박사

NAND cell mode management method for performance improvement in MLC/TLC NAND flash-based storage devices

원삼규 2016년
논문상세정보
' NAND cell mode management method for performance improvement in MLC/TLC NAND flash-based storage devices' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • NAND flash
  • address mapping
  • ftl
  • mlc
  • tlc
  • wearleveling
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
58 0

0.0%

' NAND cell mode management method for performance improvement in MLC/TLC NAND flash-based storage devices' 의 참고문헌

  • Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, “Mnftl: An efficient flash translation layer for mlc nand flash memory storage systems,” in Proceedings of the 48th Design Automation Conference, pp. 17–22, ACM, 2011.
  • Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Improving flash wear-leveling by proactively moving static data,” Computers, IEEE Transactions on, vol. 59, no. 1, pp. 53–65, 2010.
  • Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Endurance enhancement of flash-memory storage systems: an efficient static wear leveling design,” in Proceedings of the 44th annual Design Automation Conference, pp. 212– 217, ACM, 2007.
  • Y. Pan, G. Dong, and T. Zhang, “Exploiting memory device wear-out dynamics to improve nand flash memory system performance.,” in FAST, vol. 11, pp. 18–18, 2011.
  • Y. Pan, G. Dong, and T. Zhang, “Error rate-based wear-leveling for nand flash memory at highly scaled technology nodes,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21, no. 7, pp. 1350– 1354, 2013.
  • Y. Li, S. Lee, Y. Fong, F. Pan, T.-C. Kuo, J. Park, T. Samaddar, H. T. Nguyen, M. L. Mui, K. Htoo, et al., “A 16 gb 3-bit per cell (x3) nand flash memory on 56 nm technology with 8 mb/s write rate,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp. 195–207, 2009.
  • Y. Li, S. Lee, Y. Fong, F. Pan, T.-C. Kuo, J. Park, T. Samaddar, H. Nguyen, M. Mui, K. Htoo, et al., “A 16gb 3b/cell nand flash memory in 56nm with 8mb/s write rate,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 506–632, IEEE, 2008.
  • Y. Li and K. N. Quader, “Nand flash memory: challenges and opportunities,” Computer, no. 8, pp. 23–29, 2013.
  • Y. Gao, L. Deng, Y. Gong, and L. Qiao, “A novel hybrid address mapping strategy of nand flash,” in Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2014 Fourth International Conference on, pp. 398–402, IEEE, 2014.
  • Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribution in mlc nand flash memory: Characterization, analysis, and modeling,” in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1285–1290, EDA Consortium, 2013.
  • X. Jimenez, D. Novo, and P. Ienne, “Wear unleveling: improving nand flash lifetime by balancing page endurance.,” in FAST, pp. 47–59, 2014.
  • X. Jimenez, D. Novo, and P. Ienne, “Software controlled cell bit-density to improve nand flash lifetime,” in Proceedings of the 49th Annual Design Automation Conference, pp. 229–234, ACM, 2012.
  • X. Jimenez, D. Novo, and P. Ienne, “Phoenix: reviving mlc blocks as slc to extend nand flash devices lifetime,” in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 226–229, EDA Consortium, 2013.
  • X. Jimenez, D. Novo, and P. Ienne, “Libra: Software-controlled cell bitdensity to balance wear in nand flash,” ACM Transactions on Embedded Computing Systems (TECS), vol. 14, no. 2, p. 28, 2015.
  • Toshiba, “Mobilelba-nand spec.” http://www.toshiba.com/taec.
  • T. Yamada, C. Sun, and K. Takeuchi, “A high-performance solid-state drive by garbage collection overhead suppression,” in Non-VolatileMemory Technology Symposium (NVMTS), 2014 14th Annual, pp. 1–2, IEEE, 2014.
  • Samsung, “Nand basics white paper.” http://www.samsung.com/global/ business/semiconductor/minisite/SSD/downloads/document.
  • Samsung, “Flex-onenand spec.” http://www.samsung.com.
  • SNIA, “The future of solid state storage.” www.snia.org/sites/education/ tutorials/2009/fall/solid, 2009.
  • SKHynix, “Hy27uh08ag5m spec.” http://www.skhynix.com.
  • S.-W. Lee, W.-K. Choi, and D.-J. Park, “Fast: An efficient flash translation layer for flash memory,” in Emerging Directions in Embedded and Ubiquitous Computing, pp. 879–887, Springer, 2006.
  • S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song, “A log buffer-based flash translation layer using fully-associative sector translation,” ACM Transactions on Embedded Computing Systems (TECS), vol. 6, no. 3, p. 18, 2007.
  • S.-K. Park, “Technology scaling challenge and future prospects of dram and nand flash memory,” in Memory Workshop (IMW), 2015 IEEE International, pp. 1–4, IEEE, 2015.
  • S.-H. Shin, D.-K. Shim, J.-Y. Jeong, O.-S. Kwon, S.-Y. Yoon, M.-H. Choi, T.-Y. Kim, H.-W. Park, H.-J. Yoon, Y.-S. Song, et al., “A new 3-bit programming algorithm using slc-to-tlc migration for 8mb/s high performance tlc nand flash memory,” in VLSI Circuits (VLSIC), 2012 Symposium on, pp. 132–133, IEEE, 2012.
  • S.-H. Park, D.-g. Kim, K. Bang, H.-J. Lee, S. Yoo, and E.-Y. Chung, “An adaptive idle-time exploiting method for low latency nand flashbased storage devices,” Computers, IEEE Transactions on, vol. 63, no. 5, pp. 1085–1096, 2014.
  • S.-H. Chang, J.-H. Lee, S.-J. Park, M.-J. Jung, J.-C. Han, I.-S. Wang, K.-h. Lim, J.-H. Lee, J.-H. Kim, W.-K. Kang, et al., “A 48nm 32gb 8- level nand flash memory with 5.5 mb/s program throughput,” in Solid-State Circuits Conference-Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, pp. 240–241, IEEE, 2009.
  • S. Yamazaki, S. Tanakamaru, S. Suzuki, T. O. Iwasaki, S. Hachiya, and K. Takeuchi, “Reliability enhancement of 1xnm tlc for cold flash and millennium memories,” in VLSI Circuits (VLSI Circuits), 2015 Symposium on, pp. T112–T113, IEEE, 2015.
  • S. Tanakamaru, K. Takeuchi, et al., “Nand flash memory/reram hybrid unified solid-state-storage architecture,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 61, no. 4, pp. 1119–1132, 2014.
  • S. Tanakamaru, H. Yamazawa, T. Tokutomi, S. Ning, and K. Takeuchi, “19.6 hybrid storage of reram/tlc nand flash with raid-5/6 for cloud data centers,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 336–337, IEEE, 2014.
  • S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “Flexfs: A flexible flash file system for mlc nand flash memory.,” in USENIX Annual Technical Conference, pp. 1–14, 2009.
  • S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “Last: locality-aware sector translation for nand flash memory-based storage systems,” ACM SIGOPS Operating Systems Review, vol. 42, no. 6, pp. 36–42, 2008.
  • S. Lee and J. Kim, “Improving performance and capacity of flash storage devices by exploiting heterogeneity of mlc flash memory,” Computers, IEEE Transactions on, vol. 63, no. 10, pp. 2445–2458, 2014.
  • S. K. Won, S.-H. Ha, and E.-Y. Chung, “Fast performance analysis of nand flash-based storage device,” Electronics letters, vol. 45, no. 24, pp. 1219– 1221, 2009.
  • S. Jung and Y. H. Song, “Hierarchical use of heterogeneous flash memories for high performance and durability,” Consumer Electronics, IEEE Transactions on, vol. 55, no. 3, pp. 1383–1391, 2009.
  • S. Jung and Y. H. Song, “Garbage collection for low performance variation in nand flash storage systems,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 34, no. 1, pp. 16–28, 2015.
  • S. Im and D. Shin, “Storage architecture and software support for slc/mlc combined flash memory,” in Proceedings of the 2009 ACM symposium on Applied Computing, pp. 1664–1669, ACM, 2009.
  • S. Im and D. Shin, “Comboftl: Improving performance and lifespan of mlc flash memory using slc flash buffer,” Journal of Systems Architecture, vol. 56, no. 12, pp. 641–653, 2010.
  • S. Choi, D. Kim, S. Choi, B. Kim, S. Jung, K. Chun, N. Kim, W. Lee, T. Shin, H. Jin, et al., “19.2 a 93.4 mm 2 64gb mlc nand-flash memory with 16nm cmos technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 328–329, IEEE, 2014.
  • R. S. Chen, Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, “On-demand block-level address mapping in large-scale nand flash storage systems,” IEEE, 2015.
  • R. Novotn`y, J. Kadlec, and R. Kuchta, “Nand flash memory organization and operations,” J Inform Tech Softw Eng, vol. 5, no. 139, p. 2, 2015.
  • P. Gillingham, J.-K. Kim, R. Schuetz, H.-B. Pyeon, H. Oh, D. Macdonald, E. Choi, and D. Chinn, “A 256gb nand flash memory stack with 300mb/s hlnand interface chip for point-to-point ring topology,” in Memory Workshop (IMW), 2011 3rd IEEE International, pp. 1–3, IEEE, 2011.
  • P. Arya, “A survey of 3d nand flash memory,” EECS Int’l Graduate Program, National Chiao Tung University, pp. 1–11, 2012.
  • ONFi, “Onfi 3.0 spec.” http://www.onfi.org.
  • N. Shibata, H. Maejima, K. Isobe, K. Iwasa, M. Nakagawa, M. Fujiu, T. Shimizu, M. Honma, S. Hoshi, T. Kawaai, et al., “A 70 nm 16 gb 16-level-cell nand flash memory,” Solid-State Circuits, IEEE Journal of, vol. 43, no. 4, pp. 929–937, 2008.
  • N. Shibata and T. Tanaka, “Semiconductor memory device for storing multivalued data,” 2003. Patent, US 6,657,891.
  • N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse, and R. Panigrahy, “Design tradeoffs for ssd performance.,” in USENIX Annual Technical Conference, pp. 57–70, 2008.
  • M. Murugan and D. H. Du, “Hybrot: Towards improved performance in hybrid slc-mlc devices,” in Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2012 IEEE 20th International Symposium on, pp. 481–484, IEEE, 2012.
  • M. Helm, J.-K. Park, A. Ghalam, J. Guo, C. wan Ha, C. Hu, H. Kim, K. Kavalipurapu, E. Lee, A. Mohammadzadeh, et al., “19.1 a 128gb mlc nand-flash device using 16nm planar cell,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 326–327, IEEE, 2014.
  • M. Corporation, “Diskmon.” http://technet.microsoft.com/enus/ ysinternals/ bb896646.aspx.
  • L.-P. Chang, “On efficient wear leveling for large-scale flash-memory storage systems,” in Proceedings of the 2007 ACM symposium on Applied computing, pp. 1126–1130, ACM, 2007.
  • L.-P. Chang, “Hybrid solid-state disks: combining heterogeneous nand flash in large ssds,” in Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific, pp. 428–433, IEEE, 2008.
  • L.-P. Chang, “A hybrid approach to nand-flash-based solid-state disks,” Computers, IEEE Transactions on, vol. 59, no. 10, pp. 1337–1349, 2010.
  • L. Shi, K.Wu, M. Zhao, C. J. Xue, and E. H. Sha, “Retention trimming for wear reduction of flash memory storage systems,” in Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, pp. 1–6, IEEE, 2014.
  • K.-T. Park, S. Nam, D. Kim, P. Kwak, D. Lee, Y.-H. Choi, M.-H. Choi, D.- H. Kwak, D.-H. Kim, M.-S. Kim, et al., “Three-dimensional 128 gb mlc vertical nand flash memory with 24-wl stacked layers and 50 mb/s high- speed programming,” Solid-State Circuits, IEEE Journal of, vol. 50, no. 1, pp. 204–213, 2015.
  • K.-T. Park, O. Kwon, S. Yoon, M.-H. Choi, I.-M. Kim, B.-G. Kim, M.- S. Kim, Y.-H. Choi, S.-H. Shin, Y. Song, et al., “A 7mb/s 64gb 3-bit/cell ddr nand flash memory in 20nm-node technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, pp. 212–213, IEEE, 2011.
  • K. Takeuchi, “Hybrid solid-state storage system with storage class memory and nand flash memory for big-data application,” in Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, pp. 1046–1049, IEEE, 2014.
  • J.-Y. Kim, S.-H. Park, H. Seo, K.-W. Song, S. Yoon, and E.-Y. Chung, “Nand flash memory with multiple page sizes for high-performance storage devices,”
  • J.-W. Park, S.-H. Park, C. C. Weems, and S.-D. Kim, “A hybrid flash translation layer design for slc–mlc flash memory based multibank solid state disk,” Microprocessors and Microsystems, vol. 35, no. 1, pp. 48–59, 2011.
  • J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of hot data for flash memory storage systems,” ACM Transactions on Storage (TOS), vol. 2, no. 1, pp. 22–40, 2006.
  • J. Luo, L. Fan, and C. Tsu, “A nand flash management algorithm with limited on-chip buffer resource,” Computers & Electrical Engineering, vol. 44, pp. 1–12, 2015.
  • J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient flash translation layer for compactflash systems,” Consumer Electronics, IEEE Transactions on, vol. 48, no. 2, pp. 366–375, 2002.
  • J. Kim, D. H. Kang, B. Ha, H. Cho, and Y. I. Eom, “Mast: Multi-level associated sector translation for nand flash memory-based storage system,” in Computer Science and its Applications, pp. 817–822, Springer, 2015.
  • J. Chen, “Compensating for coupling during read operations of nonvolatile memory,” 2007. Patent, US 7,301,810.
  • H.-Y. Sung and C.-H. Wu, “Increasing multi-controller parallelism for hybrid-mapped flash translation layers,” in Network and Parallel Computing, pp. 567–570, Springer, 2014.
  • H. Uchigaito, S. Miura, and T. Nito, “A control scheme for eliminating garbage collection during highspeed analysis of big-graph data stored in nand flash memory,” in Circuits and Systems (ISCAS), 2015 IEEE International Symposium on, pp. 2557–2560, IEEE, 2015.
  • H. Toda, “Nonvolatile semiconductor memory,” 2004. Patent, US 6,807,096.
  • H. Tabrizi and R. Agarwal, “Predicting bad pages in nand flash to improve read time: A dynamic programming approach,” in Communications (ICC), 2015 IEEE International Conference on, pp. 289–294, IEEE, 2015.
  • H. Q. Pon, J. R. Dayacap, R. E. Frickey, S. Gogineni, P. F. Joseph, E. S. Lin, F. R. Pon, and J. P. Slattery, “Reliability issues studied in solid-state drives,” in Memory Workshop (IMW), 2014 IEEE 6th International, pp. 1– 4, IEEE, 2014.
  • H. Kwon, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Janus-ftl: finding the optimal point on the spectrum between page and block mapping schemes,” in Proceedings of the tenth ACM international conference on Embedded software, pp. 169–178, ACM, 2010.
  • H. Cho, D. Shin, and Y. I. Eom, “Kast: K-associative sector translation for nand flash memory in real-time systems,” in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 507–512, European Design and Automation Association, 2009.
  • G. Sun, Y. Joo, Y. Chen, Y. Chen, and Y. Xie, “A hybrid solid-state storage architecture for the performance, energy consumption, and lifetime improvement,” in Emerging Memory Technologies, pp. 51–77, Springer, 2014.
  • G. Naso, L. Botticchio,M. Castelli, C. Cerafogli,M. Cichocki, P. Conenna, A. d’Alessandro, L. De Santis, D. Di Cicco, W. Di Francesco, et al., “A 128gb 3b/cell nand flash design using 20nm planar-cell technology,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013.
  • E.-S. Choi, H.-S. Yoo, H.-S. Joo, G.-S. Cho, S.-K. Park, and S.-K. Lee, “A novel 3d cell array architecture for terra-bit nand flash memory,” inMemory Workshop (IMW), 2011 3rd IEEE International, pp. 1–4, IEEE, 2011.
  • E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” ACM Computing Surveys (CSUR), vol. 37, no. 2, pp. 138–163, 2005.
  • D. Nobunaga, E. Abedifard, F. Roohparvar, J. Lee, E. Yu, A. Vahidimowlavi, M. Abraham, S. Talreja, R. Sundaram, R. Rozman, et al., “A 50nm 8gb nand flash memory with 100mb/s program throughput and 200mb/s ddr interface,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 426–625, IEEE, 2008.
  • D. Lee, I. J. Chang, S.-Y. Yoon, J. Jang, D.-S. Jang, W.-G. Hahn, J.-Y. Park, D.-G. Kim, C. Yoon, B.-S. Lim, et al., “A 64gb 533mb/s ddr interface mlc nand flash in sub-20nm technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, pp. 430– 432, IEEE, 2012.
  • D. Jung, J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “Superblock ftl: a superblock-based flash translation layer with a hybrid address translation scheme,” ACM Transactions on Embedded Computing Systems (TECS), vol. 9, no. 4, p. 40, 2010.
  • D. He, F. Wang, H. Jiang, D. Feng, J. N. Liu, W. Tong, and Z. Zhang, “Improving hybrid ftl by fully exploiting internal ssd parallelism with virtual blocks,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 11, no. 4, p. 43, 2014.
  • D. Floyer, “The emergence of a new architecture for long-term data retention.” http://wikibon.org, Jul. 2014.
  • D. Floyer, “Evolution of all-flash array architecture.” http://wikibon.org, Jul. 2015.
  • C.-Y. Lu, “Future prospects of nand flash memory technology?the evolution from floating gate to charge trapping to 3d stacking,” Journal of nanoscience and nanotechnology, vol. 12, no. 10, pp. 7604–7618, 2012.
  • C. Trinh, N. Shibata, T. Nakano,M. Ogawa, J. Sato, Y. Takeyama, K. Isobe, B. Le, F. Moogat, N. Mokhlesi, et al., “A 5.6 mb/s 64gb 4b/cell nand flash memory in 43nm cmos,” in Solid-State Circuits Conference-Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, pp. 246–247, IEEE, 2009.
  • C. Sun, T. O. Iwasaki, T. Onagi, K. Johguchi, and K. Takeuchi, “Cost, capacity, and performance analyses for hybrid scm/nand flash ssd,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 61, no. 8, pp. 2360–2369, 2014.
  • C. Sun, K. Miyaji, K. Johguchi, and K. Takeuchi, “Scm capacity and nand over-provisioning requirements for scm/nand flash hybrid enterprise ssd,” in Memory Workshop (IMW), 2013 5th IEEE International, pp. 64–67, IEEE, 2013.
  • C. Sun, A. Soga, C.Matsui, A. Arakawa, and K. Takeuchi, “Lba scrambler: A nand flash aware data management scheme for high-performance solidstate drives,”
  • C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim, “A reconfigurable ftl (flash translation layer) architecture for nand flashbased applications,” ACM Transactions on Embedded Computing Systems (TECS), vol. 7, no. 4, p. 38, 2008.
  • C. Miccoli, K. Sarpatwari, D. Di Cicco, M. Cichocki, V. Moschiano, P. Ruby, and K. Parat, “Characterization and modeling of advanced placement algorithms for nand flash arrays,” in Memory Workshop (IMW), 2015 IEEE International, pp. 1–4, IEEE, 2015.
  • C. Matsui, A. Arakawa, C. Sun, T. O. Iwasaki, and K. Takeuchi, “3x faster speed solid-state drive with a write order based garbage collection scheme,” in Memory Workshop (IMW), 2015 IEEE International, pp. 1–4, IEEE, 2015.
  • C. Kim, J. Ryu, T. Lee, H. Kim, J. Lim, J. Jeong, S. Seo, H. Jeon, B. Kim, I. Lee, et al., “A 21 nm high performance 64 gbmlc nand flashmemory with 400 mb/s asynchronous toggle ddr interface,” Solid-State Circuits, IEEE Journal of, vol. 47, no. 4, pp. 981–989, 2012.
  • A. Soga, C. Sun, and K. Takeuchi, “Nand flash aware data management system for high-speed ssds by garbage collection overhead suppression,” in Memory Workshop (IMW), 2014 IEEE 6th International, pp. 1–4, IEEE, 2014.
  • A. Goda and K. Parat, “Scaling directions for 2d and 3d nand cells,” in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 2–1, IEEE, 2012.