박사

반도체 기반 광대역 테라헤르츠 소자 제작, 특성 및 응용 연구 = Study on the fabrication, characterization and their applications of Terahertz devices based on semiconductor

신준환 2016년
논문상세정보
' 반도체 기반 광대역 테라헤르츠 소자 제작, 특성 및 응용 연구 = Study on the fabrication, characterization and their applications of Terahertz devices based on semiconductor' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 광전도안테나
  • 그래핀
  • 이산화 바나듐
  • 탄소나노튜브
  • 테라헤르츠
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
295 0

0.0%

' 반도체 기반 광대역 테라헤르츠 소자 제작, 특성 및 응용 연구 = Study on the fabrication, characterization and their applications of Terahertz devices based on semiconductor' 의 참고문헌

  • Z. Yao, C. L. Kane, and C. Dekker (2000), ‘High-field electrical transport in single-wall carbon nanotubes’, Physical Review Letters, 84, 2941-2944.
  • Z. Yang, C. Ko, and S. Ramanathan (2011), ‘Oxide electronics utilizing ultrafast metal- insulator transitions’, Annual Review of Materials Research, 41, 337-367.
  • Z. Ni, Y. Wang, T. Yu, and Z. Shen (2010), ‘Raman spectroscopy and imaging of graphene’, Nano Research, 1, 273-291.
  • Y.-S. Lee (2009), ‘Principles of terahertz science and technology’, Springer, New York.
  • Y.-F Chen, M. S. Fuhrer (2005), ‘Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes’, Physical Review Letters, 95, 236803.
  • Y. Zhao, J. H. Lee, Y. Zhu, M. Nazari, C. Chen, H. Wang, A. Bernussi, M. Holtz, and Z. Fan (2012), ‘Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates’, Journal of Applied Physics, 79, 677-732.
  • Y. Yang, A. Shutler, and D. R. Grischkowsky (2011), ‘Measurement of the transmission of the atmosphere from 0.2 to 2 THz’, Optics Express, 19, 8830-8838.
  • Y. W. Lee, B. J. Kim, S. Choi, H. -T. Kim, and G. Kim (2007), ‘Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film’, Optics Express, 15, 12108-12113.
  • Y. Muraoka and Z. Hiroi (2002), ‘Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates’, Applied Physics Letters, 80, 583-585.
  • Y. Lee, S. Bae, H. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn (2010), ‘Wafer-scale synthesis and transfer of graphene films’, Nano Letters, 10, 490-493.
  • X. Tan, T. Yao, R. Long, Z. Sun, Y. Feng, H. Cheng, X. Yuan, W. Zhang, Q. Liu, C. Wu, and Y. Xie (2012), ‘Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping’, Scientific Reports, 2, 466.
  • X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston (1990), ‘Generation of femtosecond electromagnetic pulses from semiconductor surfaces’, Applied Physics Letters, 56, 1011-1013.
  • W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lu, M. S. Shur, C. A. Saylor, and L. C. Brunel (2002), ‘Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor’, Applied Physics Letters, 80, 3434.
  • W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M. S. Shur, G. Simin, X. Hu, M. asifkhan, C. A. Saylor, and L. C. Brunel, (2002), ‘Nonresonant detection of terahertz radiation in field effect transistors’, Journal of Applied Physics, 91, 9346.
  • W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. Meziani, and T. Otsuji (2009), ‘Field effect transistors for terahertz detection: physics and first imaging applications’, Journal of Infrared Millimeter, and Terahertz Waves 30, 1319-1337.
  • W. Kanp, Y. Deng, S. Rumyantsev, and M. S. Shur (2002), ‘Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors’, Applied Physics Letters, 81, 4637.
  • W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman, and Q. Xu (2014), ‘High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures’, Nano Letters, 14, 1242-1248.
  • W. Aenchbacher, M. Naftly, and R. Dudley (2010), ‘Line strengths and self-broadening of pure rotational lines of nitrous oxide measured by terahertz time-domain spectroscopy’, Journal of the Optical Society of America B, 27, 1717-1721.
  • V. Ryzhii, M. Ryzhii, and T. Otsuji (2007), ‘Negative dynamic conductivity of graphene with optical pumping’, Journal of Applied Physics, 101, 083114.
  • V. Eyert (2002), ‘The metal-insulator transitions of VO2: A band theoretical approach’, Annals of physics, 11, 650-702.
  • T. Winzer, E. Malić, and A Knorr (2012), ‘Microscopic mechanism for transient population inversion and optical gain in graphene’, arXiv:1209.4833v1.
  • T. Li, L. Luo, M. Hupalo. J. Zhan, M. C. Tringides, J. Schmalian, and J. Wang (2012), ‘Femtosecond population inversion and stimulated emission of Dirac fermions in graphene’, Physical Review Letters, 108, 167401.
  • T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch (2004), ‘Room-temperature operation of an electrically driven terahertz modulator’, Applied Physics Letters, 84, 3555-3557.
  • T. J. Carrig, G. Rodriguez, T. S. Clement, A. J. Taylor, and K. R. Stewart (1995), ‘Scaling of terahertz radiation via optical rectification in electro-optic crystals’, Applied Physics Letters, 66, 121-123.
  • T. G. Phillips and J. Keene (1992), ‘Submillimeter astronomy’, Proceedings of the IEEE, 80, 1662-1678.
  • T. Driscoll, H. -T. Kim, B. -G. Chae, B. -J. Kim, Y, -W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov (2009), ‘Memory metamaterials’, Science, 325, 1518-1521.
  • Suho Chu, Won-Suk Han, Il-Doo Kim, Young-Guen Han, Kwanil Lee, Sang Bae Lee, and Yong-Won Song (2010), ‘Ultrafast saturable absorption devices incorporating efficiently electrosprayed carbon nanotubes’, Applied Physics Letters, 96, 051111.
  • S. Reich, M. Dworzak, A. Hoffman, C. Thomsen, and M. S. Strano (2005), ‘Excited-state carrier lifetime in single-walled carbon nanotubes’, Physical Rreview B, 71, 033402.
  • S. L. Chuang, S. S.-R, B. I. Greece,P. N. Saeta, and A. F. J. Levi (1992), ‘Optical rectification at semiconductor surfaces’, Physical Review Letters, 68, 102-105.
  • S. Iijima (1991), ‘Helical microtubules of graphitic carbon’, Nature, 354, 56-58.
  • S. Gupta, M. Frankel, J. A. Valdmains, J. F. Whitaker, G. A. Mourou, F. W. Smith and A. R. Calawa (1991), ‘Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures’, Applied Physics Letters, 59, 3276-3278.
  • S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee (2013), ‘Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films’, Applied Physics Letters, 102, 063501.
  • R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch (2009), ‘Liquid crystal based electrically switchable Bragg structure for Thz waves’, Optics Express, 17, 7377-7382.
  • R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim (2008), ‘Fine structure constant defines visual transparency of graphene’, Science, 320, 1308.
  • R. L. Fork, B. I. Greene, and C. V. Shank (1981), ‘Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking’, Applied Physics Letters, 38, 671-672.
  • R. Kersting, K. Unterrainer, G. Strasser, H. F. Kauffmann, and E. Gornik (1997), ‘Few-cycle THz emission from cold plasma oscillations’, Physicsal Review Letters, 79, 3038-3041.
  • R. B. Weisman and S. M. Bachilo (2003), ‘Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot’, Nano Letters, 3, 1235-1238.
  • P. Y. Han and X. -C. Zhang (2001), ‘Free-space coherent boradband terahertz time-domain spectroscopy’, Measurement Science and Technology, 12, 1747-1756.
  • P. Sheng (1980), ‘Fluctuation-induced tunneling conduction in disordered materials’, Physical Review B, 21, 2180-2195.
  • P. R. Wallace (1947), ‘The band theory of graphite’, Physical Review, 71, 622-634.
  • P. Gu, M. Tani, S. Kono, K. Sakai and X. -C. Zhang (2002), ‘Study of terahertz radiation from InAs and InSb’, Journal of Applied Physics, 91, 5533-5537.
  • P. F. Moulton (1986), ‘Spectroscopic and laser characteristics of Ti:Al2O3’, Journal of the Optical Society of America B, 3, 125-133.
  • O. J. Korovyanko, C. -X. Sheng, Z. V. Vardeny, A. B. Dalton, and R. H. Baughman (2004), ‘Ultrafast spectroscopy of excitons in single-walled carbon nanotubes’, Physical Review Letters, 92, 017403.
  • N. V. Smith (2001), ‘Classical generalization of the Drude formula for the optical conductivity’, Physical Review B, 64, 155106.
  • N. Sekine, K. Hirakawa, F. Sogawa, Y. Arakawa, N. Usami, Y. Shiraki, and T. Katoda (1996), ‘Ultrashort lifetime photocarriers in Ge thin films’, Applied Physics Letters, 68, 3419-3421.
  • N. R. Mlyuka, G. A. Niklasson, and C. G. Granqvist (2009), ‘Mg doping of thermocomic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature’, Applied Physics Letters, 95, 171909.
  • M. Tonouchi (2007), ‘Cutting-edge terahertz technology’, Nature Photonics, 1, 97-105.
  • M. Tinkham (1956), ‘Energy gap interpretation of experiments on infrared transmission through superconducting films’, Physical Review, 104, 845-846.
  • M. Tani, S. Matsuura, K. Sakai, and S. Nakashima (1997), ‘Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs’, Applied Optics, 36, 7853-7859.
  • M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, W. Knap, and W. Gwarek (2008), ‘Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors’, Journal of Applied Physics, 104, 024519.
  • M. S. Dresselhaus, G. Dresselhaus, R saito, and A. Jorio (2005), ‘Raman spectroscopy of carbon nanotubes’, Physics Reports, 409, 47-99.
  • M. Reid and R. Fedosejevs (2005), ‘Guantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences’, Applied Optics, 44, 149-153.
  • M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Perrg-Barnea, and A. H. MacDonald (2008), ‘Plasmons and the spectral function of graphene’, Physical Review B, 77, 081411(R).
  • M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov (2007), ‘Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging’, Science, 318, 1750-1753.
  • M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater (2009), ‘Frequency tunable near-infrared metamaterials based on VO2 phase transition’, Optics Express, 17, 18330-18339.
  • M. J. Allen, V. C. Tung, and R. B. Kaner (2010). ‘Honeycomb carbon: A review of graphene’, Chemistry Review, 110, 132-145.
  • M. Dyakonov, M. Shur (1996), ‘Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional elecgtronic fluid’, IEEE transactions on Electron Devices, 43, 380-387.
  • M. Dyakonov, M. Shur (1993), ‘Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current’, Physical Review Letters, 71, 2465-2468.
  • M. C. Nuss, D. W. Kisker, P. R. Smith, and T. E. Harvey (1989), ‘Efficient generation of 480 fs electrical pulses on transmission lines by photoconductive switching in metalorganic chemical vapor deposited CdTe’, Applied Physics Letters, 54, 57-59.
  • M. A. Hamon, M. E. Itkis, S. Niyogi, T. Alvaraez, C.Kuper, M. Menon, and R. C. Haddon (2001), ‘Effect of rehybridization on the electronic structure of single-walled carbon nanotubes‘, Journal of the American Chemical Society, 123, 11292-11293.
  • L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrrari, W. Knap, M. Polini, V. Pellegrini, and A Tredicucci (2012), ‘Graphene filed-effect transistors as room-temperature terahertz detectors’, Nature Materials, 11, 865-871.
  • L. V. Titova, C. L. Pint, Q. Zhang, R. H. Hauge, J. Kono, and F. A. Hegmann (2015), ‘Generation of terahertz radiation by optical excitation of aligned carbon nanotubes’, Nano Letters, 15, 3267-3272.
  • L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu (2014), ‘Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation’, Nano Letters, 14, 4036-4043.
  • K. Sakai (2005), ‘Terahertz optoelectronics’, Springer, Berlin.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov (2004), ‘Electric field effect in atomically thin carbon films’, Science, 306, 666-669.
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov (2005), ‘Two-dimensional gas of massless Dirac fermions in graphene’, Nature, 438, 197-200.
  • K. Moon, J. Choi, J.-H. Shin, S.-P. Han, H. Ko, N. Kim, J.-W. Park, and K. H. Park (2014), ‘Generation and detection of terahertz waves using low-temperature grown GaAs with an annealing process’, ETRI Journal, 36, 159-162.
  • K. Moon, J. Choi, J.-H. Shin S.-P. Han, H. Ko, N. Kim, J.-W. Park, Y.-J. Yoon, K.-T. Kang, H.-C. Ryu and K. H. Park (2014), ‘Generation and detection of Terahertz waves using low-temperature-grown GaAs with an annealing process’, ETRI Journal, 36, 159-162.
  • J.-C. Charlier, X. Blase, and S. Roche (2007), ‘Electronic and transport properties of nanotubes’, Reviews of Modern Physics, 79, 677-732.
  • J. Yoon, G. Lee, C. Park, B. S. Mun, H. Ju (2014), ‘Investigation of length-depedent characteristics of the voltage-induced metal-insulator transition in VO2 film devices’, Applied Physics Letters, 105, 083503.
  • J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund Jr. (2006), ‘Modulated optical transmission of subwavelength hole arrays in metal-VO2 films’, Applied Physics Letters, 88, 133115.
  • J. W. McClure (1956), ‘Diamagnetism of graphite’, Physical Review, 104, 666-671.
  • J. M. Gregg, R. M. Bowman (1997), ‘The effect of applied strain on the resistance of VO2 thin films’, Applied Physics Letters, 71, 3649.
  • J. Kyoung, E. Y. Jang, M. D. Lima, H. -R. Park, R. O. Robles, X. Lepr , Y. H. Kim, R. H. Baughman, and D. -S. Kim (2011), ‘A reel-wound carbon nanotube polarizer for terahertz frequencies’, Nano Letters, 11, 4227-4231.
  • J. A. Valdmanis, R. L. Fork, and J. P. Gordon (1985), ‘Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain’, Optics Letters, 10, 131-133.
  • J. -H. Shin, K. Moon, E. S. Lee, I. -M. Lee, and K. H. Park (2015), ‘Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer’, Nanotechnology, 26, 315203.
  • I. Takahashi, M. Hibino, and T. kudo (2001), ‘Thermochromic properties of double-doped VO2 thin films prepared by a wet coating method using polyvanadate-based sols containing W and Mo or W and Ti’, Japanese Journal of Applied Physics, 40, 1391-1395.
  • I. Gierz, J. C. Peterson, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. St hr, A. K hler, U. starke, and A. Cavalleri (2013), ‘Snapshots of non-equilibirium Dirac carrier distributions in graphene’, Nature Materials, 12, 1119-1124.
  • H.-T. Chen, W. J. Padilla, M. J. Cich,A. K. Azad, R. D. Averitt, and A. J. Taylor (2009), ‘A metamaterial solid-state terahertz phase modulator’, Nature Photonics, 3, 148-151.
  • H. Yan, X. Li, B. Chandra, G. Tuevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and Fengnian Xia (2012), ‘Tunable infrared plasmonic devices using graphene/insulator stacks’, Nature Nanotechnology, 7, 330-334.
  • H. W. Verleur, A. S. Barker Jr., and C. N. Berglund (1968), ‘Optical properties of VO2 between 0.25 and 5 eV’, Physical Review, 172, 788-798.
  • H. M. Smith and A. F. Turner (1965), ‘Vacuum deposited thin films using a ruby laser’, Applied Optics, 4, 147-148.
  • G. A. Rance, D. H. Marsh, R. J. Nicholas, and A. N. Khlobystov (2010), ‘UV-vis absorption spectroscopy of carbon nanotunes: Relationship between the π-electron plasmon and nanotube diameter’, Chemical Physics Letters, 493, 19-23.
  • F. W. Smith, H. G. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang (1989), ‘Picosecond GaAs-based photoconductive optoelectronic detectors’, Applied Physics Letters, 54, 890-892.
  • F. Tuinsta and J. L. Koenig (1970), ‘Raman spectrum of graphite’, The Journal of Chemical Physics, 53, 1126.
  • F. J. Morin (1959), ‘Oxides which show a metal-to-insulator transition at the Neel temperature’, Physical Review Letters, 3, 34-36.
  • F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini (2014), ‘Photodetectors based on graphene, other two-dimensional materials and hydrid systems’, Nature Nanotechnology, 9, 780-793.
  • F. E. Doany, D. Grischkowsky and C.-C. Chi (1987), ‘Carrier lifetime versus ion-implantation dose in silicon on sapphire’, Applied Physics Letters, 50, 460-462.
  • E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston (2005), ‘Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches’, Physical Review B, 71, 195301.
  • D.-B, Tian, H.-W. Zhang, W.-E. Lai, Q.-Y. Wen, Y. -Q. Song, and Z. -G. Wang (2010), ‘Double wire-grid terahertz polarizer on low-loss polymer substrates’, Chinese Physical Letters, 27, 104210.
  • D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund Jr., A. Rubio, M. Wolf, and J. St hler (2014), ‘Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping’, Physical Review Letters, 113, 216401.
  • D. H. Auston, K. P. Cheung, and P. R. Smith (1984), ‘Picosecond photoconducting Hertzian dipoles’, Applied Physics Letters, 45, 284.
  • D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park, and M. Tinkham (2003), ‘Plastic deformations in mechanically strained single-walled carbon nanotubes’, Physical Review B, 67, 033407.
  • C. V. Shank, and E. P. Ippen (1974), ‘Subpicosecond kilowatt pulses from a mode-locked CW dye laser’, Applied Physics Letters, 24, 373-375.
  • C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. lanzani, and G. Cerullo (2005), ‘Intersubband exciton relaxation dynamics in single-walled carbon nanotubes’, Physical Review Letters, 94, 207401.
  • C. H. Lee (1977), ‘Picosecond optoelectronic switching in GaAs’, Applied Physics Letters, 30, 84-86.
  • C. Chen, Y. Zhu, Y. Zhao, J. H. Lee, H. Wang, A. Bernussi, M. Holtz, and Z. Fan (2010), ‘VO2 multidomain heteroepitaxial growth and terahertz transmission modulation’, Applied Physics Letters, 97, 211905.
  • B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and, H. G. Xing (2012), ‘Broadband graphene terahertz modualtors enabled by intraband transition’, Nature Communications, 3, 780.
  • B. Carli, F. Mencaraglia, and A Bonetti (1984), ‘Sunmillimeter high-resolution FT spectometer for atmospheric studies’, Applied Optics, 23, 2594-2603.
  • A. Nahata, A. S. Weling, and T. F. Heinz (1996), ‘A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling’, Applied Physics Letters, 69, 2321-2323.
  • A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim (2009), ‘The electronic properties of graphene’, Reviews of Modern Physics, 81, 109-162.
  • A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein (2004), ‘Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale’, Physical Review B, 70, 161102.
  • A. Cavalleri, M rini, and R. W. Schoenlein (2006), ‘Uitra-broadband femtosecond measurements of the photo-induced phase transition in VO2: from the Mid-IR to the hard X-rays’, Journal of the Physical Society of Japan, 75, 011004.
  • A. B. Kaiser and V. Sk kalov (2011), ‘Electronic conduction in polymers, carbon nanotubes and graphene’, Chemical Society Reviews, 40, 3786-3801.