박사

(The) effects of initial martensite microstructure and heating rate on the microstructure and tensile properties of intercritically annealed medium Mn steels

한정호 2015년
' (The) effects of initial martensite microstructure and heating rate on the microstructure and tensile properties of intercritically annealed medium Mn steels' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • ahss
  • intercritical annealing
  • martensite
  • medium mn steel
  • phase transformation
  • retained austenite
  • reverse transformation
  • tensile properties
  • transformation-induced plasticity
  • trip-assisted steel
  • 고강도강
  • 마르텐사이트
  • 변태유기소성
  • 변태유기소성강
  • 상변태
  • 역변태
  • 이상열처리
  • 인장성질
  • 잔류 오스테나이트
  • 중망간강
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
164 0

0.0%

' (The) effects of initial martensite microstructure and heating rate on the microstructure and tensile properties of intercritically annealed medium Mn steels' 의 참고문헌

  • Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying. Austenite stability and deformationbehavior in a cold-rolled transformation-induced plasticity steel with medium manganesecontent, Acta Mater. 84 (2015) 229-236.
  • Z. Nishiyama. Martensitic Transformation, Academic press, New York, 1978.
  • Y.K. Lee. Microstructural evolution during plastic deformation of twinninginducedplasticity steels, Scripta Mater. 66 (2012) 1002-1006.
  • Y.K. Lee, H.C. Shin, D.S. Leem, J.Y. Choi, W. Jin, C.S. Choi. Reversetransformation mechanism of martensite to austenite and amount of retained austeniteafter reverse transformation in Fe - 3Si - 13Cr - 7Ni (wt-%) martensitic stainless steel,Mater. Sci. Technol. 19 (2003) 393-398.
  • Y.K. Lee, C.S. Choi. Driving force for ??войб?? martensitic transformation andstacking fault energy of ?? in Fe-Mn binary system, Metall. Mater. Trans. A 31 (2000) 355-126360.
  • Y.K. Lee, B.J. Kwak, J.E. Jin. Microstructures and tensile properties of annealedmedium Mn TRIP steels, Proc. Conf. on PRICM 7 Symposium A (2010) 116.
  • Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai. Novel ultra-high straining processfor bulk materials development of the accumulative roll-bonding (ARB) process, ActaMater. 47 (1999) 579-583.
  • W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong. Microstructure andmechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing, Mater. Sci.128Eng. A 528 (2011) 6661-6666.
  • W. Jeong. Effect of carbon on the plastic strain ratio of low carbon dual-phasesteels, Met. Mater. Int. 20 (2014) 49-53.
  • T. Hanamura, S. Torizuka, S. Tamura, S. Enokida, H. Takechi. Effect ofAustenite Grain Size on Transformation Behavior, Microstructure and MechanicalProperties of 0.1C?5Mn Martensitic Steel, ISIJ Int. 53 (2013) 2218-2225.
  • T. Furukawa. Dependence of strength-ductility characteristics on thermal historyin low carbon, 5 wt-%Mn steels, Mater. Sci. Technol. 5 (1989) 465-470.
  • T. Furukawa, H. Huang, O. Matsumura. Effects of carbon content on Mechanicalproperties of 5%Mn steels exhibiting transformation induced plasticity, Mater. Sci.Technol. 10 (1994) 964-970.
  • S.Y. Han, S.Y. Shin, H.J. Lee, B.J. Lee, S. Lee, N.J. Kim, J.H. Kwak. Effects ofannealing temperature on microstructure and tensile properties in ferritic lightweightsteels, Metall. Mater. Trans. A 43 (2012) 843-853.
  • S.J. Lee, Y.M. Park, Y.K. Lee. Reverse transformation mechanism of martensiteto austenite in a metastable austenitic alloy, Mater. Sci. Eng. A 515 (2009) 32-37.
  • S.J. Lee, Y.K. Lee. Effect of austenite grain size on martensitic transformation ofa low alloy steel, Mater. Sci. Forum 475 (2005) 3169-3172.
  • S. Zaefferer, J. Ohlert, W. Bleck. A study of microstructure, transformationmechanisms and correlation between microstructure and mechanical properties of a lowalloyed TRIP steel, Acta Mater. 52 (2004) 2765-2778.
  • S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen. The morphology andcrystallography of lath martensite in alloy steels, Acta Mater. 54 (2006) 5323-5331.
  • S. Morito, H. Yoshida, T. Maki, X. Huang. Effect of block size on the strength oflath martensite in low carbon steels, Mater. Sci. Eng. A 438-440 (2006) 237-240.
  • S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki. The morphology andcrystallography of lath martensite in Fe-C alloys, Acta Mater. 51 (2003) 1789-1799.
  • S. Lee, Y. Estrin, B.C. De Cooman. Constitutive modeling of the mechanicalproperties of V-added medium manganese TRIP steel, Metall. Mater. Trans. A 44 (2013)3136-3146.
  • S. Lee, S.J. Lee, S. Santhosh Kumar, K. Lee, B.C.D. Cooman. Localizeddeformation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticitysteel, Metall. Mater. Trans. A 42 (2011) 3638-3651.
  • S. Lee, S.J. Lee, B.C. De Cooman. Austenite stability of ultrafine-grainedtransformation-induced plasticity steel with Mn partitioning, Scripta Mater. 65 (2011)225-228.
  • S. Lee, B.C. De Cooman. On the selection of the optimal intercritical annealingtemperature for medium Mn TRIP steel, Metall. Mater. Trans. A 44 (2013) 5018-5024.
  • R.L. Miller. Ultrafine-grained microstructures and mechanical properties ofalloy steels, Metall. Trans. 3 (1972) 905-912.
  • R. Song, D. Ponge, D. Raabe. Mechanical properties of an ultrafine grained CMnsteel processed by warm deformation and annealing, Acta Mater. 53 (2005) 4881-4892.
  • R. Song, D. Ponge, D. Raabe, R. Kaspar. Microstructure and crystallographictexture of an ultrafine grained C-Mn steel and their evolution during warm deformationand annealing, Acta Mater. 53 (2005) 845-858.
  • P.J. Jacques. Transformation-induced plasticity for high strength formable steels,Curr. Opin. Solid State Mater. Sci. 8 (2004) 259-265.
  • P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock.Austenite stability effects on tensile behavior of manganese-enriched-austenitetransformation-induced plasticity steel, Metall. Mater. Trans. A 42 (2011) 3691-3702.
  • O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer. High strength Fe-Mn-(Al, Si)TRIP/TWIP steels development - properties - application, Int. J. Plastic. 16 (2000) 1391-1409.
  • O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier. High manganese austenitictwinning induced plasticity steels: A review of the microstructure properties relationships,Curr Opin Solid State Mater Sci 15 (2011) 141-168.
  • N.J. Kim, G. Thomas. Effects of morphology on the mechanical behavior of adual phase Fe/2Si/0.1C steel, Metall. Trans. A 12 A (1981) 483-489.
  • N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S.Van Der Zwaag. Thermal stability of retained austenite in TRIP steels studied bysynchrotron X-ray diffraction during cooling, Acta Mater. 53 (2005) 5439-5447.131
  • N. Zhong, X.D. Wang, L. Wang, Y.H. Rong. Enhancement of the mechanicalproperties of a Nb-microalloyed advanced high-strength steel treated by quenchingpartitioning-tempering process, Mater. Sci. Eng. A 506 (2009) 111-116.
  • M. Nemoto, Z. Horita, M. Furukawa, T.G. Langdon. Equal-channel angularpressing: A novel tool for microstructural control, Met. Mater. Int. 4 (1998) 1181-1190.
  • M. Kawasaki, T.G. Langdon. Review: Achieving superplasticity in metalsprocessed by high-pressure torsion, J. Mater. Sci. 49 (2014) 6487-6496.
  • M. Avrami. Kinetics of phase change. I: General theory, J. Chem. Phys. 7 (1939)1103-1112.
  • L. Liu, Z.G. Yang, C. Zhang, W.B. Liu. An in situ study on austenite memoryand austenitic spontaneous recrystallization of a martensitic steel, Mater. Sci. Eng. A 527(2010) 7204-7209.
  • K.T. Park, G. Kim, S.K. Kim, S.W. Lee, S.W. Hwang, C.S. Lee. On thetransitions of deformation modes of fully austenitic steels at room temperature, Met.Mater. Int. 16 (2010) 1-6.
  • K.-I. Sugimoto, M. Kobayashi, S.I. Hashimoto. Ductility and strain-inducedtransformation in a high-strength transformation-induced plasticity-aided dual-phase steel,132Metall. Trans. A 23 A (1992) 3085-3091.
  • K. Tomimura, S. Takaki, Y. Tokunaga. Reversion mechanism from deformationinduced martensite to austenite in metastable austenitic stainless steels, ISIJ Int. 31 (1991)1431-1437.
  • J.W. Christian. Chapter 12 - Formal Theory of Transformation Kinetics. in:Christian JW, (Ed.). The Theory of Transformations in Metals and Alloys. Pergamon,Oxford, 2002. pp. 529-552.
  • J.M. Jang, S.J. Kim, N.H. Kang, K.M. Cho, D.W. Suh. Effects of annealingconditions on microstructure and mechanical properties of low carbon, manganesetransformation-induced plasticity steel, Met. Mater. Int. 15 (2009) 909-916.
  • J.H. Ryu, D.I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, D.W. Suh. Strainpartitioning and mechanical stability of retained austenite, Scripta Mater. 63 (2010) 297-299.
  • J.H. Chung, J.B. Jeon, Y.W. Chang. Work-hardening and ductility enhancementmechanism of cold rolled multiphase TRIP steels, Met. Mater. Int. 16 (2010) 533-541.
  • J.E. Jung, J. Park, J.S. Kim, J.B. Jeon, S.K. Kim, Y.W. Chang. Temperatureeffect on twin formation kinetics and deformation behavior of Fe-18Mn-0.6C TWIP steel,Met. Mater. Int. 20 (2014) 27-34.
  • J.E. Jin, Y.K. Lee. Effects of Al on microstructure and tensile properties of C-bearinghigh Mn TWIP steel, Acta Mater 60 (2012) 1680-1688.
  • J. Talonen, P. Aspegren, H. Hanninen. Comparison of different methods formeasuring strain induced ??во?-martensite content in austenitic steels, Mater. Sci. Technol.20 (2004) 1506-1512.
  • J. Han, Y.-K. Lee. The effects of the heating rate on the reverse transformationmechanism and the phase stability of reverted austenite in medium Mn steels, Acta Mater.67 (2014) 354-361.
  • J. Han, S.-J. Lee, J.-G. Jung, Y.-K. Lee. The effects of the initial martensitemicrostructure on the microstructure and tensile properties of intercritically annealed Fe?9Mn?0.05C steel, Acta Mater. 78 (2014) 369-377.127
  • H.S. Yang, H.K.D.H. Bhadeshia. Austenite grain size and the martensite-starttemperature, Scripta Mater. 60 (2009) 493-495.
  • H. Schumann. Martensitic transformations in low-carbon manganese steels,Arch. Eisenhuttenwes. 38 (1967) 647-656.129
  • H. Schumann, S.Y. Kim. Metallographie, Hak Mun Publishing Co, Seoul, 1996.
  • H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong. Experimental and numericalanalysis on formation of stable austenite during the intercritical annealing of 5Mn steel,Acta Mater. 59 (2011) 4002-4014.
  • H. Hu. Effect of solutes on Luders strain in low-carbon sheet steels, Metall.Trans. A 14 A (1983) 85-91.
  • H. Hong, O.Y. Lee, G.H. Song. Effect of Mn addition on the microstructuralchanges and mechanical properties of C-Mn TRIP steels, J. of Kor. Soc. for Heat Treat.16 (2003) 205-210.
  • G. Kurdjumow, G. Sachs. U ber den Mechanismus der Stahlhartung, Z. Phys. 64(1930) 325-343.
  • E.C. Bain, N.Y. Dunkirk. Trans AIME 70 (1924) 25.
  • D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, S.J. Kim. Influence of Al on themicrostructural evolution and mechanical behavior of low-carbon, manganesetransformation-induced-plasticity steel, Metall. Mater. Trans. A 41 (2010) 397-408.
  • D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, H.K.D.H. Bhadeshia.Medium-alloy manganese-rich transformation-induced plasticity steels, Metall. Mater.Trans. A 44 (2013) 286-293.
  • D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer.Quenching and partitioning martensite-A novel steel heat treatment, Mater. Sci. Eng. A438-440 (2006) 25-34.
  • D.A. Porter, K.E. Easterling. Phase Transformation in Metal and Alloys, Taylorand Francis Group, Boca Raton, 1992.
  • D. Kuhlmann-Wilsdorf. Theory of plastic deformation: - properties of low energydislocation structures, Mater Sci Eng A 113 (1989) 1-41.
  • C.Y. Lee, C.S. Yoo, A. Kermanpur, Y.K. Lee. The effects of multi-cyclic thermo130mechanical treatment on the grain refinement and tensile properties of a metastableaustenitic steel, J. Alloy. Compd 583 (2014) 357-360.
  • C.S. Oh, H.N. Han, C.G. Lee, T.H. Lee, S.J. Kim. Dilatometric analysis onphase transformations of intercritical annealing of Fe-Mn-Si and Fe-Mn-Si-Cu lowcarbon TRIP steels, Met. Mater. Int. 10 (2004) 399-406.
  • C.A. Apple, G. Krauss. The effect of heating rate on the martensite to austenitetransformation in Fe-Ni-C alloys, Acta Metall. 20 (1972) 849-856.
  • C.-H. Seo, K.H. Kwon, K. Choi, K.-H. Kim, J.H. Kwak, S. Lee, N.J. Kim.Deformation behavior of ferrite?austenite duplex lightweight Fe?Mn?Al?C steel, ScriptaMater. 66 (2012) 519-522.
  • B.D. Cullity, S.R. Stock. Elements of X-ray diffraction, Prentice hall, Inc., NewJersey, 2001.
  • B.C. De Cooman. Structure-properties relationship in TRIP steels containing carbidefreebainite, Curr Opin Solid State Mater Sci 8 (2004) 285-303.
  • A.K. Jena, M.C. Chaturvedi. Phase Transformations in Materials, Prentice hall,Inc., New Jersey, 1992.
  • A.A. Howe. Ultrafine grained steels: Industrial prospects, Mater. Sci. Technol.16 (2000) 1264-1266.
  • A. Arlazarov, M. Goune, O. Bouaziz, A. Hazotte, G. Petitgand, P. Barges.Evolution of microstructure and mechanical properties of medium Mn steels duringdouble annealing, Mater. Sci. Eng. A 542 (2012) 31-39.