박사

Chaperone-mediated nuclear translocation of human telomerase and post-translational regulation of telomere-associated protein, TRF1

정유영 2015년
논문상세정보
' Chaperone-mediated nuclear translocation of human telomerase and post-translational regulation of telomere-associated protein, TRF1' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • dynein/dynactin
  • dynein/dynactin motor
  • fkbp52
  • hsp90
  • htert
  • nub1
  • nuclear transport
  • telomerase
  • trf1
  • 단백질 분해효소
  • 말단소체복원효소
  • 전사후 변형(post-translational modification)
  • 텔로미어(telomere)
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
61 0

0.0%

' Chaperone-mediated nuclear translocation of human telomerase and post-translational regulation of telomere-associated protein, TRF1' 의 참고문헌

  • Z.Q. Wu, X. Yang, G. Weber, X. Liu, Plk1 phosphorylation of TRF1 is essential forits binding to telomeres, The Journal of biological chemistry, 283 (2008) 25503-25513.
  • Z. Zeng, W. Wang, Y. Yang, Y. Chen, X. Yang, J.A. Diehl, X. Liu, M. Lei, Structuralbasis of selective ubiquitination of TRF1 by SCFFbx4, Developmental cell, 18 (2010)214-225.
  • Y.R. Her, I.K. Chung, Ubiquitin Ligase RLIM Modulates Telomere LengthHomeostasis through a Proteolysis of TRF1, The Journal of biological chemistry, 284(2009) 8557-8566.
  • Y.C. Chen, S.C. Teng, K.J. Wu, Phosphorylation of telomeric repeat binding factor 1(TRF1) by Akt causes telomere shortening, Cancer investigation, 27 (2009) 24-28.
  • Y. Jiang, L. Jia, Neddylation Pathway as a Novel Anti-Cancer Target: MechanisticInvestigation and Therapeutic Implication, Anti-cancer agents in medicinal chemistry,(2015).
  • Y. Chan, J. Yoon, J.T. Wu, H.J. Kim, K.T. Pan, J. Yim, C.T. Chien, DEN1deneddylates non-cullin proteins in vivo, Journal of cell science, 121 (2008) 3218-3223.
  • X.Z. Zhou, K.P. Lu, The Pin2/TRF1-interacting protein PinX1 is a potent telomeraseinhibitor, Cell, 107 (2001) 347-359.
  • W.M. Abida, A. Nikolaev, W. Zhao, W. Zhang, W. Gu, FBXO11 promotes theNeddylation of p53 and inhibits its transcriptional activity, The Journal of biologicalchemistry, 282 (2007) 1797-1804.
  • W. Palm, T. de Lange, How shelterin protects mammalian telomeres, Annu. Rev.Genet. 42 (2008) 301-334.
  • W. Chang, J.N. Dynek, S. Smith, TRF1 is degraded by ubiquitin-mediatedproteolysis after release from telomeres, Genes & development, 17 (2003) 1328-1333.
  • V.N. Podust, J.E. Brownell, T.B. Gladysheva, R.S. Luo, C. Wang, M.B. Coggins, J.W.Pierce, E.S. Lightcap, V. Chau, A Nedd8 conjugation pathway is essential for proteolytictargeting of p27Kip1 by ubiquitination, Proceedings of the National Academy of Sciences of the United States of America, 97 (2000) 4579-4584.
  • V. Su, A.F. Lau, Ubiquitin-like and ubiquitin-associated domain proteins:significance in proteasomal degradation, Cellular and molecular life sciences : CMLS, 66(2009) 2819-2833.
  • T.M. Nakamura, T.R. Cech, Reversing time: origin of telomerase, Cell 92 (1998) 587-590.
  • T.H. Lee, K. Perrem, J.W. Harper, K.P. Lu, X.Z. Zhou, The F-box protein FBX4targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomeremaintenance, The Journal of biological chemistry, 281 (2006) 759-768.
  • T.H. Lee, A. Tun-Kyi, R. Shi, J. Lim, C. Soohoo, G. Finn, M. Balastik, L. Pastorino,G. Wulf, X.Z. Zhou, K.P. Lu, Essential role of Pin1 in the regulation of TRF1 stabilityand telomere maintenance, Nature cell biology, 11 (2009) 97-105.
  • T.A. Soucy, P.G. Smith, M.A. Milhollen, A.J. Berger, J.M. Gavin, S. Adhikari, J.E.Brownell, K.E. Burke, D.P. Cardin, S. Critchley, C.A. Cullis, A. Doucette, J.J. Garnsey,J.L. Gaulin, R.E. Gershman, A.R. Lublinsky, A. McDonald, H. Mizutani, U. Narayanan,E.J. Olhava, S. Peluso, M. Rezaei, M.D. Sintchak, T. Talreja, M.P. Thomas, T. Traore, S.Vyskocil, G.S. Weatherhead, J. Yu, J. Zhang, L.R. Dick, C.F. Claiborne, M. Rolfe, J.B. Bolen, S.P. Langston, An inhibitor of NEDD8-activating enzyme as a new approach totreat cancer, Nature, 458 (2009) 732-736.
  • T. de Lange, Protection of mammalian telomeres, Oncogene, 21 (2002) 532-540.
  • T. Tanaka, H. Kawashima, E.T. Yeh, T. Kamitani, Regulation of the NEDD8conjugation system by a splicing variant, NUB1L, The Journal of biological chemistry,278 (2003) 32905-32913.
  • T. Ohishi, Y. Muramatsu, H. Yoshida, H. Seimiya, TRF1 ensures the centromericfunction of Aurora-B and proper chromosome segregation, Molecular and cellular biology,34 (2014) 2464-2478.
  • T. Nagano, T. Hashimoto, A. Nakashima, U. Kikkawa, S. Kamada, X-linkedinhibitor of apoptosis protein mediates neddylation by itself but does not function as aNEDD8-E3 ligase for caspase-7, FEBS letters, 586 (2012) 1612-1616.
  • T. Ma, Y. Chen, F. Zhang, C.Y. Yang, S. Wang, X. Yu, RNF111-dependentneddylation activates DNA damage-induced ubiquitination, Molecular cell, 49 (2013) 897-907.
  • T. Kamitani, K. Kito, T. Fukuda-Kamitani, E.T. Yeh, Targeting of NEDD8 and itsconjugates for proteasomal degradation by NUB1, The Journal of biological chemistry,276 (2001) 46655-46660.
  • T. Hori, F. Osaka, T. Chiba, C. Miyamoto, K. Okabayashi, N. Shimbara, S. Kato, K.Tanaka, Covalent modification of all members of human cullin family proteins byNEDD8, Oncogene, 18 (1999) 6829-6834.
  • S.T. Nawrocki, P. Griffin, K.R. Kelly, J.S. Carew, MLN4924: a novel first-in-classinhibitor of NEDD8-activating enzyme for cancer therapy, Expert opinion oninvestigational drugs, 21 (2012) 1563-1573.
  • S.J. Loftus, G. Liu, S.M. Carr, S. Munro, N.B. La Thangue, NEDDylation regulatesE2F-1-dependent transcription, EMBO reports, 13 (2012) 811-818.
  • S.E. Holt, D.L. Aisner, J. Baur, V.M. Tesmer, M. Dy, M. Ouellette, J.B. Trager, G.B.Morin, D.O. Toft, J.W. Shay, W.E. Wright, M.A. White, Functional requirement ofp23 and Hsp90 in telomerase complexes, Genes Dev. 13 (1999) 817-826.
  • S. Smith, T. de Lange, Tankyrase promotes telomere elongation in human cells,Current biology : CB, 10 (2000) 1299-1302.
  • S. Smith, I. Giriat, A. Schmitt, T. de Lange, Tankyrase, a poly(ADP-ribose)polymerase at human telomeres, Science, 282 (1998) 1484-1487.
  • S. Oved, Y. Mosesson, Y. Zwang, E. Santonico, K. Shtiegman, M.D. Marmor, B.S.Kochupurakkal, M. Katz, S. Lavi, G. Cesareni, Y. Yarden, Conjugation to Nedd8instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases, TheJournal of biological chemistry, 281 (2006) 21640-21651.
  • S. Kishi, X.Z. Zhou, Y. Ziv, C. Khoo, D.E. Hill, Y. Shiloh, K.P. Lu, Telomeric proteinPin2/TRF1 as an important ATM target in response to double strand DNA breaks, TheJournal of biological chemistry, 276 (2001) 29282-29291.
  • S. Jakel, D. Gorlich, Importin beta, transportin, RanBP5 and RanBP7 mediatenuclear import of ribosomal proteins in mammalian cells, EMBO J. 17 (1998) 4491-4502.
  • S. Carter, O. Bischof, A. Dejean, K.H. Vousden, C-terminal modifications regulateMDM2 dissociation and nuclear export of p53, Nature cell biology, 9 (2007) 428-435.
  • S. Carter, K.H. Vousden, p53-Ubl fusions as models of ubiquitination, sumoylationand neddylation of p53, Cell cycle, 7 (2008) 2519-2528.
  • R.I. Enchev, B.A. Schulman, M. Peter, Protein neddylation: beyond cullin-RINGligases, Nature reviews. Molecular cell biology, 16 (2015) 30-44.
  • R.E. Amir, K. Iwai, A. Ciechanover, The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105, TheJournal of biological chemistry, 277 (2002) 23253-23259.
  • R. Verma, R. Oania, J. Graumann, R.J. Deshaies, Multiubiquitin chain receptorsdefine a layer of substrate selectivity in the ubiquitin-proteasome system, Cell, 118 (2004)99-110.
  • R. Suarez-Sanchez, A. Aguilar, K.M. Wagstaff, G. Velez, P.M. Azuara-Medina, P.Gomez, A. Vasquez-Limeta, O. Hernandez-Hernandez, K.G. Lieu, D.A. Jans, B.Cisneros, Nucleocytoplasmic shuttling of the Duchenne muscular dystrophy geneproduct dystrophin Dp71d is dependent on the importin / and CRM1 nucleartransporters and microtubule motor dynein, Biochim. Biophys. Acta 1843 (2014) 985-1001
  • R. Piterman, I. Braunstein, E. Isakov, T. Ziv, A. Navon, S. Cohen, A. Stanhill, VWAdomain of S5a restricts the ability to bind ubiquitin and Ubl to the 26S proteasome,Molecular biology of the cell, 25 (2014) 3988-3998.
  • Q. Zhu, L. Meng, J.K. Hsu, T. Lin, J. Teishima, R.Y. Tsai, GNL3L stabilizes theTRF1 complex and promotes mitotic transition, The Journal of cell biology, 185 (2009)827-839.
  • P.R. Potts, H. Yu, The SMC5/6 complex maintains telomere length in ALT cancercells through SUMOylation of telomere-binding proteins, Nature structural & molecularbiology, 14 (2007) 581-590.
  • P. Muhlhausser, E.C. Muller, A. Otto, U. Kutay, Multiple pathways contribute tonuclear import of core histones, EMBO Rep. 2 (2001) 690-696.
  • P. Giannakakou, D.L. Sackett, Y. Ward, K.R. Webster, M.V. Blagosklonny, T. Fojo,p53 is associated with cellular microtubules and is transported to the nucleus bydynein, Nat. Cell Biol. 2 (2000) 709-717.
  • N.W. Kim, M.A. Piatyszek, K.R. Prowse, C.B. Harley, M.D. West, P.L. Ho, G.M.Coviello, W.E. Wright, S.L. Weinrich, J.W. Shay, Specific association of humantelomerase activity with immortal cells and cancer, Science 266 (1994) 2011-2015.
  • N. Rani, A. Aichem, G. Schmidtke, S.G. Kreft, M. Groettrup, FAT10 and NUB1Lbind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis,Nature communications, 3 (2012) 749.
  • M.S. Hipp, B. Kalveram, S. Raasi, M. Groettrup, G. Schmidtke, FAT10, a ubiquitinindependentsignal for proteasomal degradation, Molecular and cellular biology, 25 (2005)3483-3491.
  • M.K. Kim, M.R. Kang, H.W. Nam, Y.S. Bae, Y.S. Kim, I.K. Chung, Regulation oftelomeric repeat binding factor 1 binding to telomeres by casein kinase 2-mediatedphosphorylation, The Journal of biological chemistry, 283 (2008) 14144-14152.
  • M.D. Galigniana, J.M. Harrell, H.M. O Hagen, M. Ljungman, W.B. Pratt, Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus, J. Biol.Chem. 279 (2004) 22483-22489.
  • M.D. Galigniana, C. Radanyi, J.M. Renoir, P.R. Housley, W.B. Pratt, Evidence thatthe peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 isinvolved in both dynein interaction and glucocorticoid receptor movement to thenucleus, J. Biol. Chem., 276 (2001) 14884-14889.
  • M.D. Galigniana, A.G. Erlejman, M. Monte, C. Gomez-Sanchez, G. Piwien-Pilipuk,The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteinsand persists bound to the receptor in early nuclear events, Mol. Cell. Biol. 30 (2010)1285-1298.
  • M.A. Milhollen, U. Narayanan, T.A. Soucy, P.O. Veiby, P.G. Smith, B. Amidon,Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in humantumor cells consistent with deregulating CDT1 turnover, Cancer research, 71 (2011)3042-3051.
  • M.A. Cerone, C. Autexier, J.A. Londono-Vallejo, S. Bacchetti, A human cell line thatmaintains telomeres in the absence of telomerase and of key markers of ALT, Oncogene,24 (2005) 7893-7901.
  • M. Stewart, Molecular mechanism of the nuclear protein import cycle, Nat. Rev.Mol. Cell. Biol. 8 (2007) 195-208.
  • M. Funakoshi, T. Sasaki, T. Nishimoto, H. Kobayashi, Budding yeast Dsk2p is apolyubiquitin-binding protein that can interact with the proteasome, Proceedings of theNational Academy of Sciences of the United States of America, 99 (2002) 745-750.
  • L.N. Shen, H. Liu, C. Dong, D. Xirodimas, J.H. Naismith, R.T. Hay, Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1, The EMBOjournal, 24 (2005) 1341-1351.
  • L. Chong, B. van Steensel, D. Broccoli, H. Erdjument-Bromage, J. Hanish, P. Tempst,T. de Lange, A human telomeric protein, Science, 270 (1995) 1663-1667.
  • L. Chen, K. Madura, Rad23 promotes the targeting of proteolytic substrates to theproteasome, Molecular and cellular biology, 22 (2002) 4902-4913.
  • K.M. Wagstaff, D.A. Jans, Importins and beyond: non-conventional nucleartransport mechanisms, Traffic 10 (2009)1188-1198.
  • K.A. Melkonian, K.C. Maier, J.E. Godfrey, M. Rodgers, T.A. Schroer, Mechanism ofdynamitin-mediated disruption of dynactin, J. Biol. Chem. 282 (2007) 19355-19364.
  • K. Tanji, T. Tanaka, T. Kamitani, Interaction of NUB1 with the proteasome subunitS5a, Biochemical and biophysical research communications, 337 (2005) 116-120.
  • K. Kito, E.T. Yeh, T. Kamitani, NUB1, a NEDD8-interacting protein, is induced byinterferon and down-regulates the NEDD8 expression, The Journal of biologicalchemistry, 276 (2001) 20603-20609.
  • J.R. Walker, X.D. Zhu, Post-translational modifications of TRF1 and TRF2 and theirroles in telomere maintenance, Mechanisms of ageing and development, 133 (2012) 421-434.
  • J.R. Donigian, T. de Lange, The role of the poly(ADP-ribose) polymerase tankyrase1in telomere length control by the TRF1 component of the shelterin complex, The Journalof biological chemistry, 282 (2007) 22662-22667.
  • J.K. Hsu, T. Lin, R.Y. Tsai, Nucleostemin prevents telomere damage by promotingPML-IV recruitment to SUMOylated TRF1, The Journal of cell biology, 197 (2012) 613-624.
  • J.J. Lin, M.A. Milhollen, P.G. Smith, U. Narayanan, A. Dutta, NEDD8-targetingdrug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggeringcheckpoint activation, apoptosis, and senescence in cancer cells, Cancer research, 70(2010) 10310-10320.
  • J.H. Lee, P. Khadka, S.H. Baek, I.K. Chung, CHIP promotes human telomerasereverse transcriptase degradation and negatively regulates telomerase activity, J. Biol. Chem. 285 (2010) 42033-42045.
  • J.H. Kim, S.M. Park, M.R. Kang, S.Y. Oh, T.H. Lee, M.T. Muller, I.K. Chung,Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysisof hTERT, Genes Dev. 19 (2005) 776-781.
  • J.H. Kim, J.H. Kim, G.E. Lee, J.E. Lee, I.K. Chung, Potent inhibition of humantelomerase by nitrostyrene derivatives, Mol. Pharmacol. 63 (2003)1117-1124.
  • J.D. Griffith, L. Comeau, S. Rosenfield, R.M. Stansel, A. Bianchi, H. Moss, T. deLange, Mammalian telomeres end in a large duplex loop, Cell, 97 (1999) 503-514.
  • J.C. Sivils, C.L. Storer, Mario D Galigniana, M.B. Cox, Regulation of steroidhormone receptor function by the 52-kDa FK506-binding protein (FKBP52), Curr.Opin. Pharmacol. 11 (2011) 314-319.
  • J.C. Lee, G.X. Wang, O. Schickling, M.E. Peter, Fusing DEDD with ubiquitinchanges its intracellular localization and apoptotic potential, Apoptosis : an internationaljournal on programmed cell death, 10 (2005) 1483-1495.
  • J.A. Stewart, M.F. Chaiken, F. Wang, C.M. Price, Maintaining the end: roles oftelomere proteins in end-protection, telomere replication and length regulation, Mutationresearch, 730 (2012) 12-19.
  • J. Zhang, D. Bai, X. Ma, J. Guan, X. Zheng, hCINAP is a novel regulator ofribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal proteinS14, Oncogene, 33 (2014) 246-254.
  • J. Wang, J. Wang, L.Y. Xie, S. Allan, D. Beach, G.J. Hannon, Myc activatestelomerase, Genes Dev. 12 (1998) 1769-1774.
  • J. Luders, J. Demand, J. Hohfeld, The ubiquitin-related BAG-1 provides a linkbetween the molecular chaperones Hsc70/Hsp70 and the proteasome, The Journal ofbiological chemistry, 275 (2000) 4613-4617.
  • J. Chung, P. Khadka, I.K. Chung, Nuclear import of hTERT requires a bipartitenuclear localization signal and Akt-mediated phosphorylation, J. Cell Sci. 125 (2012)2684-2697.
  • I.K. Poon, D.A. Jans, Regulation of nuclear transport: central role in developmentand transformation? Traffic 6 (2005) 173-186.
  • I. Mikenberg, D. Widera, A. Kaus, B. Kaltschmidt, C. Kaltschmidt, Transcriptionfactor NF-kappaB is transported to the nucleus via cytoplasmic dynein/dynactin motorcomplex in hippocampal neurons, PLoS One 2 (2007) e589.
  • I. Aoki, M. Higuchi, Y. Gotoh, NEDDylation controls the target specificity of E2F1and apoptosis induction, Oncogene, 32 (2013) 3954-3964.
  • H.M. Mendoza, L.N. Shen, C. Botting, A. Lewis, J. Chen, B. Ink, R.T. Hay, NEDP1,a highly conserved cysteine protease that deNEDDylates Cullins, The Journal ofbiological chemistry, 278 (2003) 25637-25643.
  • H.L. Forsythe, J.L. Jarvis, J.W. Turner, L.W. Elmore, S.E. Holt, Stable association ofhsp90 and p23, but Not hsp70, with active human telomerase, J. Biol. Chem. 276(2001) 15571-15574.
  • H. Hiyama, M. Yokoi, C. Masutani, K. Sugasawa, T. Maekawa, K. Tanaka, J.H.Hoeijmakers, F. Hanaoka, Interaction of hHR23 with S5a. The ubiquitin-like domain ofhHR23 mediates interaction with S5a subunit of 26 S proteasome, The Journal ofbiological chemistry, 274 (1999) 28019-28025.
  • G.M. Wochnik, J. Ruegg, G.A. Abel, U. Schmidt, F. Holsboer, T. Rein, FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nucleartranslocation of the glucocorticoid receptor in mammalian cells, J. Biol. Chem. 280(2005) 4609-4616.
  • G.E. Lee, E.Y. Yu, C.H. Cho, J. Lee, M.T. Muller, I.K. Chung, DNA-protein kinasecatalytic subunit-interacting protein KIP binds telomerase by interacting with humantelomerase reverse transcriptase, J. Biol. Chem. 279 (2004) 34750-34755.
  • G. Schmidtke, B. Kalveram, M. Groettrup, Degradation of FAT10 by the 26Sproteasome is independent of ubiquitylation but relies on NUB1L, FEBS letters, 583(2009) 591-594.
  • G. Schmidtke, B. Kalveram, E. Weber, P. Bochtler, S. Lukasiak, M.S. Hipp, M.Groettrup, The UBA domains of NUB1L are required for binding but not for accelerateddegradation of the ubiquitin-like modifier FAT10, The Journal of biological chemistry,281 (2006) 20045-20054.
  • G. Rabut, M. Peter, Function and regulation of protein neddylation. 'Proteinmodifications: beyond the usual suspects' review series, EMBO reports, 9 (2008) 969-976.
  • G. Bornstein, D. Ganoth, A. Hershko, Regulation of neddylation and deneddylationof cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate, Proceedings of theNational Academy of Sciences of the United States of America, 103 (2006) 11515-11520.
  • F.G. Whitby, G. Xia, C.M. Pickart, C.P. Hill, Crystal structure of the humanubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes, TheJournal of biological chemistry, 273 (1998) 34983-34991.
  • F. Gao, J. Cheng, T. Shi, E.T. Yeh, Neddylation of a breast cancer-associated proteinrecruits a class III histone deacetylase that represses NFkappaB-dependent transcription,Nature cell biology, 8 (2006) 1171-1177.
  • E.H. Blackburn, Switching and signaling at the telomere, Cell 106 (2001) 661-673.
  • D.P. Xirodimas, M.K. Saville, J.C. Bourdon, R.T. Hay, D.P. Lane, Mdm2-mediatedNEDD8 conjugation of p53 inhibits its transcriptional activity, Cell, 118 (2004) 83-97.
  • D.M. Roth, G.W. Moseley, D. Glover, C.W. Pouton, D.A. Jans, A microtubulefacilitatednuclear import pathway for cancer regulatory proteins. Traffic 8 (2007) 673- 686.
  • D.M. Roth, G.W. Moseley, C.W. Pouton, D.A. Jans, Mechanism of microtubulefacilitated"fast track" nuclear import, J. Biol. Chem. 286 (2011) 14335-14351.
  • D.F. Smith, D.O. Toft, Minireview: the intersection of steroid receptors withmolecular chaperones: observations and questions, Mol. Endocrinol. 22 (2008) 2229-2240.
  • D. Voges, P. Zwickl, W. Baumeister, The 26S proteasome: a molecular machinedesigned for controlled proteolysis, Annual review of biochemistry, 68 (1999) 1015-1068.
  • D. Liu, M.S. O'Connor, J. Qin, Z. Songyang, Telosome, a mammalian telomereassociatedcomplex formed by multiple telomeric proteins, The Journal of biologicalchemistry, 279 (2004) 51338-51342.
  • D. Broccoli, A. Smogorzewska, L. Chong, T. de Lange, Human telomeres contain twodistinct Myb-related proteins, TRF1 and TRF2, Nature genetics, 17 (1997) 231-235.
  • C.W. Greider, E.H. Blackburn, Identification of a specific telomere terminaltransferase activity in Tetrahymena extracts, Cell, 43 (1985) 405-413.
  • C.L. Storer, C.A. Dickey, M.D. Galigniana, T. Rein, M.B. Cox, FKBP51 andFKBP52 in signaling and disease, Trends Endocrinol. Metab. 22 (2011) 481-490.
  • C. Schauber, L. Chen, P. Tongaonkar, I. Vega, D. Lambertson, W. Potts, K. Madura,Rad23 links DNA repair to the ubiquitin/proteasome pathway, Nature, 391 (1998) 715-718.
  • C. Frohnert, S. Hutten, S. Walde, A. Nath, R.H. Kehlenbach, Importin 7 and Nup358promote nuclear import of the protein component of human telomerase, PLoS One 9(2014) e88887.
  • C. Autexier, N.F. Lue, The structure and function of telomerase reverse transcriptase,Annu. Rev. Biochem. 75 (2006) 493-517.
  • B.S. Atanassov, Y.A. Evrard, A.S. Multani, Z. Zhang, L. Tora, D. Devys, S. Chang,S.Y. Dent, Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance,Molecular cell, 35 (2009) 352-364.
  • B.D. Cook, J.N. Dynek, W. Chang, G. Shostak, S. Smith, Role for the relatedpoly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres, Molecular andcellular biology, 22 (2002) 332-342.
  • B. van Steensel, T. de Lange, Control of telomere length by the human telomericprotein TRF1, Nature, 385 (1997) 740-743.
  • B. van Steensel, A. Smogorzewska, T. de Lange, TRF2 protects human telomeresfrom end-to-end fusions, Cell, 92 (1998) 401-413.
  • B. Mahata, A. Sundqvist, D.P. Xirodimas, Recruitment of RPL11 at promoter sites ofp53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependentmanner, Oncogene, 31 (2012) 3060-3071.
  • B. Li, S. Oestreich, T. de Lange, Identification of human Rap1: implications fortelomere evolution, Cell, 101 (2000) 471-483.
  • A.J. Ramsey, L.C. Russell, S.R. Whitt, M. Chinkers, Overlapping sites oftetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90,J. Biol. Chem. 275 (2000) 17857-17862.
  • A.G. van der Veen, H.L. Ploegh, Ubiquitin-like proteins, Annual review ofbiochemistry, 81 (2012) 323-357.
  • A.G. Erlejman, S.A. De Leo, G.I. Mazaira, A.M. Molinari, M.F. Camisay, V. Fontana,M.B. Cox, G. Piwien-Pilipuk, M.D. Galigniana, NF- B transcriptional activity ismodulated by FK506-binding proteins FKBP51 and FKBP52: a role for peptidylprolylisomerase activity. J. Biol. Chem. 289 (2014) 26263-26276.
  • A. Smogorzewska, T. de Lange, Regulation of telomerase by telomeric proteins,Annual review of biochemistry, 73 (2004) 177-208.
  • A. Smogorzewska, T. de Lange, Regulation of telomerase by telomeric proteins, Annu.Rev. Biochem. 73 (2004) 177-208.
  • A. Smogorzewska, B. van Steensel, A. Bianchi, S. Oelmann, M.R. Schaefer, G.Schnapp, T. de Lange, Control of human telomere length by TRF1 and TRF2, Molecularand cellular biology, 20 (2000) 1659-1668.
  • A. Bianchi, D. Shore, How telomerase reaches its end: mechanism of telomeraseregulation by the telomeric complex, Mol. Cell 31 (2008) 153-165.