박사

Development of organometal halide perovskite solar cells with enhanced hydrostability and photostability : 페로브스카이트 태양전지의 수분안정성 및 광안정성 개선 연구

황인성 2016년
논문상세정보
' Development of organometal halide perovskite solar cells with enhanced hydrostability and photostability : 페로브스카이트 태양전지의 수분안정성 및 광안정성 개선 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • perovskite
  • solar cell
  • stabilty
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
148 0

0.0%

' Development of organometal halide perovskite solar cells with enhanced hydrostability and photostability : 페로브스카이트 태양전지의 수분안정성 및 광안정성 개선 연구' 의 참고문헌

  • Zhou, Z.; Pang, S.; Liu, Z.; Xu, H.; Cui, G., Interface Engineering for High-Performance Perovskite Hybrid Solar Cells. J. Mater. Chem. A 2015, 3, 19205-19217.
  • Zhou, H.; Shi, Y.; Wang, K.; Dong, Q.; Bai, X.; Xing, Y.; Du, Y.; Ma, T., Low-Temperature Processed and Carbon-Based Zno/Ch3nh3pbi3/C Planar Heterojunction Perovskite Solar Cells. J. Phys. Chem. C 2015, 119, 4600-4605.
  • Zhang, L.; Liu, T.; Liu, L.; Hu, M.; Yang, Y.; Mei, A.; Han, H., The Effect of Carbon Counter Electrodes on Fully Printable Mesoscopic Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 9165-9170.
  • Zhang, H.; Liang, C.; Zhao, Y.; Sun, M.; Liu, H.; Liang, J.; Li, D.; Zhang, F.; He, Z., DynamicInterface Charge Governing the Current–Voltage Hysteresis in Perovskite Solar Cells. Phys. Chem. Chem. Phys. 2015, 17, 9613-9618.
  • Zhang, H.; Liang, C.; Zhao, Y.; Sun, M.; Liu, H.; Liang, J.; Li, D.; Zhang, F.; He, Z., Dynamic Interface Charge Governing the Current–Voltage Hysteresis in Perovskite Solar Cells. Physical Chemistry Chemical Physics 2015, 17, 9613-9618.
  • Zaban, A.; Greenshtein, M.; Bisquert, J., Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open‐Circuit Voltage Decay Measurements. ChemPhysChem 2003, 4, 859-864.
  • Yu, Y.; Li, J.; Geng, D.; Wang, J.; Zhang, L.; Andrew, T. L.; Arnold, M. S.; Wang, X., Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures. ACS Nano 2015, 9, 564-572.
  • Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C., Cuscn-Based Inverted Planar Perovskite Solar Cell with an Average Pce of 15.6%. Nano Lett. 2015, 15, 3723-3728.
  • Yang, Y.; Ri, K.; Mei, A.; Liu, L.; Hu, M.; Liu, T.; Li, X.; Han, H., The Size Effect of Tio2 Nanoparticles on a Printable Mesoscopic Perovskite Solar Cell. J. Mater. Chem. A 2015, 3, 9103-9107.
  • Xiao, Y.; Han, G.; Chang, Y.; Zhou, H.; Li, M.; Li, Y., An All-Solid-State Perovskite-Sensitized Solar Cell Based on the Dual Function Polyaniline as the Sensitizer and P-Type Hole-Transporting Material. J. Power sources 2014, 267, 1-8.
  • Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials 2014, 26, 1584-1589.
  • Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584-1589.
  • WebMineral Perovskite Mineral Data. http://webmineral.com/data/Perovskite.shtml#.VdV7W7Ltmko.
  • Wang, L.; Fu, W.; Gu, Z.; Fan, C.; Yang, X.; Li, H.; Chen, H., Low Temperature Solution Processed Planar Heterojunction Perovskite Solar Cells with a Cdse Nanocrystal as an Electron Transport/Extraction Layer. J. Mater. Chem. C 2014, 2, 9087-9090.
  • Umari, P.; Mosconi, E.; De Angelis, F., Relativistic Gw Calculations on Ch3nh3pbi3 and Ch3nh3sni3 Perovskites for Solar Cell Applications. Sci. Rep. 2014, 4.
  • Tsai, K.-W.; Chueh, C.-C.; Williams, S. T.; Wen, T.-C.; Jen, A. K. Y., High-Performance Hole-Transporting Layer-Free Conventional Perovskite/Fullerene Heterojunction Thin-Film Solar Cells. J. Mater. Chem. A 2015, 3, 9128-9132.
  • Tak, Y.; Hong, S. J.; Lee, J. S.; Yong, K., Fabrication of Zno/Cds Core/Shell Nanowire Arrays for Efficient Solar Energy Conversion. Journal of Materials Chemistry 2009, 19, 5945-5951.
  • Swetha, T.; Singh, S. P., Perovskite Solar Cells Based on Small Molecule Hole Transporting Materials. J. Mater. Chem. A 2015, 3, 18329-18344.
  • Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties. Inorganic chemistry 2013, 52, 9019-9038.
  • Son, D.-Y.; Bae, K.-H.; Kim, H.-S.; Park, N.-G., Effects of Seed Layer on Growth of Zno Nanorod and Performance of Perovskite Solar Cell. J. Phys. Chem. C 2015, 119, 10321-10328.
  • Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W., Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511-1515.
  • Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I., A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. Int. Ed. 2014, 53, 11232-11235.
  • Seol, M.; Ramasamy, E.; Lee, J.; Yong, K., Highly Efficient and Durable Quantum Dot Sensitized Zno Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. J. Phys. Chem. C 2011, 115, 22018-22024.
  • Seol, M.; Kim, H.; Tak, Y.; Yong, K., Novel Nanowire Array Based Highly Efficient Quantum Dot Sensitized Solar Cell. Chem. Commun. 2010, 46, 5521-5523.
  • Salim, T.; Sun, S.; Abe, Y.; Krishna, A.; Grimsdale, A. C.; Lam, Y. M., Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance. J. Mater. Chem. A 2015, 3, 8943-8969.
  • Sahay, P. P.; Nath, R. K.; Tewari, S., Optical Properties of Thermally Evaporated Cds Thin Films. Cryst. Res. Technol. 2007, 42, 275-280.
  • Ren, Z.; Ng, A.; Shen, Q.; Gokkaya, H. C.; Wang, J.; Yang, L.; Yiu, W.-K.; Bai, G.; Djurišić, A. B.; Leung, W. W.-f., Thermal Assisted Oxygen Annealing for High Efficiency Planar Ch3nh3pbi3 Perovskite Solar Cells. Sci. Rep. 2014, 4, 6752.
  • Rao, H.-S.; Wu, W.-Q.; Liu, Y.; Xu, Y.-F.; Chen, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Cds/Cdse Co-Sensitized Vertically Aligned Anatase Tio2 Nanowire Arrays for Efficient Solar Cells. Nano Energy 2014, 8, 1-8.
  • Poglitsch, A.; Weber, D., Dynamic Disorder in Methylammoniumtrihalogenoplumbates (Ii) Observed by Millimeter‐Wave Spectroscopy. The Journal of Chemical Physics 1987, 87, 6373-6378.
  • Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M.; Rensmo, H. k.,Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures - A Photoelectron Spectroscopy Investigation. Chem. Mater. 2015, 27, 1720-1731
  • Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M.; Rensmo, H. k., Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures a Photoelectron Spectroscopy Investigation. Chemistry of Materials 2015, 27, 1720-1731.
  • Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764-1769.
  • Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y., Study on the Stability of Ch3nh3pbi3 Films and the Effect of Post-Modification by Aluminum Oxide in All-Solid-State Hybrid Solar Cells. J. Mater. Chem. A 2014, 2, 705-710.
  • Niu, G.; Guo, X.; Wang, L., Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 8970-8980.
  • Nicolau, Y., Solution Deposition of Thin Solid Compound Films by a Successive Ionic-Layer Adsorption and Reaction Process. Applications of Surface Science 1985, 22, 1061-1074.
  • Nagaoka, H.; Ma, F.; deQuilettes, D. W.; Vorpahl, S. M.; Glaz, M. S.; Colbert, A. E.; Ziffer, M. E.; Ginger, D. S., Zr Incorporation into Tio2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells While Increasing Carrier Lifetimes. J. Phys. Chem. Lett. 2015, 6, 669-675.
  • NREL Nrel Efficiency Chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
  • Mitzi, D. B., Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials. Prog. Inorg. Chem. 2007, 48, 1-121.
  • Matsumoto, F.; Vorpahl, S. M.; Banks, J. Q.; Sengupta, E.; Ginger, D. S., Photodecomposition andMorphology Evolution of Organometal Halide Perovskite Solar Cells. J. Phys. Chem. C 2015, 119, 20810-20816.
  • Mart , A.; Ara jo, G. L., Limiting Efficiencies for Photovoltaic Energy Conversion in Multigap Systems. Sol. Energy Mater. Sol. Cells 1996, 43, 203-222.
  • Marinova, N.; Tress, W.; Humphry-Baker, R.; Dar, M. I.; Bojinov, V.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Gr tzel, M., Light Harvesting and Charge Recombination in Ch3nh3pbi3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS nano 2015, 9, 4200-4209.
  • Mahmood, K.; Swain, B. S.; Jung, H. S., Controlling the Surface Nanostructure of Zno and Al-Doped Zno Thin Films Using Electrostatic Spraying for Their Application in 12% Efficient Perovskite Solar Cells. Nanoscale 2014, 6, 9127-9138.
  • Mahmood, K.; S. Swain, B.; Amassian, A., Double-Layered Zno Nanostructures for Efficient Perovskite Solar Cells. Nanoscale 2014, 6, 14674-14678.
  • Luo, Q.; Zhang, Y.; Liu, C.; Li, J.; Wang, N.; Lin, H., Iodide-Reduced Graphene Oxide with Dopant-Free Spiro-Ometad for Ambient Stable and High-Efficiency Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 15996-16004.
  • Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395-398.
  • Liu, D.; Kelly, T. L., Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat. Photonics 2014, 8, 133-138.
  • Lippens, P.; Lannoo, M., Calculation of the Band Gap for Small Cds and Zns Crystallites. Physical Review B 1989, 39, 10935.
  • Li, Z.; Kulkarni, S. A.; Boix, P. P.; Shi, E.; Cao, A.; Fu, K.; Batabyal, S. K.; Zhang, J.; Xiong, Q.; Wong, L. H.; Mathews, N.; Mhaisalkar, S. G., Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano 2014, 8, 6797-6804.
  • Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J., Overcoming Ultraviolet Light Instability of Sensitized Tio2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells. Nat. Commun. 2013, 4, 4885.
  • Lee, Y.-L.; Lo, Y.-S., Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of Cds/Cdse. Adv. Funct. Mater. 2009, 19, 604-609.
  • Lee, Y.-L.; Chang, C.-H., Efficient Polysulfide Electrolyte for Cds Quantum Dot-Sensitized Solar Cells. J. Power Sources 2008, 185, 584-588.
  • Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
  • Laban, W. A.; Etgar, L., Depleted Hole Conductor-Free Lead Halide Iodide Heterojunction Solar Cells. Energy & Environmental Science 2013, 6, 3249-3253.
  • Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y., Highly Efficient Electron Transport Obtained by Doping Pcbm with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. Nano Lett. 2015, 15, 2756-2762.
  • Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full Printable Processed Mesoscopic Ch3nh3pbi3/Tio2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep. 2013, 3, 3132.
  • Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
  • Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y., High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Adv. Mater. 2015, 27, 695-701.
  • Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
  • Kieslich, G.; Sun, S.; Cheetham, A. K., An Extended Tolerance Factor Approach for Organic–Inorganic Perovskites. Chemical Science 2015, 6, 3430-3433.
  • Kamat, P. V., Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908-918.
  • Jung, M.-C.; Raga, S. R.; Ono, L. K.; Qi, Y., Substantial Improvement of Perovskite Solar CellsStability by Pinhole-Free Hole Transport Layer with Doping Engineering. Sci. Rep. 2015, 5, 9863.
  • Jeong, I.; Jo, C.; Anthonysamy, A.; Kim, J. M.; Kang, E.; Hwang, J.; Ramasamy, E.; Rhee, S. W.; Kim, J. K.; Ha, K. S., Ordered Mesoporous Tungsten Suboxide Counter Electrode for Highly Efficient Iodine‐Free Electrolyte‐Based Dye‐Sensitized Solar Cells. ChemSusChem 2013, 6, 299-307.
  • Jeong, I.; Jin Kim, H.; Lee, B.-S.; Jung Son, H.; Young Kim, J.; Lee, D.-K.; Kim, D.-E.; Lee, J.; Ko, M. J., Highly Efficient Perovskite Solar Cells Based on Mechanically Durable Molybdenum Cathode. Nano Energy 2015, 17, 131-139.
  • Jeong, B.-S.; Norton, D.; Budai, J., Conductivity in Transparent Anatase Tio 2 Films Epitaxially Grown by Reactive Sputtering Deposition. Solid State Electron. 2003, 47, 2275-2278.
  • Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897-903.
  • Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H., Effects of Surface Blocking Layer of Sb2s3 on Nanocrystalline Tio2 for Ch3nh3pbi3 Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16995-17000.
  • Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088-4093.
  • Hwang, S. H.; Roh, J.; Lee, J.; Ryu, J.; Yun, J.; Jang, J., Size-Controlled Sio 2 Nanoparticles as Scaffold Layers in Thin-Film Perovskite Solar Cells. J. Mater. Chem. A 2014, 2, 16429-16433.
  • Hwang, I.; Yong, K., Environmentally Benign and Efficient Ag2s‐Zno Nanowires as Photoanodes for Solar Cells: Comparison with Cds‐Zno Nanowires. ChemPhysChem 2013, 14, 364-368.
  • Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K., Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS applied materials & interfaces 2015, 7, 17330-17336.
  • Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K., Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. ACS Appl. Mater. Interfaces 2015, 7, 17330-17336.
  • Hu, L.; Wang, W.; Liu, H.; Peng, J.; Cao, H.; Shao, G.; Xia, Z.; Ma, W.; Tang, J., Pbs Colloidal Quantum Dots as an Effective Hole Transporter for Planar Heterojunction Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 515-518.
  • Heo, J. H.; You, M. S.; Chang, M. H.; Yin, W.; Ahn, T. K.; Lee, S.-J.; Sung, S.-J.; Kim, D. H.; Im, S. H., Hysteresis-Less Mesoscopic Ch3nh3pbi3 Perovskite Hybrid Solar Cells by Introduction of Li-Treated Tio2 Electrode. Nano Energy 2015, 15, 530-539.
  • Hao, F.; Stoumpos, C. C.; Liu, Z.; Chang, R. P.; Kanatzidis, M. G., Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. J. Am. Chem. Soc. 2014, 136, 16411-16419.
  • Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G., Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells. Nat. Photonics 2014, 8, 489-494.
  • Hanusch, F. C.; Wiesenmayer, E.; Mankel, E.; Binek, A.; Angloher, P.; Fraunhofer, C.; Giesbrecht, N.; Feckl, J. M.; Jaegermann, W.; Johrendt, D., Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. J. Phys. Chem. Lett. 2014, 5, 2791-2795.
  • Habisreutinger, S. N.; Leijtens, T.; Eperon, G. E.; Stranks, S. D.; Nicholas, R. J.; Snaith, H. J., Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Lett. 2014, 14, 5561-5568.
  • Ha, T.-J.; Kiriya, D.; Chen, K.; Javey, A., Highly Stable Hysteresis-Free Carbon Nanotube Thin-FilmTransistors by Fluorocarbon Polymer Encapsulation. ACS Appl. Mater. Interfaces 2014, 6, 8441-8446.
  • Ha, T.-J.; Kiriya, D.; Chen, K.; Javey, A., Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer Encapsulation. ACS applied materials & interfaces 2014, 6, 8441-8446.
  • Gr tzel, M., The Light and Shade of Perovskite Solar Cells. Nat. Mater. 2014, 13, 838-842.
  • Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; van Schilfgaarde, M.; Walsh, A., Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Lett. 2014, 14, 2584-2590.
  • Feng, H.-J.; Paudel, T. R.; Tsymbal, E. Y.; Zeng, X. C., Tunable Optical Properties and Charge Separation in Ch3nh3snxpb1–Xi3/Tio2-Based Planar Perovskites Cells. J. Am. Chem. Soc. 2015, 137, 8227-8236.
  • Fakharuddin, A.; Di Giacomo, F.; Ahmed, I.; Wali, Q.; Brown, T. M.; Jose, R., Role of Morphology and Crystallinity of Nanorod and Planar Electron Transport Layers on the Performance and Long Term Durability of Perovskite Solar Cells. J. Power sources 2015, 283, 61-67.
  • Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gr tzel, M., Mesoscopic Ch3nh3pbi3/Tio2 Heterojunction Solar Cells. J. Am. Chem. Soc. 2012, 134, 17396-17399.
  • Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Gr tzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials 2014, 26, 6160-6164.
  • Dong, X.; Fang, X.; Lv, M.; Lin, B.; Zhang, S.; Ding, J.; Yuan, N., Improvement of the Humidity Stability of Organic–Inorganic Perovskite Solar Cells Using Ultrathin Al 2 O 3 Layers Prepared by Atomic Layer Deposition. J. Mater. Chem. A 2015, 3, 5360-5367.
  • Christians, J. A.; Fung, R. C. M.; Kamat, P. V., An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758-764.
  • Chen, H. N.; Li, W. P.; Liu, H. C.; Zhu, L. Q., Cds Quantum Dots Sensitized Single- and Multi-Layer Porous Zno Nanosheets for Quantum Dots-Sensitized Solar Cells. Electrochem. Comm. 2011, 13, 331-334.
  • Chander, N.; Khan, A.; Chandrasekhar, P.; Thouti, E.; Swami, S. K.; Dutta, V.; Komarala, V. K., Reduced Ultraviolet Light Induced Degradation and Enhanced Light Harvesting Using Yvo4: Eu3+ Down-Shifting Nano-Phosphor Layer in Organometal Halide Perovskite Solar Cells. Appl. Phys. Lett. 2014, 105, 033904.
  • Cha, D.; Kim, S.; Huang, N. K., Study on Electrical Properties of Cds Films Prepared by Chemical Pyrolysis Deposition. Mater. Sci. Eng., B 2004, 106, 63-68.
  • Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gr tzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316-319.
  • Bi, D.; Moon, S.-J.; H ggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M.; Nazeeruddin, M. K.; Gr tzel, M.; Hagfeldt, A., Using a Two-Step Deposition Technique to Prepare Perovskite (Ch3nh3pbi 3) for Thin Film Solar Cells Based on Zro 2 and Tio 2 Mesostructures. Rsc Advances 2013, 3, 18762-18766.
  • Bi, D.; Boschloo, G.; Schwarzmuller, S.; Yang, L.; Johansson, E. M. J.; Hagfeldt, A., Efficient and Stable Ch3nh3pbi3-Sensitized Zno Nanorod Array Solid-State Solar Cells. Nanoscale 2013, 5, 11686-11691.
  • Bergmann, V. W.; Weber, S. A. L.; Javier Ramos, F.; Nazeeruddin, M. K.; Gr tzel, M.; Li, D.; Domanski, A. L.; Lieberwirth, I.; Ahmad, S.; Berger, R., Real-Space Observation of Unbalanced Charge Distribution inside a Perovskite-Sensitized Solar Cell. Nat Commun 2014, 5.
  • Barote, M.; Yadav, A.; Masumdar, E., Synthesis, Characterization and Photoelectrochemical Properties of N-Cds Thin Films. Physica B 2011, 406, 1865-1871.
  • Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and Crystal Chemistry of the Hybrid Perovskite (Ch3nh3)Pbi3 for Solid-State Sensitised Solar Cell Applications. J. Mater. Chem. A 2013, 1, 5628-5641.
  • Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated Via Lewis Base Adduct of Lead(Ii) Iodide. J. Am. Chem. Soc. 2015, 137, 8696-8699.