박사

Analysis of load-carrying behavior of shallow- and piled-raft foundations by considering soil-structure interactions

박동규 2016년
논문상세정보
' Analysis of load-carrying behavior of shallow- and piled-raft foundations by considering soil-structure interactions' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • centrifuge test
  • ground water effect
  • hydraulically-controlled system
  • piled raft
  • piled raft interaction
  • shallow foundation
  • 말뚝지지 전면기초
  • 말뚝지지 전면기초 상호작용
  • 얕은기초
  • 원심모형실험
  • 지하수위
  • 지하수위 영향계수
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
142 0

0.0%

' Analysis of load-carrying behavior of shallow- and piled-raft foundations by considering soil-structure interactions' 의 참고문헌

  • AASHTO (1998). Manual on Subsurface Investigations. American Association of State Highway and Transportation Officials, Washington, D.C.
  • de Sanctis, L., and Mandolini, A. (2006). “Bearing capacity of piled rafts on soft clay soils.” Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1600-1610.
  • Won, J. O., Jeong, S., Lee, J. H., and Jang, S. Y. (2006), “Nonlinear threedimensional analysis of pile group supported columns considering pile cap flexibility,” Computers & Geotechnics, Vol. 33, pp. 355-370.
  • Vesic, A.S. (1975). Bearing capacity of Shallow foundations. In Geotechnical Engineering Handbook. Edited by Braja M. Das, Chapter 3, J. Ross Publishing, Inc., U.S.A.
  • Vesic, A.S. (1973). “Analysis of ultimate loads of shallow foundations.” J. Soil Mech. Found. Div., ASCE, 99(SM1), 45-73.
  • Tumay, M. Y., Boggess, R. L., and Acar, Y. (1982). “Subsurface investigation with piezocone penetrometer.” Proc., Cone Penetration Testing and Experience, ASCE, New York, 325–342.
  • Thorburn, S., Laird, C., and Randolph, M. F. (1983). “Storage tanks founded on soft soils reinforced with driven piles.” Proc., Conf. on Recent Advances in Piling and Ground Treatment, U.K. Institution of Civil Engineers, London, 157–164.
  • Terzaghi, K. and Peck, R. B. (1948). Soil Mechanics in Engineering Practice. John Wiley and Sons, New York
  • Terzaghi, K. (1943). Theoretical soil mechanics. John Wiley and Sons, New York.
  • Teng W.C. (1962). Foundation Design. third edition, Prentice-Hall Inc., Englewood Cliffs, N.J.
  • Shahriar, M. A., Sivakugan, N., and Das, B. M. (2013). “Settlement correction for future water table rise in granular soils: A numerical modelling approach.” Int. J. Geotech. Eng., 7(2), 214-217.
  • Shahriar, M. A., Sivakugan, N., and Das, B. M. (2012a). “Settlements of shallow foundations in granular soils due to rise of water table: A critical review.” Int. J. Geotech. Eng., 6(4), 515-524.
  • Shahriar, M. A., Sivakugan, N., Das, B. M., Urquhart, A., and Tapiolas, M. (2015). “Water Table Correction Factors for Settlements of Shallow Foundations in Granular Soils.” Int. J. Geomechanics, 15(1), 06014015.
  • Schmertmann, J. H., Brown, P. R., and Hartman, J. P. (1978). “Improved strain influence factor diagrams.” J. Geotech. Engrg. Div., 104(8), 1131–1135.
  • Schmertmann, J. H. (1970). “Static cone to compute static settlement over sand.” J. Soil Mech. and Found. Div., 96(3), 1011-1043.
  • Salgado, R., Lyamin, A.V., Sloan, S.W. and Yu, H.S. (2004). “Two- and threedimensional bearing capacity of foundations in clay.” Geotechnique. 54(5), 297-306.
  • Salgado, R. (2013). “The mechanics of cone penetration: contribution from experimental and theoretical studies.” Proc., Int. Conf. on Geotechnical and Geophysical Site Characterization 4 (ISC-4), Porto de Galinhas, Vol. 1, 131-153.
  • Salgado, R. (2008). The engineering of foundations, New York, McGraw-Hill.
  • Richard Moss, Mustafa Babiker, Sander Brinkman, Eduardo Calvo, Tim Carter, Jae Edmonds, Ismail Elgizouli, Seita Emori, Lin Erda, Kathy Hibbard, Roger Jones, Mikiko Kainuma, Jessica Kelleher, Jean Francois Lamarque, Martin Manning, Ben Matthews, Jerry Meehl, Leo Meyer, John Mitchell, Nebojsa Nakicenovic, Brian O’Neill, Ramon Pichs, Keywan Riahi, Steven Rose, Paul Runci, Ron Stouffer, Detlef van Vuuren, John Weyant, Tom Wilbanks, Jean Pascal van Ypersele, and Monika Zurek (2008). “Towards New Scenarios for Analysis of Emissions.” Climate Change, Impacts, and Response Strategies. Geneva: Intergovernmental Panel on Climate Change.
  • Reul, O., and Randolph, M. F. (2003). “Piled rafts in overconsolidated clay - Comparison of in-situ measurements and numerical analyses.” Geotechnique, 53(3), 301–315.
  • Reissner, H. (1924). “Zum erddruckproblem.” Proc. of 1st Int. Cong. of Appl. Mech., 295-311.
  • Prandtl, L. (1921). “Uber die eindringungs-festigkeit plastisher baustoffe und die festigkeit von schneiden.” Z. Ang. Math. Mech., 1(1), 15.
  • Poulos, H.G., Carter, J.P. and Small, J. C. (2001). “Foundations and retaining structures research and practice.” in Proc. of 15th Intl. Conf. Soil Mech. Found.Eng., Istanbul, Turkey, 4, A. A. Balkema, Rotterdam, 2527.
  • Poulos, H.G. (1993), “Settlement Prediction for Bored Pile Groups.” Proceedings of the 2th International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Ghent, Van Impe, W.F. Ed. Millpress, Rotterdam, 103-117.
  • Poulos, H. G. (2000). “Practical design procedures for piled raft foundations.” Design applications of raft foundations, Hemsley, J. A. ed., Thomas Telford, London, 425-467.
  • Philipponnat, G. (1980). “Methode pratique de calcul d’un pieu isole a l’aide du penetrometre statique.” Rev. Fr. Geotech., 10, 55–64.
  • Peck, R. B., and Bazaraa, A.R.S. (1967). “Settlement of Spread Footings from SPT Values”, Proceedings, Symposium on Interaction of Structure and Foundation, Foundation Engineering Society, Birmingham, 905-909.
  • Peck R.B., Hanson W.E., and Thornburn T.H. (1974). “Foundation Engineering.” 2nd Ed. John Wiley and Sons, New York.
  • Park, D. and Lee, J. (2015). “Comparative analysis of various interaction effects for piled rafts in sands using centrifuge test results.” J. Geotech. Geoenviron. Eng ASCE, 141 (1), 04014082.
  • O’Neill, M. W., Hawkins, R. A., and Mahar, L. J. (1982). “Load transfer mechanisms in piles and pile groups.” Journal of Geotechnical and Geoenvironmental Engineering, 108(12), 1605–1623.
  • NAVFAC DM 7.1 (1982). Soil mechanics design manual 7.1. Department of the Navy, Navy facilities engineering command, Alexandria, VA.
  • Michalowski, R.L., and You, L. (1998). “Effective width rule in calculations of bearing capacity of shallow footings.” Comp. and Geotech., 23, 237-253.
  • Michalowski, R.L. (1997). “An estimate of the influence of soil weight on bearing capacity using limit analysis.” Soils and Foundations. 37(4), 57-64.
  • Meyerhof, Go Go (1965), “Shallow Foundations,” J. Soil Mech. Found. Div., ASCE, 91(SM2), 21-31.
  • Meyerhof, G.G. (1955). “Influence of roughness of base and groundwater conditions on the ultimate bearing capacity of foundations.” G otechnique, 5(3). 227-242.
  • Meyerhof, G.G. (1951). “The ultimate bearing capacity of foundations.” Geotechnique, 2, 301-332.
  • Meyerhof, G. G. (1976). “Bearing capacity and settlement of pile foundations” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, 195–228.
  • Meyerhof, G. G. (1963). “Some recent research on the bearing capacity of foundations” Canadian Geotechnical journal, 1(1), 16-26.
  • Meyerhof, G. G. (1956), “Penetration Tests and Bearing Capacity of Cohesionless Soils.” J. Soil Mech. Found. Div.,, ASCE, 82(SM1), 1-19.
  • McCabe, B. A. and Lehane, B. M. (2006). “Behavior of Axially Loaded Pile Groups Driven in Clayey Silt.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(3), 401-410.
  • Loukidis, D. and Salgado, R. (2008). “Analysis of the shaft resistance of nondisplacement piles in sand.” Geotechnique, 58(4), 283-296.
  • Long, P. D. (1993). Footings with settlement-reducing piles in non-cohesive soil., Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden.
  • Liu, J. L., Yuan, Z. L. and Shang, K. P. (1985). “Cap-pile-soil interaction of bored pile groups.” Proceeding of 11th ICSMFE, San Francisco, Vol.3, 1433-1436.
  • Lehane, B.M., Li, Y., and Williams, R. (2013). “Shaft Capacity of Displacement Piles in Clay Using the Cone Penetration Test.” Journal of Geotechnical and Geoenvironmental Engineering, 139 (2), pp. 253-266.
  • Lee, S. H. and Chung, C. K. (2005). “An experimental study of the interaction of vertically loaded pile groups in sand.” Canadian Geotechnical journal, 42(5), 1485-1493.
  • Lee, J.H., Kim, Y.H. and Jeong, S (2010), “Three-dimensional analysis of bearing behavior of piled raft on soft clay,” Computers and Geotechnics, Vol. 37, pp.103-114.
  • Lee, J., Park, D., Kyung, D., Choi, K., and Choi, Y. (2012). The optimization of bridge foundation design. Rep. No RKO 2012-013, Korea Institute of Construction Technology, Goyang.
  • Lee, J. H., and Salgado, R. (1999). “Determination of pile base resistance in sands.” Journal of Geotechnical and Geoenvironmental Engineering, 125 (8), 673–683.
  • Lee, J. H. (2007). Nonlinear Three Dimensional Analysis of Settlement of Piled raft in Clay Soils. Ph.D. Thesis. Yonsei University, South Korea.
  • Koizumi, Y., and Ito, K. (1967). “Field tests with regard to pile driving and bearing capacity of piled foundations.” Soils Found., 7(3), 30–53.
  • Khanna P. L., Varghese P. C., and Hoon R. C. (1953). “Bearing pressure and penetration tests on typical soil strata in the region of the Hirakud Dam project,” Proc 3rd Int. Conf. on Soil Mech and Found. Eng., Zurich, 1, 246–252.
  • Kazi, M., Shukla S. K., and Habibi D. (2015). “Effect of Submergence on Settlement and Bearing Capacity of Surface Strip Footing on Geotextile-Reinforced Sand Bed”, Int. J. of Geosynth. and Ground Eng, 4, 1-12
  • Katzenbach, R., Arslan, U., and Moormann, C. (2000). “Piled raft foundation projects in Germany.” Design Applications of Raft Foundations, Hemsley, J. A. ed., Thomas Telford, London, 323-391.
  • Jeong, S., and Cho, J. (2011), “Simplified analysis of megafoundations for super tall buildings,” Proceedings of CTBUH 2011 World Conference, Seoul.
  • Jeong, S., Kim, J. and Lee, K. (2008). “Effect of clay content on well-graded sands due to infiltration.” Engineering Geology, 102(1-2), pp. 74-81.
  • Jeong, S., Kim, J. Kim, Y. and Bae, D. (2014), “Susceptibility assessment of landslides under extreme-rainfall events using hydro-geotechnical model; a case study of Umyeonsan (Mt.), Korea.” Natural Hazards and Earth System Sciences Discussions, 2(8), pp. 5575-5601.
  • Jeong, S., Cho, J., Lim, H. and Lee, J. (2012), “Nonlinear 3D coupled analysis of piled raft foundations for high-rise building,” Proceedings of IS-Kanazawa 2012, Kanazawa, pp. 461-466.
  • Horikoshi, K. and Randolph, M. F. (1998). “A contribution to the optimum design of piled rafts.” Geotechnique, 48(2), 301-317.
  • Horikoshi, K. and Randolph, M. F. (1996). “Centrifuge modelling of piled raft foundations on clay.” Geotechnique, 46(4), 741-752.
  • Hansen, J.B. (1970). “A revised and extended formula for bearing capacity.” Bull. No.28, Danish Geotechnical Institute, Copenhagen.
  • Hansen, B., Denver, H., and Petersen, K. (1987). “The influence of groundwater on bearing capacity of footings.” Proc. 9th European Conf. on Soil Mech and Found. Eng., Dublin. Vol. 2, 685-690.
  • Han, J. and Ye, S. L. (2006). “A field study on the behavior of a foundation underpinned by micropiles.” Canadian Geotechnical Journal, 43(1), 30-42.
  • Gui, M. W. and Bolton, M. D. (1998). “Geometry and scale effects in CPT and pile design.” Proc. 1st Int. Conf. Site Characterization, Atlanta, 1063-1068.
  • Giretti D. (2010). Modelling of piled raft foundations in sand. Ph.D. Thesis, University of Ferrara, Italy.
  • Garnier, J. & K nig, D. (1998). “Scale effects in piles and nails loading tests in sand.” Proc., Int. Conf. Centrifuge 98, Tokyo, Japan, 205–210.
  • Franke, E., El-Mossallamy, Y. and Wittmann, P. (2000). “Calculation Methods for Raft Foundations in Germany.” Design Applications of Raft Foundations, Hemsley, J. A. ed., Thomas Telford, London, 282-322.
  • Foray, P., Balachowski, L. & Rault, G. (1998). “Scale effect in shaft friction due to the localisation of deformations.” Proc., Int. Conf. Centrifuge 98, Tokyo, Japan, 211–216.
  • Fioravante, V. and Giretti, D. (2010). “Contact versus noncontact piled raft foundations.” Canadian Geotechnical Journal, 47(11), 1271-1287.
  • Ferreira, H. N. and Da Silva (1961). “Soil failure in the Luanda Region, geotechnic study of these soils.” Proc 5th Int. Conf. on Soil Mech and Found. Eng., Paris, 1, 95-99.
  • Dvorak, A. (1963). “Compressibility of Coarse Granular Soils.” Proc. European Conf. on Soil Mech and Found. Eng., Wiesbaden, Vol 1, 227-232.
  • DeBeer, E.E. (1970). “Experimental determination of the shape factors and the bearing capacity factors of sand.” Geotechnique. 20(4), 387-411.
  • De Ruiter, J., and Beringen, F. L. (1979). “Pile foundations for large North Sea structures.” Mar. Geotech., 3(3), 267–314.
  • Davis, E.,H., and Poulos, H., G. (1972). “The analysis of piled raft systems.” Australia Geotechnique Journal, G2, 21-27.
  • Conte, G., Mandolini, A., Randolph, M.F. (2003). “Centrifuge Modelling to Investigate the Performance of Piled Rafts.” Proc. 4th Int. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, Van Impe, W.F. Ed., Millpress, Rotterdam, 359-366.
  • Clisby, M. B., Scholtes, R. M., Corey, M. W., Cole, H. A., Teng, P., and Webb, J. D. (1978). An evaluation of pile bearing capacities, Volume I, Final Report, Mississippi State Highway Department.
  • Chen, W.F. (1975). “Limit analysis and soil plasticity.” Elsevier, Amsterdam.
  • Castelli, F., and Maugeri, M. (2002). “Simplified nonlinear analysis for settlement prediction of pile groups.” Journal of Geotechnical and Geoenvironmental Engineering, 128(1), 76–84.
  • Burland, J. B. and Burbidge, M. C. (1985). “Settlement of foundations on sand and gravel.” Proceedings of the Institution of Civil Engineers, Part I, 78(6): 1325-1381.
  • Burland, J. B. (1995). “Piles as Settlement Reducers.” Proc. of the 19th Italian Nat. Geo. Cong., Pavia, Italy, SF Editoriali, Padova, Italy, Vol. 2, 21-34.
  • Brand, E. W., Muktabhant, F., and Taechathummarak, A. (1972). “Load tests on small foundations in soft clay.” Proc., Conf. on Performance of Earth and Earth Supported Structures, ASCE, Vol. 1, Part 2, 903–928.
  • Bowles J.E. (1977). Foundation Analysis and Design. 2nd Ed, McGraw-Hill, New York.
  • Bolton, M. D. (1986). “The strength and dilatancy of sands.” G otechnique, 36, No. 1, 65-78.
  • Biarez, J., Burel, M. and Wack, B. 1961. “Contribution l’ tude de la force portante des fondations.” Proc. of 5th Intl. Conf. Soil Mech. Found. Eng., Paris, France, 1: 603.
  • Bazaraa A.R. (1967). “Use of the standard penetration test for estimating settlements of shallow foundations on sand.” Ph.D. dissertation, Department of Civil Engineering, University of Illinois, Champaign-Urbana.
  • Balachowski, L. (2007). “Size effect in centrifuge cone penetration tests.” Archives of Hydro-Engineering and Environmental Mechanics, 54(3), 161-181.
  • Ausilio, E. and Conte, E. (2005). “Influence of groundwater on the bearing capacity of shallow foundations.” Can. Geotech. J., 42(2), 663-672.
  • Alpan I. (1964). “Estimating the settlement of foundations on sand.” Civil Engineering and Public Works Review, 59 (700), 1415-1418.
  • Agarwal K. G. and Rana M. K. (1987). “Effect of ground water on settlement of footing in sand,” Proc 9th Eur. Conf.on Soil Mech and Found. Eng., Dublin, 2, 751-754.
  • ASTM (2000). “Standard test methods for minimum index density and unit weight of soils and calculation of relative density.” ASTM D4254, ASTM, PA, Unite States.
  • ASTM (2000). “Standard test methods for maximum index density and unit weight of soils using vibratory table.” ASTM D4253, ASTM, PA, Unite States.