaewook 2016년
논문상세정보
' Well-posedness of Keller-Segel system related to Angiogenesis and homogenization of Navier-Stokes equation with damping effect : 혈관 생성과 관련된 켈러-시겔 방정식의 해의 존재성, 정칙성, 점근성과 감쇠효과를 가지는 나비어-스톡스 방정식의 균질화 이론' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 수학
  • Angiogenesis
  • Keller-Segel system
  • navier-stokes equations
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
3,030 0

0.0%

' Well-posedness of Keller-Segel system related to Angiogenesis and homogenization of Navier-Stokes equation with damping effect : 혈관 생성과 관련된 켈러-시겔 방정식의 해의 존재성, 정칙성, 점근성과 감쇠효과를 가지는 나비어-스톡스 방정식의 균질화 이론' 의 참고문헌

  • Z. Jiang, Asymptotic behavior of strong solutions to the Navier-Stokes equa- tions with a nonlinea damping term, Nonlinear. Anal., 75, (2012), 5002{5009.
  • Z. Jiang and M. Zhu, The Large time behavior of solutions to 3D Navier- Stokes equations with nonlinear damping, Math. Meth. Appl. Sci., 35, (2012), 97{102.
  • Y. Sugiyama, Y. Tsutsui, J.J.L. Velazquez, Global solutions to a chemo- taxis system with non-di usive memory, J. Math. Anal. Appl., 2 (2014), 908{ 917.
  • Y. Sugiyama, Global existence in sub-critical cases and nite time blow-up in super-critical cases to degenerate Keller-Segel systems, J. Di . Int. Eqns., 19 (2006), 841{876.
  • X. Cai and Q. Jiu, Weak and strong solutions for the incompressible Navier- Stokes equations with damping, J. Math. Anal. Appl., 343, 799{809, (2008).
  • W. Jager and A. Mikelic, On the roughness-induced e ective boundary condtions for an incompressible viscous flow, J. Di . Eqn., 170, (2001), 96{122.
  • W. Jager and A. Mikelic, On the interface boundary condtion of Beavers, Joseph, and Sa man, SIAM. J. Appl. Math., 60, (2000), 1111{1127.
  • W. Jager and A. Mikelic, On the boundary conditions at the contact inter- face between a porous medium and a free fluid, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, (1996), 403{465.
  • V.R. Muthukkaruppan, L. Kubai, R. Auerbach, Tumor-induced neovas- cularization in the mouse eye, J.Natl. Cancer Inst. 69 (1982), 699{705.
  • T. Suzuki, R. Takahashi, Global in time solution to a class of tumor growth systems, Adv. Math. Sci. Appl. 19 (2009), no. 2, 503{524.
  • S.L. Schor, A.M. Schor, G.W. Brazill, The e ect of bronectin on the migration of human foreskin broblasts and Syrian hamster melanoma cells into three-dimensional gels of lattice collagen bres, J. Cell Sci. 48 (1981), 301{314.
  • S. N. Antontsev and H.B. de Oliveira, The Navier-Stokes problem mod- i ed by an absorption term, Appl Anal., 89, 1805{1825, (2010).
  • S. A. Nazarov and A. S. Slutskii, Saint-Venant principle for parabolidal el- stic bodies. Problems of mathematical physics and function theory, J. Math. Sci.(New York), 98 (2000), 717{752.
  • P. Monaghan, M.J. Warburton, N. Perusinghe, P.S. Rutland, Topo- graphical arrangement of basement membrane proteins in lactating rat mam- mary gland: Comparison of the distribution of Type IV collagen, laminin, - bronectine and Thy-1 at the ultrasructural level, Proc. Natn. Acad. Sci. 80 (1983), 3344{3348.
  • O. A. Oleinik and G.A. Iosiajan A mixed problem for a system of equations of elasticity theory and Saint-Venant's principle, Complex analysis and its applications, 670 (1978), 459{472. "Nauka", Moscow.
  • O. A. Ladyzenskja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi- Linear Equations of Parabolic Type, Transl. Math. Monogr., AMS., Providence, RI., 1967.
  • N.D. Alikakos, Lp bounds of solutions of reaction-di usion equations, Comm. Partial di erential Equations. 4 (1979), 827{868.
  • M. Winkler, Aggregation vs. global di usive behavior in the higher-dimensional Keller-Segel model, J. Di . Eqs., 248 (2010), 2889{2905.
  • M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330{1355.
  • L.A. Liotta, C.N. Rao, S.H. Barsky, Tumor invasion and the extracellular matrix, Lab. Invest. 49 (1983), 636{649.
  • L. Corrias, B. Perthame, H. Zaag, Lp and L1 a priori estimates for some chemotaxis models and applications to the Cauchy problem, The mechanism of the spatio-temporal pattern arising in reaction di usion system, Kyoto, 2004.
  • L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004), 1{28
  • L. Corrias, B. Perthame, H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Math. Acad. Sci. Paris Ser. I 336 (2003), 141{146.
  • K. Kang, A. Stevens and J. J. L. Velazquez, Qualitative behavior of a Keller- Segel model with non-di usive memory, J. Comm. Part. Di . Eqs., 35 (2010), 245-274.
  • J.C. Bowersox, N. Sorgente, Chemotaxis of aortic endothelial cells in re- sponse to bronectin, Cancer Res. 42 (1982), 2547{2551.
  • J. Lim, Navier-Stoke Equations with damping term, Thesis for the degree of master of science, Yonsei Univ., preprint
  • J. Folkman, M. Klasgsburn, Angiogenic factors, Science. 235 (1987), 442{ 447.
  • J. Choi and J. Kim, Navier-Stokes equations with damping term for surface roughness in a channel, preprint.
  • J. Ahn, K. Kang, On a Keller-Segel system with logarithmic sensitivity and non-di usive chemical, Discrete Contin. Dyn. Syst. 34 (2014), no. 12 5165{ 5179.
  • H. Kozono, Y. Sugiyama and R. Takada, Non-existence of nite-time self- similar solutions of the Keller-Segel system in the scaling invariant class, J. Math. Anal. Appl., 365 (2010), 60{66.
  • H. Kozono, L1 -solutions of the Navier-Stokes equations in exterior domains, Math. Ann. 312 (1998), 319{340.
  • H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044{1081.
  • H. Chen, W. Liu and Y. Yang, On existence of global solutions and blow-up to a system of reaction-di usion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763{785.
  • H. A. Levine and B. D. Sleeman, Partial di erential equations of chemotaxis and angiogenesis, Math. Methods Appl. Sci., 24 (2001), 405{426.
  • H. A. Levine and B. D. Sleeman, A system of reaction di usion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683{730.
  • G.A. Iosiajan, The Saint-Venant principle for flows of a viscous incompressible fluid, Uspekhi, Mat. Nauk., 34, (1979), 191{192.
  • G. M. Lieberman, Second Order Parabolic Di erential Equations, World Scienti c Publishing Co. Inc., River Edge, NJ, 1996.
  • E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235{248.
  • E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225{234.
  • D. Henry, Geometric Theory of Semilinear Parabolic Equation, Springer- Verlag, New York, (1981).
  • D. Gerard-Varet, The Navier wall law at a boundary with random roughnrss, Comm. Math. Phys., 286, 81{110, (2009).
  • C.L.M.H. Navier, Sur les lois de l'equilibre et du mouvement des corps elastiques, Mem. Acad. R. Sci. Inst. France., 6,(1827).
  • B. Perthame and A. Vasseur, Regularization in Keller Segel type systems and the De Giorgi method, J. Comm. Math. Sci., 10 (2012), 463{476.
  • A.R.A. Anderson, M.A.J. Chaplain, Continuous and Discrete Mathemat- ical Models of Tumor-induceed Angiogenesis, Bull. Math. Bio. 60 (1998), 857{ 899.
  • A. Stevens, Trail following and aggregation of myxobacteria, J. Biol. Systems, 3 (1995), 1059{1068.
  • A. Stevens and J. J. L. Velazquez, Asymptotic analysis of a chemotaxis system with non-di usive memory, preprint.
  • A. Kubo, T. Suzuki, Mathematical models of tumour angiogenesis, J. Comp. Appl. Math., 204 (2007), 48{55.
  • A. Kubo, N. Saito, T. Suzuki, H. Hoshino, Mathematical models of tumor angiogenesis and simulations, Kokyuroku RIMS 1499 (2006), 135{146.
  • A. Kubo, Mathematical analysis of some models of tumour growth and simu- lations, WSEAS Transactions on Biology and Biomedicine, Issue 2, 7 (2010), 31{40.
  • A. Kubo, H. Hoshino, T. Suzuki, Asymptotic behavior of solutions to a parabolic ODE system, Proceedings of the 5th East Asia PDE Conference, Gakkotosho, Tokyo, (2005), 121{136.
  • A. Friedman and I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138{163.
  • A. Basson and D. Gerard-Varet, Wall laws for fluid flows at a boundary with random roughness, Comm. Pure Appl. 61, 941{987, (2008).