박사

Studies on the factors affecting the photovoltaic performances of flexible dye-sensitized solar cells

유기천 2016년
' Studies on the factors affecting the photovoltaic performances of flexible dye-sensitized solar cells' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • TCO-free
  • bendability
  • counter electrode
  • dye sensitized solar cells
  • flexibility
  • hybrid photoelectrode
  • new techniques
  • open circuit voltage
  • photoelectrode
  • plastic substrates
  • poly(methyl methacrylate)
  • recombination
  • transfer method
  • 광전극
  • 굽힘
  • 상대전극
  • 아크릴수지
  • 염료감응 태양전지
  • 유연성
  • 재결합
  • 전사법
  • 전압
  • 투명 전도성 기판이 없는
  • 플라스틱 기판
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
522 0

0.0%

' Studies on the factors affecting the photovoltaic performances of flexible dye-sensitized solar cells' 의 참고문헌

  • “Dye sensitized cell markets 2012”, NanoMarkets, 2012. 26. X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells”, Applied Physics Letters, 2007, 90, 073501.
  • Z.G. Wang, X.T. Zu, X. Xiang and H.J. Yu, “Photoluminescence from TiO2/PMMA Nanocomposite Prepared by γ Radiation”, Journal of Nanoparticle Research, 2006, 8 (1), 137-139.
  • Z. Liu, V. Subramania and M. Misra, “Vertically Oriented TiO2 Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry C, 2009, 113 (31), 14028-14033.
  • Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”, Nature Photonics, 2012, 6, 591-595.
  • Z. Fan, H. Razavi, J.-w. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. N. Yu, MingWu, J. Ager and A. Javey, “Threedimensional nanopillar-array photovoltaics on low-cost and flexible substrates”, Nature Materials, 2009, 8, 648-653.
  • Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang and J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers”, Nature Materials, 2011, 10, 296-302.
  • Y. Wang, H. Yang, Y. Liu, H. Wang, H. Shen, J. Yan and H. Xu, “The use of Ti meshes with self-organized TiO2 nanotubes as photoanodes of all-Ti dye-sensitized solar cells”, Progress in Photovoltaics: Research and Applications, 2010, 18 (4), 285-290.
  • Y. Ran, W. He, K. Wang, S. Ji and C. Ye, “A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000”, Chemical Communications, 2014, 50, 14877-14880.
  • Y. Li, W. Lee, D.-K. Lee, K. Kim, N.-G. Park and M. J. Ko, “Pure anatase TiO2 “nanoglue”: An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells”, Applied Physics Letters, 2011, 98, 103301.
  • Y. Li, W. Lee, D.-K. Lee, K. Kim, N.-G. Park and M. J. Ko, “Pure anatase TiO2 “nanoglue”: An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells”, Applied Physics Letters, 2011, 98, 10330.
  • Y. Li, K. Yoo, D.-K. Lee, J. H. Kim, N.-G. Park, K. Kim and M. J. Ko, “Highly bendable composite photoelectrode prepared from TiO2/polymer blend for low temperature fabricated dye-sensitized solar cells”, Current Applied Physics, 2010, 10 (4), e171-e175.
  • Y. Li, K. Yoo, D. K. Lee, J. Y. Kim, H. Kim, B. Kim and M. J. Ko, “Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent “nanoglue” ”, Nanoscale, 2013, 5, 4711-4719.
  • Y. Li, D.-K. Lee, J. Y. Kim, B. Kim, N.-G. Park, K. Kim, J.-H. Shin, I.-S. Choi and M. J. Ko, “Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes”, Energy and Environmental Science, 2012, 5, 8950-8957.
  • Y. Li, D.-K. Lee, J. Y. Kim, B. Kim, N.-G. Park, K. Kim, J.-H. Shin, I.-S. Choi and M. J. Ko, “Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes”, Energy & Environmental Science, 2012, 5, 8950-8957.
  • Y. Kijitori, M. Ikegami, and T. Miyasaka, “Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder- free coating of mesoscopic titania pastes”, Chemistry Letters, 2007, 36, 190-191.
  • Y. Fu, Z. Lv, S. Hou, H. Wu, D. Wang, C. Zhang and D. Zou, “TCO-Free, Flexible, and Bifacial Dye-Sensitized Solar Cell Based on Low-Cost Metal Wires”, Advanced Energy Materials, 2012, 2 (1), 37-41.
  • Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, “Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%”, Japanese Journal of Applied Physics, 2006, 45 (25), 638-640.
  • X. Zhao, H. Lin, X. Li and J. Li, “The effect of compression on electron transport and recombination in plastic TiO2 photoanodes”, Electrochimica Acta, 2011, 56 (18), 6401-6405.
  • X. Yin, Z. Xue, L. Wang, Y. Cheng and B. Liu, “High-Performance Plastic Dyesensitized Solar Cells Based on Low-Cost Commercial P25 TiO2 and Organic Dye”, ACS Applied Materials & Interfaces, 2012, 4 (3), 1709-1715.
  • X. Yin, X. ZS and B. Liu, “Electrophoretic deposition of Pt nanoparticles on plastic substrates as counter electrode for flexible dye-sensitized solar cells”, Journal of Power Sources, 2011, 196 (4), 2422-2426.
  • X. Liu, Y. Luo, H. Li, Y. Fan, Z. Yu, Y. Lin, L. Chen and Q. Meng, “Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells”, Chemical Communications, 2007, 27, 2847-2849.
  • X. Fan, F. Wang, Z. Chu, L. Chen, C. Zhang and D. Zou, “Conductive mesh based flexible dye-sensitized solar cells” Applied Physics Letters. 2007, 90, 073501.
  • W.-H. Chiu, K.-M. Lee and W.-F. Hsieh, “High efficiency flexible dye-sensitized solar cells by multiple electrophoretic depositions”, Journal of Power Sources, 2011, 196 (7), 3683-3687.
  • W. Tan, J. Chen, X. Zhou, J. Zhang, Y. Lin, X. Li and X. Xiao, “Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dyesensitized solar cell”, Journal of Solid State Electrochemistry, 2009, 13 (5), 651-656.
  • W. Shi, S. He, M. Wei, D. G. Evans and X. Duan “Optical pH Sensor with Rapid Response Based on a Fluorescein-Intercalated Layered Double Hydroxide”, Advanced Functional Materials, 2010, 20 (22), 3856-3863.
  • W. He, J. Qiu, F. Zhuge, X. Li, J.-H. Lee, Y.-D. Kim, H.-K. Kim and Y.-H. Hwang, “Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells”, Nanotechnology, 2012, 23 (22), 225602.
  • T.-S. Kang, S.-H. Moon and K.-J. Kim, “Enhanced Photocurrent-Voltage Characteristics of Ru(II)-Dye Sensitized TiO2 Solar Cells with TiO2 WO3 Buffer Layers Prepared by a Sol-Gel Method”, Journal of The Electrochemical Society, 2002, 149 (5), E155-E158.
  • T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai and H. Arakawa, “Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%”, Solar Energy Materials and Solar Cells, 2010, 94 (5), 812-816.
  • T. Yamaguchi, N. Tobe, D. Matsumoto and H. Arakawa, “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes”, Chemical Communications, 2007, 45, 4767-4769.
  • T. Oekermann, D. Zhang, T. Yoshida and H. Minoura, “Electron Transport and Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal Crystallization”, Journal of Physical Chemistry B, 2004, 108 (7), 2227-2235.
  • T. Miyasaka, “Toward Printable Sensitized Mesoscopic Solar Cells: Light- Harvesting Management with Thin TiO2 Films”, The Journal of Physical Chemistry Letters, 2011, 2 (3), 262-269.
  • T. Miyasaka, Y. Kijitori, T. N. Murakami and N. Kawashima, “Fabrication of dyesensitized plastic film electrodes for flexible solar cells based on electrophoretic deposition techniques”, Proceedings of SPIE (Society of Photo-Optical Instrumentation Engineers), 2004, 5215, 219-225.
  • T. Miyasaka and Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, The Electrochemical Society, 2004, 151, A1767-A1773.
  • T. Miyasaka and Y. Kijitori, “Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers”, Journal of The Electrochemical Society, 2004, 151, A1767-A1773.
  • T. Hoshikawa, M. Yamada, R. Kikuchi, K. Eguchi, “Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye- Sensitized Solar Cells”, The Electrochemical Society, 2005, 152 (2), E68-E73.
  • T. Hoshikawa, M. Yamada, R. Kikuchi and K. Eguchi, “Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye- Sensitized Solar Cells”, The Electrochemical Society, 2005, 152 (2), E68-E73.
  • S.L. Lim, F. Xu, N.N. Phuoc, C.K. Ong, “Length dependence of coercivity in CoFe2 nanowire arrays with high aspect ratios”, Journal of Alloys and Compounds, 2013, 578, 609-612.
  • S. Uchida, M. Tomiha, H. Takizawa and M. Kawaraya, “Flexible dye-sensitized solar cells by 28 GHz microwave irradiation”, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164 (1-3), 93-96.
  • S. Panigrahi, S. Bhattacharjee, L. Besra, B. P. Singh and S.P. Sinha, “Electrophoretic deposition of doped ceria: Effect of solvents on deposition microstructure”, Journal of the European Ceramic Society, 2010, 30 (5), 1097-1103.
  • S. Nakade, Y. Makimoto, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, “Roles of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cells (2): The Case of Solar Cells Using Cobalt Complex Redox Couples”, The Journal of Physical Chemistry B, 2005, 109 (8), 3488-3493.
  • S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori and S. Yanagida, “Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry B, 2002, 106 (39), 10004-10010.
  • S. Ito, S. M. Zakeeruddin, P. Comte, P. Liska, D. Kuang and M. Gr tzel, “Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte”, Nature Photonics, 2008, 2, 693-698.
  • S. Ito, P. Liska, P. Comte, R. Charvet, P. P chy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin and M. Gr tzel, ”Control of dark current in photoelectrochemical (TiO2/I−–I3 −) and dye-sensitized solar cells”, Chemical Communications, 2005, 34, 4351-4353.
  • S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeerudin, P. P chy, M. K. Nazeeruddin and M. Gr tzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode”, Chemical Communications, 2006, 38, 4004-4006.
  • S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. P chy, M. Jirousek, A. Kay, S. M. Zakeeruddin and M. Gr tzel, “Photovoltaic characterization of dyesensitized solar cells: effect of device masking on conversion efficiency”, Progress in Photovoltaics: Research and Applications, 2006, 14, 589-601.
  • S. I. Cha, Y. Kim, K. H. Hwang, Y.-J. Shin, S. H. Seo and D. Y. Lee, “Dyesensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure”, Energy & Environmental Science, 2012, 5, 6071-6075.
  • S. D. Oosterhout, M. M.Wienk, S. S. v. Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt and R. A. J. Janssen, “The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells”, Nature Materials, 2009, 8, 818-824.
  • Reprinted with permission from {ACS Nano. 9 (4), 3760-3771 (2015)}. Copyright {2015} American Chemical Society.
  • R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under opencircuit conditions”, Electrochimica Acta, 2002, 47 (26), 4213-4225.
  • R. Hattori and H. Goto, “Carrier leakage blocking effect of high temperature sputtered TiO2 film on dye-sensitized mesoporous photoelectrode”, Thin Solid Films, 2007, 515 (20-21), 8045-8049.
  • Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori and M. Uragami, “Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell”, Langmuir, 2003, 19, 3572-3574.
  • Q. Wang, J.-E. Moser, M. Gr tzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry B, 2005, 109 (31), 14945-14953.
  • Q. Wang, J.-E. Moser and M. Gr tzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, The Journal of Physical Chemistry B, 2005, 109 (31), 14945-14953.
  • P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker and M. Gr tzel, “A Solvent-Free, SeCN-/(SeCN)3 - Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells”, Journal of the American Chemical Society, 2004, 126 (23), 7164-7165.
  • P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, Progress in Photovoltaics: Research and Applications, 2011, 19, 894- 897.
  • N.-G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang and Y. -J. Shin, “Chemical Sintering of Nanoparticles: A Methodology for Low-Temperature Fabrication of Dye-Sensitized TiO2 Films”, Advanced Materials, 2005, 17 (19), 2349-2353.
  • N.-G. Park and K. Kim, “Transparent solar cells based on dye-sensitized nanocrystalline semiconductors”, Physica Status Solidi a-Applications and materials science, 2008, 205 (8), 1895-1904.
  • N. Kopidakis, K.D. Benkstein, J. van de Lagemaat and A.J. Frank, “Transport- Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, The Journal of Physical Chemistry B, 2003, 107 (41), 11307-11315.
  • N. Karousis, A. S. D. Sandanayaka, T. Hasobe, S. P. Economopoulos, E. Sarantopoulou and N. Tagmatarchis, “Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties”, Journal of Materials Chemistry, 2011, 21 (1), 109-117.
  • N. C. D. Nath, A. J. S. Ahammad, S. Sarker, Md. M. Rahman, S.-S. Lim, W.-Y. Choi and J.-J. Lee, “Carbon Nanotubes on Fluorine-Doped Tin Oxide for Fabrication of Dye-Sensitized Solar Cells at Low Temperature Condition”, Journal of Nanoscience and Nanotechnology, 2012, 12 (7), 5373-5380.
  • M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gr tzel and T. Ma, “Economical Pt-Free Catalysts for Counter Electrodes of Dye- Sensitized Solar Cells”, Journal of The American Chemical Society, 2012, 134 (7), 3419-3428.
  • M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Science, 2012, 338 (6107), 643-647.
  • M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci and S. Bauer, “Ultrathin and lightweight organic solar cells with high flexibility”, Nature Communications, 2012, 3, 770.
  • M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gr tzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, Journal of the American Chemical Society, 2005, 127 (48), 16835-16847.
  • M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gr tzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, Journal of the American Chemical Society, 2005, 127 (48), 16835-16847.
  • M. Gr tzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry, 2005, 44 (20), 6841-6851.
  • M. Gr tzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338-344.
  • M. Gr tzel, “Photoelectrochemical Cells”, Nature, 2001, 414 (6861), 338-344.
  • M. Gr tzel, “Perspectives for dye-sensitized nanocrystalline solar cells”, Progress in Photovoltaics: Research and Applications, 2000, 8 (1), 171-185.
  • M. Gr tzel, “Perspective for Dye-Sensitized Nanocrystalline Solar Cells”, Progress in Photovoltaics: Research and Applications, 2007, 8 (1), 171-185.
  • M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang and K.-J. Kim, “A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate”, Solar Energy Materials and Solar Cells, 2006, 90 (5), 574-581.
  • M. D rr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, “Lowtemperature fabrication of dye-sensitized solar cells by transfer of composite porous layers”, Nature Materials, 2005, 4, 607-611.
  • M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, “Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy”, The Journal of Physical Chemistry B, 2006, 110 (28), 13872-13880.
  • L. Kavan, J. H. Yum and M. Gr tzel, “Optically Transparent Cathode for Dye- Sensitized Solar Cells Based on Graphene Nanoplatelets”, ACS Nano, 2011, 5 (1), 165-172.
  • L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes”, ACS Nano, 2010, 4 (5), 2955-2963.
  • L. Grinis, S. Dor, A. Ofir and A. Zaban, “Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A-Chemistry, 2008, 198 (1), 52-59.
  • K. Lee, S. Park, M. J. Ko, K. Kim and N.-G. Park, “Selective positioning of organic dyes in a mesoporous inorganic oxide film”, Nature Materials, 2009, 8, 665-671.
  • K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura, K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, 2003, 79, 459-469.
  • K. Fan, C. Gong, T. Peng, J. Chen and J. Xia, “A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature”, Nanoscale, 2011, 3 (9), 3900-3906.
  • J.-Y. Kim, J. Y. Kim, D.-K. Lee, B. Kim, H. Kim and M. J. Ko, “Importance of 4- tert-Butylpyridine in Electrolyte for Dye-Sensitized Solar Cells Employing SnO2 Electrode”, The Journal of Physical Chemistry C, 2012, 116 (43), 22759-22766.
  • J. van de Lagemaat, N.-G. Park and A. J. Frank, “Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques”, The Journal of Physical Chemistry B, 2000, 104 (9), 2044-2052.
  • J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides”, Nature Communications, 2011, 2, 343.
  • J. Xia, N. Masaki, K. Jiang, Y. Wada and S. Yanagida, “Importance of blocking layers at conducting glass/TiO2 interfaces in dye-sensitized ionic-liquid solar cells”, Chemistry Letters, 2006, 35, 252-253.
  • J. Xia, N. Masaki, K. Jiang and S. Yanagida, “Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dyesensitized solar cells”, Chemical Communications, 2007, 138-140.
  • J. Wu, Y. Xiao, Q. Tang, G. Yue, J. Lin, M. Huang, Y. Huang, L. Fan, Z. Lan, S. Yin and T. Sato, “A Large-Area Light-Weight Dye-Sensitized Solar Cell based on All Titanium Substrates with an Efficiency of 6.69% Outdoors”, Advanced Materials, 2012, 24 (14), 1884-1888.
  • J. Nelson, The Physics of Solar Cells: Imperial College Press, 2003.
  • J. H. Yum, S. S. Kim, D. Y. Kim and Y. E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173 (1), 1-6.
  • J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gr tzel and S. I. Seok, “Efficient inorganic– organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors”, Nature Photonics, 2013, 7, 486-491.
  • J. Di, Z. Yong, Z. Yao, X. Liu, X. Shen, B. Sun, Z. Zhao, H. He and Q. Li, “Robust and Aligned Carbon Nanotube/Titania Core/Shell Films for Flexible TCO-Free Photoelectrodes”, Small, 2013, 9 (1), 148-155.
  • J. D. Roy-Mayhew, D. J. Bozym, C. Punckt and I. A. Aksay, “Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells”, ACS Nano, 2010, 4 (10), 6203-6211.
  • J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gr tzel, “Sequential deposition as a route to high-performance perovskitesensitized solar cells”, Nature, 2013, 499, 316-319.
  • J. Bisquert, “Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer”, The Journal of Physical Chemistry B, 2002, 106 (2), 325-333.
  • H.C. Weerasinghe, P.M. Sirimanne, G.V. Franks, G.P. Simon and Y.B. Cheng, “Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dyesensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213 (1), 30-36.
  • H.-W. Chen, C.-Y. Lin, Y.-H. Lai, J.-G. Chen, C.-C. Wang, C.-W. Hu, C.-Y. Hsu, R. Vittal and K.-C. Ho, “Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell”, Journal of Power Sources, 2011, 196 (10), 4859-4864.
  • H.-W. Chen, C.-Y. Hsu, J.-G. Chen, K.-M. Lee, C.-C. Wang, K.-C. Huang and K.-C. Ho, “Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods”, Journal of Power Sources, 2010, 195 (18), 6225-6231.
  • H.-W. Chen, C.-P. Liang, H.-S. Huang, J.-G. Chen, R. Vittal, C.-Y. Lin, K. C.-W. Wu and K.-C. Ho, “Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dyesensitized solar cells”, Chemical Communications, 2011, 47 (29), 8346-8348.
  • H.-J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N.-G. Park, “Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells”, Advanced Materials, 2008, 20, 195-199.
  • H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, “Size-dependant scattering efficiency in dye-sensitized solar cell”, Inorganica Chimica Acta, 2008, 361 (3), 677-683.
  • H. Lindstr m, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist and A. Hagfeldt, “A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates”, Nano Letters, 2001, 1 (2), 97-100.
  • H. Li, Q. Zhao, H. Dong, Q. Ma, W. Wang, D. Xu and D. Yu, “Highly-flexible, low-cost, all stainless steel mesh-based dye-sensitized solar cells”, Nanoscale, 2014, 6, 13203-13212.
  • H. G. Yun, M. Kim, M. G. Kang and I. H. Lee, “Cost-effective dye-sensitized solar cells consisting of two metal foils instead of transparent conductive oxide glass”, Physical Chemistry Chemical Physics, 2012, 14, 6448-6451.
  • H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, T. Nagai, “Efficient dye-sensitized solar cell sub-modules”, Current Applied Physics, 2010, 10 (2), S157-S160.
  • G. Zhu, L. Pan, T. Lu, X. Liu, T. Lv, T. Xu and Z. Sun, “Electrophoretic deposition of carbon nanotubes films as counter electrodes of dye-sensitized solar cells”, Electrochimica Acta, 2011, 56 (27), 10288-10291.
  • G. Zhu, L. Pan, T. Lu, T. Xu and Z. Sun, “Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells”, Journal of Materials Chemistry, 2011, 21 (38), 14869-14875.
  • G. R. R. A. Kumara, K. Tennakone, V. P. S. Perera, A. Konno, S. Kaneko and M. Okuya, “Suppression of recombinations in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide”, Journal of Physics D: Applied Physics, 2001, 34 (6), 868-873.
  • G. N. Tiwari and Swapnil Dubey, “Fundamentals of Photovoltaic Modules and Their Applications”, RSC Energy Series No. 2, 2010.
  • G. Li, R. Zhu and Y. Yang, “Polymer solar cells” Nature Photonics. 2012, 6, 153- 161.
  • G. Boschloo, H. Lindstr m, E. Magnusson, A. Holmberg and A. Hagfeldt, “Optimization of dye-sensitized solar cells prepared by compression method”, Journal of Photochemistry and Photobiology A-Chemistry, 2002, 148 (1-3) 11-15.
  • F. Pichot, J. R. Pitts, and B. A. Gregg, “Low-Temperature Sintering of TiO2 Colloids: Application to Flexible Dye-Sensitized Solar Cells”, Langmuir, 2000, 16 (13), 5626-5630.
  • F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin and Michael Gr tzel, “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids”, The Journal of Physical Chemistry C, 2007, 111 (17), 6550-6560.
  • F. C. Krebs, S. A. Gevorgyan and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies”, Journal of Materials Chemistry, 2009. 19 (30), 5442-5451.
  • E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, “Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers”, Journal of the American Chemical Society, 2003, 125 (2), 475-482.
  • D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang and Z. Bian “Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles”, The Journal of Physical Chemistry C, 2008, 112, 8486-8494.
  • D. Zhang, T. Yoshida, T. Oekermann, K. Furuta and H. Minoura, “Room- Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye- Sensitized Solar Cells”, Advanced Functional Materials, 2006, 16 (9), 1228-1234.
  • D. Zhang, T. Yoshida and H. Minoura, “Low-Temperature Fabrication of Efficient Porous Titania Photoelectrodes by Hydrothermal Crystallization at the Solid/Gas Interface”, Advanced Materials, 2003, 15 (10), 814-817.
  • D. Kuang, C. Klein, S. Ito, J.E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Gratzel, S.M. Zakeeruddin and M. Gr tzel, “High-Efficiency and Stable Mesoscopic Dye-Sensitized Solar Cells Based on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte”, Advanced Materials, 2007, 19 (8), 1133-1137.
  • D. Kuang, C. Klein, S. Ito, J.-E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Gr tzel, S. M. Zakeeruddin and M. Gr tzel, “High-Efficiency and Stable Mesoscopic Dye-Sensitized Solar Cells Based on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte”, Advanced Materials, 2007, 19, 1133-1137.
  • D. Fu, P. Lay and U. Bach, “TCO-free flexible monolithic back-contact dyesensitized solar cells”, Energy & Environmental Science, 2013, 6, 824-829.
  • Corni, M. P. Ryan and A. R. Boccaccini, “Electrophoretic deposition: From traditional ceramics to nanotechnology”, Journal of the European Ceramic Society, 2008, 28 (7) 1353-1367.
  • C. Y. Jiang, X. W. Sun, K. W. Tan, G. Q. Lo, A. K. K. Kyaw and D. L. Kwong, “High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode”, Applied Physics Letters, 2008, 92, 143101.
  • C. S. Rustomji, C. J. Frandsen, S. Jin and M. J. Tauber, “Dye-Sensitized Solar Cell Constructed with Titanium Mesh and 3-D Array of TiO2 Nanotubes”, The Journal of Physical Chemistry C, 2010, 114 (45), 14537-14543.
  • C. Longo, A. F. Nogueira and M.-A. De Paoli, “Solid-State and Flexible Dye- Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy”, Journal of Physical Chemistry B, 2002, 106 (23), 5925-5930.
  • C. H. Lee, D. R. Kim, I. S. Cho, N. William, Q. Wang and X. Zheng, “Peel-and- Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics”, Scientific Reports, 2012, 3, 2917.
  • B. Yoo, K.-J. Kim, Y. H. Kim, K. Kim, M. J. Ko, W. M. Kim and N.-G. Park, “Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell”, Journal of Materials Chemistry, 2011, 21, 3077-3084.
  • B. Peng, G. Jungmann, C. Jager, D. Haarer, H.W. Schmidt and M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dyesensitized TiO2 solar cells”, Coordination Chemistry Reviews, 2004, 248 (13-14), 1479-1489.
  • B. O’Regan and M. Gr tzel, “A low cost high-efficiency solar cell based on dyesensitized colloidal TiO2 films”, Nature, 1991, 353 (6346), 737-740.
  • B. O'Regan and M. Gr tzel, “A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO2 films”, Nature, 1991, 353, 737-740.
  • B. Mahrov, A. Hagfeldt, F. Lenzmann and G. Boschloo, “Comparison of charge accumulation and transport in nanostructured dye-sensitized solar cells with electrolyte or CuSCN as hole conductor”, Solar Energy Materials and Solar Cells, 2005, 88 (4), 351-362.
  • B. A. Gregg, F. Pichot, S. Ferrere, and C. L. Fields, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, The Journal of Physical Chemistry B, 2001, 105 (7), 1422-1429.
  • A. Zaban, S. Ferrere, J. Sprague and B. A. Gregg, “pH-Dependent Redox Potential Induced in a Sensitizing Dye by Adsorption onto TiO2”, The Journal of Physical Chemistry B, 1997, 101 (1), 55-57.
  • A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gr tzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science, 2011, 334 (6056), 629-634.
  • A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban and U. Banin, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition”, ACS Nano, 2010, 4 (10), 5962-5968.
  • A. R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, “Electrophoretic deposition of biomaterials”, Journal of The Royal Society Interface, 2010. 7, S581-S613.
  • A. Kay and M. Gr tzel, “Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide”, Chemistry of Materials, 2002, 14 (7), 2930-2935.
  • A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta, 2001, 46 (22), 3457-3466.
  • A. Hauch and A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochimica Acta, 2001, 46 (22), 3457-3466.
  • A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, “Dye-Sensitized Solar Cells”, Chemical Reviews, 2010, 110 (11), 6595-6663.
  • A. Hagfeldt, G. Boschloo, H. Lindstr m, E. Figgemeier, A. Holmberg, V. Aranyos, E. Magnusson and L. Malmqvist, “A system approach to molecular solar cells”, Coordination Chemistry Reviews, 2004, 248 (13-14), 1501-1509.
  • A. Goetzberger, C. Hebling and H.-W. Schock, “Photovoltaic materials, history, status and outlook”, Materials Science and Engineering: R: Reports, 2003, 40 (1), 1- 46.
  • A. Fakharuddin, R. Jose, T. M. Brown, F. Fabregat-Santiago and J. Bisquert, “A perspective on the production of dye-sensitized solar modules”, Energy & Environmental Science, 2014, 7, 3952-3981.
  • A. Chiril, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films”, Nature Materials, 2011, 10, 857-861.
  • A-E Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques”, Comptes Rendus de L Academie des Sciences, 1839, 9, 145-149.