박사

Proteomic Analysis of de novo Basal body Assembling GPM Complex during Differentiation of Naegleria gruberi NEG-M : Naegleria gruberi NEG-M의 분화기간 동안 기저체의 신형성에 관여하는 GPM 복합체의 단백질체 분석에 관한 연구

논문상세정보
' Proteomic Analysis of de novo Basal body Assembling GPM Complex during Differentiation of Naegleria gruberi NEG-M : Naegleria gruberi NEG-M의 분화기간 동안 기저체의 신형성에 관여하는 GPM 복합체의 단백질체 분석에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • basal body
  • centriole
  • cogs classification
  • de novo formation (or assembly)
  • gpm complex
  • gpm proteome
  • lc-ms/ms proteomic analysis
  • naegleria gruberi
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
10 0

0.0%

' Proteomic Analysis of de novo Basal body Assembling GPM Complex during Differentiation of Naegleria gruberi NEG-M : Naegleria gruberi NEG-M의 분화기간 동안 기저체의 신형성에 관여하는 GPM 복합체의 단백질체 분석에 관한 연구' 의 참고문헌

  • Wilhelm J. E., Mansfield J., Hom-Booher N., Wang S., Turck C. W., Hazelrigg T., Vale R. D. 2000. Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J Cell Biol. 148:427-440.
  • Szollosi D., Calarco P., Donahue R. P. 1972. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J Cell Sci. 11:521-541.
  • Suh MR, Han JW, No YR, Lee J (2002) Transient concentration of a gamma-tubulinrelated protein with a pericentrin-related protein in the formation of basal bodies and flagella during the differentiation of Naegleria gruberi. Cell Motil Cytoskeleton 52:66–81
  • Sluder G., Nordberg J. J. 2004. The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr Opin Cell Biol. 16: 49-54.
  • Sauer G., K rner R., Hanisch A., Ries A., Nigg E. A., Sillj H. H. 2005. Proteome analysis of the human mitotic spindle. Mol Cell Proteomics. 4:35-43.
  • Rodriguez-Ezpeleta N., Brinkmann H., Burger G., Roger A. J., Gray M. W., Philippe H., Lang B. F. 2007. Toward resolving the eukaryotic tree: the phylogenetic positions of jakobids and cercozoans. Curr Biol. 17:1420-1425.
  • Riparbelli M. G., Callaini G. 2003. Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev Biol. 260:298-313.
  • Ren J., Liu Z., Gao X., Jin C., Ye M., Zou H., Wen L., Zhang Z., Xue Y., Yao X. 2010. MiCroKit 3.0: an integrated database of midbody, centrosome and kinetochore. Nucleic Acids Res. 38(Database issue):D155-160.
  • Reinders Y., Schulz I., Gr f R., Sickmann A. 2006. Identification of novel centrosomal proteins in Dictyostelium discoideum by comparative proteomic approaches. J Proteome Res. 5(3):589-598.
  • Rattner J. B. 1991. Hsp70 is localized to the centrosome of dividing HeLa cells. Exp Cell Res. 195:110-113.
  • Nogales-Cadenas R., Abascal F., D ez-P rez J., Carazo J. M., Pascual-Montano A. 2009. CentrosomeDB: a human centrosomal proteins database. Nucleic Acids Res. 37(Database issue):D175-180.
  • Nigg, EA (2002), Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer 2: 815-825.
  • Nigg, E.A. (2007). Centrosome duplication: of rules and licenses. Trends Cell Biol 17,215-221.
  • Nesvizhskii A. I., Vitek O., Aebersold R. 2007. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods. 4:787-797.
  • Nesvizhskii A. I., Keller A., Kolker E., Aebersold R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 75:4646-4658.
  • Merchant S. S., Prochnik S. E., Vallon O., Harris E. H., Karpowicz S. J., Witman G. B., Terry A., Salamov A., Fritz-Laylin L. K., Mar chal-Drouard L., Marshall W. F., Qu L. H., Nelson D. R., Sanderfoot A. A., Spalding M. H., Kapitonov V. V., Ren Q., Ferris P., Lindquist E., Shapiro H., Lucas S. M., Grimwood J., Schmutz J., Cardol P., Cerutti H., Chanfreau G., Chen C. L., Cognat V., Croft M. T., Dent R., Dutcher S., Fern ndez E., Fukuzawa H., Gonz lez-Ballester D., Gonz lez- Halphen D., Hallmann A., Hanikenne M., Hippler M., Inwood W., Jabbari K., Kalanon M., Kuras R., Lefebvre P. A., Lemaire S. D., Lobanov A. V., Lohr M., Manuell A., Meier I., Mets L., Mittag M., Mittelmeier T., Moroney J. V., Moseley J., Napoli C., Nedelcu A. M., Niyogi K., Novoselov S. V., Paulsen I. T., Pazour G., Purton S., Ral J. P., Ria o-Pach n D. M., Riekhof W., Rymarquis L., Schroda M., Stern D., Umen J., Willows R., Wilson N., Zimmer S. L., Allmer J., Balk J., Bisova K., Chen C. J., Elias M., Gendler K., Hauser C., Lamb M. R., Ledford H., Long J. C., Minagawa J., Page M. D., Pan J., Pootakham W., Roje S., Rose A., Stahlberg E., Terauchi A. M., Yang P., Ball S., Bowler C., Dieckmann C. L., Gladyshev V. N., Green P., Jorgensen R., Mayfield S., Mueller-Roeber B., Rajamani S., Sayre R. T., Brokstein P., Dubchak I., Goodstein D., Hornick L., Huang Y. W., Jhaveri J., Luo Y., Mart nez D., Ngau W. C., Otillar B., Poliakov A., Porter A., Szajkowski L., Werner G., Zhou K., Grigoriev I. V., Rokhsar D. S., Grossman A. R. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 318(5848):245-250.
  • Li J. B., Gerdes J. M., Haycraft C. J., Fan Y., Teslovich T. M., May-Simera H., Li H., Blacque O. E., Li L., Leitch C. C., Lewis R. A., Green J. S., Parfrey P. S., Leroux M. R., Davidson W. S., Beales P. L., Guay-Woodford L. M., Yoder B. K., Stormo G. D., Katsanis N., Dutcher S. K. 2004. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell. 117(4): 541-552.
  • Lee J., Kang S., Choi Y. S., Kim H. K., Yeo C. Y., Lee Y., Roth J., Lee J. 2015. Identification of a cell cycle-dependent duplicating complex that assembles basal bodies de novo in Naegleria. Protist. 166(1):1-13.
  • Lee J. 2010. De novo formation of basal bodies during cellular differentiation of Naegleria gruberi: progress and hypotheses. Sem Cell Dev Biol. 21:156-162.
  • LaTerra S, English CN, Hergert P, McEwen BF, Sluder G, Khodjakov A (2005) The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168(5):713-722
  • Kim H. K., Kang J. G., Yumura S., Walsh C. J., Cho J. W., Lee J. 2005. De novo formation of basal bodies in Naegleria gruberi: regulation by phosphorylation. J Cell Biol. 169:719-724.
  • Kilburn C. L., Pearson C. G., Romijn E. P., Meehl J. B., Giddings T. H. Jr., Culver B. P., Yates J. R. 3rd., Winey M. 2007. New Tetrahymena basal body protein components identify basal body domain structure. J Cell Biol. 178: 905-912.
  • Khodjakov A., Rieder C. L., Sluder G., Sibon O., Wang C. L. 2002. De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol. 158:1171-1181.
  • Keller L. C., Romijn E. P., Zamora I., Yates J. R. 3rd., Marshall W. F. 2005. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliarydisease genes. Curr Biol. 15(12):1090-1098.
  • Keller A., Nesvizhskii A. I., Kolker E., Aebersold R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 74(20):5383-92.
  • Inglis P. N., Boroevich K. A., Leroux M. R. 2006. Piecing together a ciliome. Trends Genet. 22:491-500.
  • Huang Z., Ma L., Wang Y., Pan Z., Ren J., Liu Z., Xue Y. 2015. MiCroKiTS 4.0: a database of midbody, centrosome, kinetochore, telomere and spindle. Nucleic Acids Res. 43(Database issue):D328-334.
  • Habermann K., Lange B. M. 2012. New insights into subcomplex assembly and modifications of centrosomal proteins. Cell Div. 7(1):17.
  • Fulton C., Dingle A. D. 1971. Basal bodies, but not centrioles, in Naegleria. J Cell Biol. 51:826-836.
  • Fulton C., Dingle A. D. 1967. Appearance of the flagellate phenotype in populations of Naegleria amebae. Dev Biol. 15:165-191.
  • Fulton C (1977) Cell differentiation in Naegleria gruberi. Annu Rev Microbiol 31:597–629
  • Fritz-Laylin L. K., Prochnik P., Ginger M. L., Dacks J. B., Carpenter, M. L., Field M. C., Kuo A., Paredez A., Chapman J., Pham J., Shu S., Neupane R., Cipriano M., Mancuso J., Tu H., Salamov A., Lindquist E., Shapiro H., Lucas S., Grigoriev I. V., Cande W. Z., Fulton C., Rokhsar D. S., Dawson S. C. 2010b. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 140: 631-642.
  • Fritz-Laylin L. K., Ginger M. L., Walsh C., Dawson S. C, Fulton C. 2011. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol. 162(6):607-618.
  • Fritz-Laylin L. K., Cande W. Z. 2010. Ancestral centriole and flagella proteins identified by analysis of Naegleria differentiation. J Cell Sci. 123(Pt23):4024- 4031.
  • Fritz-Laylin L. K., Assaf Z. J., Chen, S., Cande W. Z. 2010a. Naegleria gruberi de novo basal body assembly occurs via stepwise incorporation of conserved proteins. Euk Cell. 9:860-865.
  • Ferree P. M., McDonald K., Fasulo B, Sullivan W. 2006. The origin of centrosomes in parthenogenetic hymenopteran insects. Curr Biol. 16:801-807.
  • Elias J. E., Gygi S. P. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. 4:207- 214.
  • Dingle A. D., Fulton C. 1966. Development of the flagellar apparatus of Naegleria. J Cell Biol. 31(1):43-54.
  • De Jonckheere J. F. 2002. A century of research on the amoeboflagellate genus Naegleria. Acta Protozool. 41:309-342.
  • Chen N., Mah A., Blacque O. E., Chu J., Phgora K., Bakhoum M. W., Newbury C. R., Khattra J., Chan S., Go A., Efimenko E., Johnsen R., Phirke P., Swoboda P., Marra M., Moerman D. G., Leroux M. R., Baillie D. L., Stein L. D. 2006. Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biol. 7(12): R126.
  • Cavalier-Smith T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol. 52:297-354.
  • Casano C., Gianguzza F., Roccheri M. C., Di Giorgi R., Maenza L., Ragusa M. A. 2003. Hsp40 is involved in cilia regeneration in sea urchin embryos. J Histochem Cytochem. 51(12):1581-1587.
  • Carvalho-Santos Z., Machado P., Branco P., Tavares-Cadete F., Rodrigues-Martins A., Pereira-Leal J.B., Bettencourt-Dias M. 2010. Stepwise evolution of the centriole-assembly pathway. J Cell Sci. 123(Pt 9):1414-1426.
  • Carvalho-Santos Z., Azimzadeh J., Pereira-Leal J. B., Bettencourt-Dias M. 2011. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol. 194(2):165-175.
  • Burki F., Shalchian-Tabrizi K., Pawlowski J. 2008. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett. 4(4):366-369.
  • Bettencourt-Dias M., Glover D. M. 2007. Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol. 8(6):451-463.
  • Baron D. M., Ralston K. S., Kabututu Z. P., Hill K. L. 2007. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. J Cell Sci. 120: 478-491.
  • Badano J. L., Teslovich T. M., Katsanis N. 2005. The centrosome in human genetic disease. Nat Rev Genet. 6:194-205.
  • Azimzadeh J., Bornens M. 2004. The centrosome in evolution. In Centrosomes in Development and Disease (ed. Nigg, E. A.). Weinheim: Wiley-VCH. pp. 93-122.
  • Andersen J. S., Wilkinson C. J., Mayor T., Mortensen P., Nigg E. A., Mann M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426(6966):570-574.