박사

Protective mechanism against high-fat diet-induced fatty liver disease in AHNAK knock-out mice

김요나 2015년
논문상세정보
' Protective mechanism against high-fat diet-induced fatty liver disease in AHNAK knock-out mice' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • ahnak
  • fatty acid oxidation
  • fgf21
  • hepatic steatosis
  • lipid metabolism
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
172 0

0.0%

' Protective mechanism against high-fat diet-induced fatty liver disease in AHNAK knock-out mice' 의 참고문헌

  • von Boxberg, Y., Salim, C., Soares, S., Baloui, H., Alterio, J., Ravaille-Veron, M., & Nothias, F. (2006). Spinal cord injury-induced up-regulation of AHNAK, expressed in cells delineating cystic cavities, and associated with neoangiogenesis. Eur J Neurosci, 24(4), 1031-1041. doi: 10.1111/j.1460-9568.2006.04994.x
  • Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., . . . Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest, 108(8), 1167-1174. doi: 10.1172/JCI13505
  • Zhang, Y., Cui, Y., Wang, X. L., Shang, X., Qi, Z. G., Xue, J., . . . Xie, M. L. (2015). PPARalpha/gamma agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine. doi: 10.1016/j.cyto.2015.05.031
  • Yang, W. M., Jeong, H. J., Park, S. W., & Lee, W. (2015). Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Mol Nutr Food Res. doi: 10.1002/mnfr.201500107
  • Xu, L., Kitade, H., Ni, Y., & Ota, T. (2015). Roles of Chemokines and Chemokine Receptors in Obesity-Associated Insulin Resistance and Nonalcoholic Fatty Liver Disease. Biomolecules, 5(3), 1563-1579. doi: 10.3390/biom5031563
  • Xu, J., Lloyd, D. J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., . . . Veniant, M. M. (2009). Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes, 58(1), 250-259. doi: 10.2337/db08-0392
  • Wu, S., Levenson, A., Kharitonenkov, A., & De Luca, F. (2012). Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem, 287(31), 26060-26067. doi: 10.1074/jbc.M112.343707
  • Wente, W., Efanov, A. M., Brenner, M., Kharitonenkov, A., Koster, A., Sandusky, G. E., . . . Gromada, J. (2006). Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes, 55(9), 2470-2478. doi: 10.2337/db05-1435
  • Viollet, B., Guigas, B., Leclerc, J., Hebrard, S., Lantier, L., Mounier, R., . . . Foretz, M. (2009). AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf), 196(1), 81-98. doi: 10.1111/j.1748-1716.2009.01970.x
  • Veniant, M. M., Sivits, G., Helmering, J., Komorowski, R., Lee, J., Fan, W., . . . Lloyd, D. J. (2015). Pharmacologic Effects of FGF21 Are Independent of the "Browning" of White Adipose Tissue. Cell Metab, 21(5), 731-738. doi: 10.1016/j.cmet.2015.04.019
  • Tilg, H., & Moschen, A. R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 52(5), 1836-1846. doi: 10.1002/hep.24001
  • Shtivelman, E., Cohen, F. E., & Bishop, J. M. (1992). A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc Natl Acad Sci U S A, 89(12), 5472-5476.
  • Sharma, M., Mitnala, S., Vishnubhotla, R. K., Mukherjee, R., Reddy, D. N., & Rao, P. N. (2015). The Riddle of Nonalcoholic Fatty Liver Disease: Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis. J Clin Exp Hepatol, 5(2), 147-158. doi: 10.1016/j.jceh.2015.02.002
  • Shang, J., Chen, L. L., Xiao, F. X., Sun, H., Ding, H. C., & Xiao, H. (2008). Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin, 29(6), 698-706. doi: 10.1111/j.1745-7254.2008.00807.x
  • Sekiya, F., Bae, Y. S., Jhon, D. Y., Hwang, S. C., & Rhee, S. G. (1999). AHNAK, a protein that binds and activates phospholipase C-gamma1 in the presence of arachidonic acid. J Biol Chem, 274(20), 13900-13907.
  • Scott, M., Castleden, C. M., Adam, H. K., Smith, R. P., & Fitzsimons, T. J. (1988). The effect of ageing on the disposition of nifedipine and atenolol. Br J Clin Pharmacol, 25(3), 289-296.
  • Salim, C., Boxberg, Y. V., Alterio, J., Fereol, S., & Nothias, F. (2009). The giant protein AHNAK involved in morphogenesis and laminin substrate adhesion of myelinating Schwann cells. Glia, 57(5), 535-549. doi: 10.1002/glia.20782
  • Ruderman, N., & Prentki, M. (2004). AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov, 3(4), 340-351. doi: 10.1038/nrd1344
  • Patterson, A. D., Slanar, O., Krausz, K. W., Li, F., Hofer, C. C., Perlik, F., . . . Idle, J. R. (2009). Human urinary metabolomic profile of PPARalpha induced fatty acid beta-oxidation. J Proteome Res, 8(9), 4293-4300. doi: 10.1021/pr9004103
  • Papaetis, G. S., Papakyriakou, P., & Panagiotou, T. N. (2015). Central obesity, type 2 diabetes and insulin: exploring a pathway full of thorns. Arch Med Sci, 11(3), 463-482. doi: 10.5114/aoms.2015.52350
  • O'Neill, H. M., Holloway, G. P., & Steinberg, G. R. (2013). AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol, 366(2), 135-151. doi: 10.1016/j.mce.2012.06.019
  • Murata, Y., Konishi, M., & Itoh, N. (2011). FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology. J Nutr Metab, 2011, 981315. doi: 10.1155/2011/981315
  • Matza, D., & Flavell, R. A. (2009). Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast. Immunol Rev, 231(1), 257-264. doi: 10.1111/j.1600-065X.2009.00805.x
  • Liu, Y., Millar, J. S., Cromley, D. A., Graham, M., Crooke, R., Billheimer, J. T., & Rader, D. J. (2008). Knockdown of acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta, 1781(3), 97-104. doi: 10.1016/j.bbalip.2008.01.001
  • Liu, J., Xu, Y., Hu, Y., & Wang, G. (2015). The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism, 64(3), 380-390. doi: 10.1016/j.metabol.2014.11.009
  • Liu, J. J., Foo, J. P., Liu, S., & Lim, S. C. (2015). The role of fibroblast growth factor 21 in diabetes and its complications: A review from clinical perspective. Diabetes Res Clin Pract, 108(3), 382-389. doi: 10.1016/j.diabres.2015.02.032
  • Li, Y., Wong, K., Giles, A., Jiang, J., Lee, J. W., Adams, A. C., . . . Zang, M. (2014). Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology, 146(2), 539-549 e537. doi: 10.1053/j.gastro.2013.10.059
  • Li, H., Zhang, J., & Jia, W. (2013). Fibroblast growth factor 21: a novel metabolic regulator from pharmacology to physiology. Front Med, 7(1), 25-30. doi: 10.1007/s11684-013-0244-8
  • Li, H. H., Tyburski, J. B., Wang, Y. W., Strawn, S., Moon, B. H., Kallakury, B. V., . . . Fornace, A. J., Jr. (2014). Modulation of fatty acid and bile acid metabolism by peroxisome proliferator-activated receptor alpha protects against alcoholic liver disease. Alcohol Clin Exp Res, 38(6), 1520-1531. doi: 10.1111/acer.12424
  • Lee, Y. J., Ko, E. H., Kim, J. E., Kim, E., Lee, H., Choi, H., . . . Kim, J. W. (2012). Nuclear receptor PPARgamma-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc Natl Acad Sci U S A, 109(34), 13656-13661. doi: 10.1073/pnas.1203218109
  • Lee, I. H., You, J. O., Ha, K. S., Bae, D. S., Suh, P. G., Rhee, S. G., & Bae, Y. S. (2004). AHNAK-mediated activation of phospholipase C-gamma1 through protein kinase C. J Biol Chem, 279(25), 26645-26653. doi: 10.1074/jbc.M311525200
  • Lee, I. H., Sohn, M., Lim, H. J., Yoon, S., Oh, H., Shin, S., . . . Bae, Y. S. (2014). Ahnak functions as a tumor suppressor via modulation of TGFbeta/Smad signaling pathway. Oncogene, 33(38), 4675-4684. doi: 10.1038/onc.2014.69
  • Lee, I. H., Lim, H. J., Yoon, S., Seong, J. K., Bae, D. S., Rhee, S. G., & Bae, Y. S. (2008). Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex. J Biol Chem, 283(10), 6312-6320. doi: 10.1074/jbc.M706878200
  • Labrie, M., Lalonde, S., Najyb, O., Thiery, M., Daneault, C., Des Rosiers, C., . . . Mounier, C. (2015). Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARgamma and Fatty Acid Uptake. PLoS One, 10(6), e0130230. doi: 10.1371/journal.pone.0130230
  • Koo, S. H. (2013). Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol, 19(3), 210-215. doi: 10.3350/cmh.2013.19.3.210
  • Kim, I. Y., Jung, J., Jang, M., Ahn, Y. G., Shin, J. H., Choi, J. W., . . . Hwang, G. S. (2010). 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun, 403(3-4), 428-434. doi: 10.1016/j.bbrc.2010.11.048
  • Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., . . . Shanafelt, A. B. (2005). FGF-21 as a novel metabolic regulator. J Clin Invest, 115(6), 1627-1635. doi: 10.1172/JCI23606
  • Kang, O. H., Kim, S. B., Mun, S. H., Seo, Y. S., Hwang, H. C., Lee, Y. M., . . . Kwon, D. Y. (2015). Puerarin ameliorates hepatic steatosis by activating the PPARalpha and AMPK signaling pathways in hepatocytes. Int J Mol Med, 35(3), 803-809. doi: 10.3892/ijmm.2015.2074
  • Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab, 1(1), 15-25. doi: 10.1016/j.cmet.2004.12.003
  • Jo, H., Choe, S. S., Shin, K. C., Jang, H., Lee, J. H., Seong, J. K., . . . Kim, J. B. (2013). Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the hepatic very low-density lipoprotein receptor. Hepatology, 57(4), 1366-1377. doi: 10.1002/hep.26126
  • Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., . . . Kliewer, S. A. (2007). Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab, 5(6), 415-425. doi: 10.1016/j.cmet.2007.05.003
  • Holland, W. L., Adams, A. C., Brozinick, J. T., Bui, H. H., Miyauchi, Y., Kusminski, C. M., . . . Scherer, P. E. (2013). An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab, 17(5), 790-797. doi: 10.1016/j.cmet.2013.03.019
  • Hohaus, A., Person, V., Behlke, J., Schaper, J., Morano, I., & Haase, H. (2002). The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J, 16(10), 1205-1216. doi: 10.1096/fj.01-0855com
  • Henin, N., Vincent, M. F., Gruber, H. E., & Van den Berghe, G. (1995). Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J, 9(7), 541-546.
  • Hardie, D. G. (2004). AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev Endocr Metab Disord, 5(2), 119-125. doi: 10.1023/B:REMD.0000021433.63915.bb
  • Gonzalez, F. J., & Shah, Y. M. (2008). PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology, 246(1), 2-8. doi: 10.1016/j.tox.2007.09.030
  • Gimeno, R. E., & Moller, D. E. (2014). FGF21-based pharmacotherapy--potential utility for metabolic disorders. Trends Endocrinol Metab, 25(6), 303-311. doi: 10.1016/j.tem.2014.03.001
  • Gentil, B. J., Benaud, C., Delphin, C., Remy, C., Berezowski, V., Cecchelli, R., . . . Baudier, J. (2005). Specific AHNAK expression in brain endothelial cells with barrier properties. J Cell Physiol, 203(2), 362-371. doi: 10.1002/jcp.20232
  • Gawrieh, S., Opara, E. C., & Koch, T. R. (2004). Oxidative stress in nonalcoholic fatty liver disease: pathogenesis and antioxidant therapies. J Investig Med, 52(8), 506-514.
  • Fisher, F. M., Kleiner, S., Douris, N., Fox, E. C., Mepani, R. J., Verdeguer, F., . . . Spiegelman, B. M. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev, 26(3), 271-281. doi: 10.1101/gad.177857.111
  • Dobrzyn, P., Dobrzyn, A., Miyazaki, M., Cohen, P., Asilmaz, E., Hardie, D. G., . . . Ntambi, J. M. (2004). Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci U S A, 101(17), 6409-6414. doi: 10.1073/pnas.0401627101
  • Desvergne, B., & Wahli, W. (1999). Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 20(5), 649-688. doi: 10.1210/edrv.20.5.0380
  • Davis, T. A., Loos, B., & Engelbrecht, A. M. (2014). AHNAK: the giant jack of all trades. Cell Signal, 26(12), 2683-2693. doi: 10.1016/j.cellsig.2014.08.017
  • Contreras, A. V., Rangel-Escareno, C., Torres, N., Aleman-Escondrillas, G., Ortiz, V., Noriega, L. G., . . . Tovar, A. R. (2015). PPARalpha via HNF4alpha regulates the expression of genes encoding hepatic amino acid catabolizing enzymes to maintain metabolic homeostasis. Genes Nutr, 10(2), 452. doi: 10.1007/s12263-014-0452-0
  • Cohen, J. C., Horton, J. D., & Hobbs, H. H. (2011). Human fatty liver disease: old questions and new insights. Science, 332(6037), 1519-1523. doi: 10.1126/science.1204265
  • Choi, Y. J., Lee, C. H., Lee, K. Y., Jung, S. H., & Lee, B. H. (2015). Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice. Toxicol Sci, 145(2), 273-282. doi: 10.1093/toxsci/kfv049
  • Choi, C. S., Savage, D. B., Abu-Elheiga, L., Liu, Z. X., Kim, S., Kulkarni, A., . . . Shulman, G. I. (2007). Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc Natl Acad Sci U S A, 104(42), 16480-16485. doi: 10.1073/pnas.0706794104
  • Chieregatti, E., & Meldolesi, J. (2005). Regulated exocytosis: new organelles for non-secretory purposes. Nat Rev Mol Cell Biol, 6(2), 181-187. doi: 10.1038/nrm1572
  • Chau, M. D., Gao, J., Yang, Q., Wu, Z., & Gromada, J. (2010). Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A, 107(28), 12553-12558. doi: 10.1073/pnas.1006962107
  • Charlton, M., Kasparova, P., Weston, S., Lindor, K., Maor-Kendler, Y., Wiesner, R. H., . . . Batts, K. P. (2001). Frequency of nonalcoholic steatohepatitis as a cause of advanced liver disease. Liver Transpl, 7(7), 608-614. doi: 10.1053/jlts.2001.25453
  • Catterall, W. A., Perez-Reyes, E., Snutch, T. P., & Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev, 57(4), 411-425. doi: 10.1124/pr.57.4.5
  • Boveri, M., Kinsner, A., Berezowski, V., Lenfant, A. M., Draing, C., Cecchelli, R., . . . Bal-Price, A. (2006). Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neuroscience, 137(4), 1193-1209. doi: 10.1016/j.neuroscience.2005.10.011
  • Borgonovo, B., Cocucci, E., Racchetti, G., Podini, P., Bachi, A., & Meldolesi, J. (2002). Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol, 4(12), 955-962. doi: 10.1038/ncb888
  • Berti, L., Irmler, M., Zdichavsky, M., Meile, T., Bohm, A., Stefan, N., . . . Staiger, H. (2015). Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Mol Metab, 4(7), 519-527. doi: 10.1016/j.molmet.2015.04.002
  • Bers, D. M. (2000). Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res, 87(4), 275-281.
  • Benaud, C., Gentil, B. J., Assard, N., Court, M., Garin, J., Delphin, C., & Baudier, J. (2004). AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J Cell Biol, 164(1), 133-144. doi: 10.1083/jcb.200307098
  • Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., . . . Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337-342. doi: 10.1038/nature05354
  • Bae, K. H., Kim, J. G., & Park, K. G. (2014). Transcriptional regulation of fibroblast growth factor 21 expression. Endocrinol Metab (Seoul), 29(2), 105-111. doi: 10.3803/EnM.2014.29.2.105
  • Badman, M. K., Pissios, P., Kennedy, A. R., Koukos, G., Flier, J. S., & Maratos-Flier, E. (2007). Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab, 5(6), 426-437. doi: 10.1016/j.cmet.2007.05.002
  • Ahmed, M. (2015). Non-alcoholic fatty liver disease in 2015. World J Hepatol, 7(11), 1450-1459. doi: 10.4254/wjh.v7.i11.1450
  • Adams, A. C., Yang, C., Coskun, T., Cheng, C. C., Gimeno, R. E., Luo, Y., & Kharitonenkov, A. (2012). The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab, 2(1), 31-37. doi: 10.1016/j.molmet.2012.08.007
  • Abd El-Kader, S. M., & El-Den Ashmawy, E. M. (2015). Non-alcoholic fatty liver disease: The diagnosis and management. World J Hepatol, 7(6), 846-858. doi: 10.4254/wjh.v7.i6.846