박사

금속물질 담지 촉매를 이용한 RDF 열분해/가스화 합성가스 개질 및 메탄올 합성에 관한 연구 = A Study on Reforming of syn-gas from RDF pyrolysis/gasification and synthesis of methanol using metal catalysts

임종완 2016년
논문상세정보
' 금속물질 담지 촉매를 이용한 RDF 열분해/가스화 합성가스 개질 및 메탄올 합성에 관한 연구 = A Study on Reforming of syn-gas from RDF pyrolysis/gasification and synthesis of methanol using metal catalysts' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • CO 전환율
  • CZO
  • rdf
  • 개질
  • 니켈
  • 메탄올
  • 열분해/가스화
  • 촉매
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
299 0

0.0%

' 금속물질 담지 촉매를 이용한 RDF 열분해/가스화 합성가스 개질 및 메탄올 합성에 관한 연구 = A Study on Reforming of syn-gas from RDF pyrolysis/gasification and synthesis of methanol using metal catalysts' 의 참고문헌

  • 자원의 절약과 재활용촉진에 관한 법률 [2014]
  • 촉매첫걸음, chapter1, chapter2
    서곤 전남대학교출판부 [2008]
  • 유경선, 박태진, 이재구, 김재호 및 한춘, Theories and Appl. Chem
    김재권 박주원 Eng, 8(2), 4633-4636 [2002]
  • 메탄올에 대한 기술 정보 및 안전 취급 안내서
    Methanex Corporation [2006]
  • 독성정보
    식품의약품안전처 [2010]
  • 년도 상반기 고형연료제품 제조 및 판매 실적 현황, 환경부
    폐자 원에너지종합정보관리시스템, (2015) [2015]
  • 고형연료제품 제조 및 사용 시설 현황
    폐자원에너지종합정보관리시스 템 [2015]
  • “폐자원 및 바이오 매스 에너지 대책 실행계획”
    환경부 [2009]
  • “탄화수소 개질에 의한 이산화탄소 재활 용”
    박상언 이규환 장종산 Chem. Ind, Tech., 12(1), 17-29 [1994]
  • “이산화탄소를 이용한 메탄의 개질 반응”
    이승재 한국에너지기술 연구원 [2005]
  • 박사
  • “다양한 다공성 촉매를 이용한 거대억새 열분해 반응 연 구”
    진성호 석사학위논문, 서울시립대학교 [2015]
  • 박사
    “γ-Alumina와 Silica에 담지된 Nickel의 성질”
    하종재 석사학위논 문, 전남대학교 [1986]
  • “Study on the catalytic conversion of CO2 hydrogenation into methanol and the optimization of MTO process”
    T. H. Jung 박사학위논문, 경희대학교 [2000]
  • “Methane Reforming Reaction over Ni/CeO2-ZrO2 Catalysts Loaded on Metallic Monolith”
    조경태 박사학위논문, 충북대학교 [2008]
  • “La이 첨가된 Ni/CeO2 촉매 상에서 메탄의 부분산화에 의한 합성가스 제조”
    천한진 석사학위논문, 명지대학교 [2003]
  • “Hydrogen Conversion and CO2/H2S Removal in RPF Syngas using”
    J. W. Park 박사학위논문, 광운대학교 [2010]
  • “Cu/ZnO/ZrO2 촉매상에서 메탄올 합성 반응의 활성점에 관한 연구”
    문승현 서영웅 이현구 한국화학공학회, 4(2), 1957-1962 [1998]
  • “Cu/ZnO/Al2O3/ZrO2 촉매를 사용한 메탄올 합성 반응기 모 델링 및 공정 최적화”
    임혜원 석사학위논문, 아주대학교 [2010]
  • “A Study on the Methanol Synthesis Using Syngas and the Removal of Pollutants”
    박주원 석사학위논문, 광운대학교. 54. J . F. Edwards, G. L. Schrader, J. Phys. Chem, 88, 5620, (1984) [2005]
  • “A Study on the Catalytic Conversion of Syngas into Methanol”
    K. H. Lee 석사학위논문, 서울시립대학교 [2012]
  • “A Study on Methanol Synthesis through CO2 Hydrogenation over Cu-based Catalysts”
    K. H. Seong 석사학위논문 [1995]
  • Yu. B. Kagan, G. I. Lin, A. Ya. Rozovskii, S. M. Loktev, E. V. Slivinskii, A. N. Bashkirov, I. P. Naumov, I. K. Khludenev, S. A. Kudinov and Yu. I. Golovkin, Kinet. Katal., 17, 380, (1976).
  • Yu. B. Kagan, A. Ya. Rozovskii, G. I. Lin, E. V. Slivinskii, S. M. Loktev,L. G. Liverov and A. N. Bashkirov, Kinet. Katal., 16, 704, (1975).
  • Y. Sekine, S. Asai, E. Kikuchi, M. Matsukata and F. Haga, “Hydrogen Production from Biomass-Ethanol at Ambient Temperature with Novel Diaphragm Reactor”, Stud. Surf. Sci. Catal., 159, 813-816, (2006).
  • Xu Junke, Zhou Wei, Wang Jihui, Li Zhaojing and Ma Jianxin, China J. Catal., 30, 1076-1084, (2009).
  • Xiaoyin Chen, Edwin Yik, Jonathon Butler, Johannes W. Schwank, Catal. Today 233, 14–20 (2014)
  • Xiaoyin Chen, Edwin Yik, Jonathan Butler and Johannes W. Schwank, “Gasification characteristics of carbon species derived from model reforming compound over Ni/Ce–Zr–O catalysts”, Catal. Today 233 14–20, (2014).
  • Vernon, P. D. F., Green, M. L. H., Cheetham, A. K. and Ashcroft, A. T., Catal. Today, 13, 417, (1992).
  • Van Looij, F. and Geus, J. W., J . Catal. 168, 154, (1997).
  • Thannachart et al., Catal. Today 68, 53, (2001).
  • T.Matina et al., Catal. Today 68, 53, (2001).
  • Source : Jean-Pierre Badeau, Albrecht Levi, “Biomass Gasification: Chemistry, Processes and Applications”, Nova Science Publishers Inc., (2009)
  • Sodesawa, T., Dobashi, A. and Nozaki, F., React. Kinet. Catal. Lett., 12, 107, (1979).
  • S. S. Kim, J. W. Kim, S. H. Park, S. C. Jung, J. K. Jeon, C. K. Ryu, and Y. K. Park, “Catalytic Gasification of Mandarin Waste Residue using Ni/CeO2-ZrO2”, Bull. Korean Chem. Soc. 34(11), 3387-3390, (2013).
  • S. S. Kim, J. W. Kim, S. H. Park, S. C. Jung, J. K. Jeon, C. K. Ryu and Y. K. Park, “Catalytic Gasification of Mandarin Waste Residue using Ni/CeO2-ZrO2”, Bull. Korean Chem. Soc. 34(11), 3387, (2013).
  • S. C. Oh, J. H. Ryu, H. K‘wak, S.-Y. Bae, and K.-H. Lee, J. Korean Ind. Eng. Chem., 19, 191, (2008).
  • Rostrup-Nielsen, J R. Hydro. Process, 65(1) 71, (1986).
  • Rostrup-Nielsen, J R, “Catalysis”, Science and Technology, Springer -Verlag, 5, 111-118, (1984).
  • Richardson, J T. and Paripatyadar, S. A, Appl. Catal., 61, 293.
  • R. Jin, Y. Chen, W. Li, W. Cui, Y. ji, C. Yu and Y. Jiang, “Mechanism for catalytic partial oxidation of methane to syngas over a Ni/Al2O3 catalyst”, Appl. Catal. A: Gene., 201, 71–80, (2000).
  • Querino et al., Catal. Today 107, 920, (2005).
  • Q. Sun, C. W. Liu, W. Pan, Q. M. Zhu and J. F. Deng, “In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst”, Appl. Catal. A: Gen. 171 301-308, (1998).
  • Prabir Basu, “Combustion and gasification in fluidized bed”, Taylor&Francis Group, 59-101, (2006).
  • Park. S. E., Chang, J. S and Lee, K. W., (1994).
  • P. F. Aparicio, I. R. Ramos, I. A. Anderson, and A. G. Ruiz, “Mechanistic Aspects of the Dry Reforming of Methane over Ruthenium Catalysts", Appl. Catal. A: Gen., 202, 183-196, (2000).
  • M. P Andersson, F. Abild-Pedersen, I. N. Remediakis, T. Bligaard, G. Jones, J. Engbaek, O. Lytke n, S. Horch, J. H. Nielsen, J. Sehested, J. R. Rostrup-Nielsenc, J. K. Nөrskov, and I. Chorkendorff, “Structure sensitivity of the methanation reaction : H2-induced CO dissociation on nickel surface”, J. Catal. 255, 6, (2008).
  • Lei Shi, Guohui Yang, Kai Tao, Yoshiharu Yoneyama, Yisheng Tan, and Noritatsu Tsubaki, “An Introduction of CO2 Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis”, Acc, Chem. Res., 46(8), 1838-1847, (2013).
  • L. C. Grabow and M. Mavrikakis, “Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation”, Acs. Catal. 1, 365–384, (2011)
  • K. Klier, “Methanol synthesis”, Adv. Catal., 31, 243, (1982)
  • K. I. Moon, C. H. Kim, J. S. Choi, S. H. Lee, Y. G. Kim and J. S. Lee, "Carbon Dioxide Reforming of Methane over Nickel Based Catalysts Ⅰ.Comparison with Steam Reforming”, Korean Inst. Chem. Eng,, 35, 883-889, (1997).
  • K. H. Lee, J. of Anal. Appl. Pyrolysis, 86, 348, (2009)
  • John Rezalyan, and Nicholas P. Cheremisinoff, "Gasification Technologies", Taylor &Francis Group, 1-29, (2005)
  • J.R. Rostrup-Nielsen and J.H. Hansen, J. Catal. 144, 38–49, (1993).
  • J. K. Kim, Y. Kim, J. W. Park, J. S. Bae, D. Y. Yoon, J. G. Lee, J. H. Kim and C. Han, “Preparation of CuO-CeO2-Al2O3 Catalyst with Mesopore Structure for Water Gas Shift Reaction”, Korea J. Chem. Eng., 26, 32-35, (2009).
  • H. S. Hahm, “Methanol Synthesis from Synthesis Gas”, J. Ind. Tech. Ins., 10, (1991).
  • Guo, J. and Lua, A. C., “Characterization of Chars Pyrolyzed from Oil Palm Stones for the Preparation of Activated Carbons”, J. Analy. Appl. Pyrolysis, 46(2), 113-125, (1998).
  • G. Hen RiCi-Olive and S. Olive, “The Chemistry of the Catalyzed Hydrog -enation of Carbon Monoxide", Springe-Ver1ag, (1984).
  • G. H. Graaf, E. J . Stamhuis, A. A. C. M. Beenackers, Chem. Eng. Sci., 43, 3185-3195, (1988).
  • G. C. Chinchen, P. S. Denny, D. G. Parger, M. S. Spenser, D .A. Whan, Appl . Catal., 30, 333–338, (1987).
  • Evert J. Leijenhorst, W. Wolters, Bert van de Beld and W. Prins, “Staged Biomass Gasification by Autothermal Catalytic Reforming of Fast Pyrolysis Vapors”, Energy Fuels, ACS Publications, (2015).
  • Edwards and Maitra, “The chemistry of methane reforming with carbon dioxide and its current and potential applications”, Fuel Processing Tech. 42, 269-289, (1995).
  • D. M. Gasser and W. Baiker, “Higher-alcohol synthesis reaction study V. Effect of excess ZnO on catalyst performance”, Applied Catalyst A : General, 166, 375, (1998)
  • Chubb, T. A., 1980, Sol. Energy, 24, 341, (1990).
  • Christopher Higman, and Maarten van der Burgt, "Gasification", Elsevier, 1-45, (2008)
  • C. K. Loong and M. Ozawa, J . Alloy Comp. 60, 303, (2000).
  • A. Ya. Rozovskii, Yu. B. Kagan, G. I. Lin, E. V. Slivinskii, S. M. Loktev, L. G. Liverov and A. N. Bashkirov, Kinet. Katal., 16, 706, (1975).
  • A. Ya. Rozovskii, Yu. B. Kagan, G. I. Lin, E. V. Slivinskii, S. M. Loktev, L. G. Liverov and A .N. Bashkirov, Kinet. Katal., 17, 1132, (1976).
  • A. Ya. Rozovskii, YU. B. Kagan, G. I. Lin, E. V. Slivinskii, S. M. Loktev, L.G. Liverov and A.N. Bashkirov, Kinet. Katal., 18, 578, (1977).
  • A. L. Kustov, A. M. Frey, K. E. Larsen, T. Johannessen, J. K. Nө rskov, and C. H. Christensen, “CO methanation over supported bimetallic Ni-Fe catalyst:From computational studies towards catalyst optimization”, Appl. Catal. A:Gen, 320, 98, (2007).
  • A. Erdőhelyi, K. Fodor and K. Solymosi, “Reaction of CH4 with CO2 and H2O over Supported Ir Catalyst”, Stud. Surf. Sci. Catal., 107, 525-530, (1997).