박사

Effective transfer method of CVD grown graphene onto large-area substrates

이주호 2015년
논문상세정보
' Effective transfer method of CVD grown graphene onto large-area substrates' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • bubble
  • contact resistance
  • crack-release
  • dry transfer
  • electrolysis
  • gas sensor
  • graphene
  • metal transfer
  • schottky diode
  • tension
  • 가스 센서
  • 건식 전사
  • 그래핀
  • 금속 전사
  • 기포
  • 쇼트키 다이오드
  • 장력
  • 전기분해
  • 접촉 저항
  • 크랙 저감
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
915 0

0.0%

' Effective transfer method of CVD grown graphene onto large-area substrates' 의 참고문헌

  • de la Rosa, C. J. L.; Sun, J.; Lindvall, N.; Cole, M. T.; Nam, Y.; Loffler, M.;Olsson, E.; Teo, K. B.; Yurgens, A. Frame Assisted H2O Electrolysis Induced H2Bubbling Transfer of Large Area Graphene Grown by Chemical Vapor Deposition on Cu.Appl. Phys. Lett. 2013, 102 (2), 022101.
  • Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Experimental observation of thequantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
  • Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S. Graphenesegregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93,113103.
  • Yoon, T.; Shin, W.-C.; Kim, T.-Y.; Mun, J.-H.; Kim, T.-S.; Cho, B.-J. DirectMeasurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and ItsApplication to Renewable Transfer Process. Nano Lett. 2012, 12, 1448?1452
  • Yazyev, O.-V.; Louie, S.-G. Electronic transport in polycrystalline graphene.Nat. Mater., 2010, 9, 806?809.110
  • Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K.-E.; Kim, P.; Yoo,I.; Chung, H.-J.; Kim, K. Graphene Barristor, a Triode Device with a Gate-ControlledSchottky Barrier. Science 2012, 336 (6085), 1140-1143.
  • Xia, F.; Perebeinos, V.; Lin, Y.; Wu, Y.; Avouris, Ph. The origins and limits ofmetal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179.
  • Woo, Y. S.; Seo, D. H.; Yeon, D.-H.; Heo, J.; Chung, H.-J.; Benayad, A.; Chung,J.-G.; Han, H.; Lee, H.-S.; Seo, S.; Choi, J.-Y. Low Temperature Growth of CompleteMonolayer Graphene Films on Ni-Doped Copper and Gold Catalysts by a Self-LimitingSurface Reaction. Carbon 2013, 64, 315-323.
  • Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P.Electrochemical Delamination of CVD-Grown Graphene Film: Toward the RecyclableUse of Copper Catalyst. ACS Nano 2011, 5 (12), 9927-9933.
  • Wang, X.; Zhi, L.; Mullen, K. Transparent, Conductive Graphene Electrodes forDye-Sensitized Solar Cells. Nano Lett. 2008, 8 (1), 323-327.
  • Wang, D.-Y.; Huang, I-S.; Ho, P.-H.; Li, S.-S.; Yeh, Y.-C.; Wang, D.-W.; Chen,W.-L.; Lee, Y.-Y.; Chang, Y.-M.; Chen, C.-C.; Liang, C.-T.; Chen, C.-W. Clean-LiftingTransfer of Large-area Residual-Free Graphene Films. Adv. Mater. 2013, 25 , 4521 ?4526.109
  • Wang, D.-Y.; Huang, I-S.; Ho, P.-H.; Li, S.-S.; Yeh, Y.-C.; Wang, D.-W.; Chen,W.-L.; Lee, Y.-Y.; Chang, Y.-M.; Chen, C.-C.; Liang, C.-T.; Chen, C.-W. Clean-LiftingTransfer of Large-area Residual-Free Graphene Films. Adv. Mater. 2013, 25 , 4521 ?4526.
  • Verma, V. P.; Das, S.; Lahiri, I.; Choi, W. Large-area graphene on polymer filmfor flexible and transparent anode in field emission device. Appl. Phys. Lett. 2010, 96,203108.82
  • Verma, V. P.; Das, S.; Lahiri, I.; Choi, W. Large-area Graphene on PolymerFilm for Flexible and Transparent Anode in Field Emission Device. Appl. Phys. Lett.2010, 96 (20), 203108.
  • Venugopal, A.; Colombo, L.; Vogel, E. M. Issues with characterizing transportproperties of graphene field effect transistors. Solid State Commun. 2012, 152, 1311-1316
  • Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A. D.; Ostling, M.; Dabrowski, J.;Lippert, G.; Mehr, W.; Lemme, M. C. A Graphene-Based Hot Electron Transistor. NanoLett. 2013, 13, (4), 1435-1439.
  • Unarunotai, S.; Murata, Y.; Chialvo, C. E.; Kim, H.-S.; MacLaren, S.; Mason, N.;Petrov, I.; Rogers, J. A. Transfer of graphene layers grown on SiC wafers to othersubstrates and their integration into field effect transistors. Appl. Phys. Lett. 2009, 95,202101.
  • Unarunotai, S.; Koepke, J. C.; Tsai, C.-L.; Du, F.; Chialvo, C. E.; Murata, Y.;Haasch, R.; Petrov, I.; Mason, N.; Shim, M.et al. Layer-by-Layer Transfer of Multiple,Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. ACSNano 2010, 4, 5591? 5598.
  • Tongay, S.; Schumann, T.; Miao, X.; Appleton, B. R.; Hebard, A. F.; TuningSchottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon2011, 49, 2033.108
  • Tongay, S.; Schumann, T.; Miao, X.; Appleton, B. R.; Hebard, A. F.; TuningSchottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon2011, 49, 2033.
  • Tongay, S.; Schumann, T.; Hebard, A. F. Graphite based Schottky diodesformed on Si, GaAs, and 4H-SiC substrates. Appl. Phys. Lett. 2009, 95, 222103.
  • Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat.Mater. 2008, 7, 406? 411.
  • Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.;Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene ontoArbitrary Substrates. ACS Nano 2011, 5, 6916? 6924.
  • Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.;Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene ontoArbitrary Substrates. ACS Nano 2011, 5 (9), 6916-6924.
  • Su, C.-Y.; Lu, A.-Y.; Wu, C.-Y.; Li, Y.-T.; Liu, K.-K.; Zhang, W.; Lin, S.-Y.;Juang, Z.-Y.; Zhong, Y.-L.; Chen, F.-R.; Li, L.-J. Direct Formation of Wafer ScaleGraphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nanoletters 2011, 11, 3612-3616.
  • Stoney, G. Proc.R. Soc. London, Ser. A 1909, 82, 172-175.
  • Singh, A.; Uddin, A. M.; Sudarshan, T.; Koley, G. Tunable Reverse-BiasedGraphene/Silicon Heterojunction Schottky Diode Sensor. small 2014, 10, No. 8, 1555?1565.
  • Sharma, M.; Ghosh, S. Electron Transport and Goos?Hanchen Shift in Graphenewith Electric and Magnetic Barriers: Optical Analogy and Band Structure. J. Phys.:Condens. Matter 2011, 23 (5), 055501.
  • Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, (7), 487-496.
  • Schroder, D. K. Semiconductor material and device characterization; JohnWiley & Sons, Inc.: Hoboken, NJ, 2006; Chapter 3.
  • Robinson, J. A.; LaBella, M.; Zhu, M.; Hollander, M.; Kasarda, R.; Hughes, Z.;Trumbull, K.; Cavalero, R.; Snyder, D. Contacting graphene. Appl. Phys. Lett. 2011, 98,053103.16
  • Robinson, J. A.; LaBella, M.; Zhu, M.; Hollander, M.; Kasarda, R.; Hughes, Z.;Trumbull, K.; Cavalero, R.; Snyder, D. Contacting graphene. Appl. Phys. Lett. 2011, 98,053103.
  • Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.;Kong, J. Large Area, Few-layer Graphene Films on Arbitrary Substrates by ChemicalVapor Deposition. Nano Lett. 2008, 9 (1), 30-35.
  • Qiu, L.; Zhang, X.; Yang, W.; Wang, Y.; Simon, G.-P.; Li, D. ControllableCorrugation of Chemically Converted Graphene Sheets in Water and PotentialApplication for Nanofiltration. Chem. Commun., 2011, 47, 5810?5812.
  • Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.;Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The effect of chemicalresidues on the physical and electrical properties of chemical vapor deposited graphenetransferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.
  • Pan, G.; Li, B.; Heath, M.; Horsell, D.; Wears, M. L.; Taan, L. A.; Awan, S.Transfer-Free Growth of Graphene on SiO2 Insulatior Substrate from Sputtered Carbonand Nickel films. Carbon 2013, 65, 349-358.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.;Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Science2004, 306 (5696), 666-669.
  • Nemanich, R. J.; Solin, S. A.; Martin, R. M. Raman Scattering fromMicrocrystalline Films: Considerations of Composite Structures with Different OpticalAbsorption Properties. Phys. Rev. 1981, B 23, 6348.
  • Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Contact resistivity andcurrent flow path at metal/graphene contact. Appl. Phys. Lett. 2010, 97, 143514.67
  • Moon, J. S.; Antcliffe, M.; Seo, H. C.; Curtis, D.; Lin, S.; Schmitz, A.;Milosavljevic, I.; Kiselev, A. A.; Ross, R. S.; Gaskill, D. K.; Campbell, P. M.; Fitch, R.46C.; Lee, K.-M.; Asbeck, P. Ultra-Low Resistance Ohmic Contacts in Graphene FieldEffect Transistors. Appl. Phys. Lett. 2012, 100 (20), 203512.
  • Moon, J. S.; Antcliffe, M.; Seo, H. C.; Curtis, D.; Lin, S.; Schmitz, A.;Milosavljevic, I.; Kiselev, A. A.; Ross, R. S.; Gaskill, D. K.; Campbell, P. M.; Fitch, R. C.;Lee, K.-M.; Asbeck, P. Ultra-low resistance ohmic contacts in graphene field effecttransistors. Appl. Phys. Lett. 2012, 100, 203512
  • Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.;Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science2010, 327 (5966), 662-662.
  • Lin, Y.-C.; Lu, C.-C.; Yeh, C.-H.; Jin, C.; Suenaga, K.; Chiu, P.-W. GrapheneAnnealing: How Clean Can It Be? Nano Lett. 2012, 12(1), 414?419.
  • Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.;Obeng, Y.; Yan, K.; Peng, H.; Li, Q.et al. Toward Clean and Crackless Transfer ofGraphene. ACS Nano 2011, 5, 9144? 9153.
  • Li. X. et al., Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010,22, 2743.17
  • Li. X. et al., Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010,22, 2743.
  • Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.;Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis ofHigh-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932),1312-1314.
  • Li, W.; Liang, Y.; Yu, D.; Peng, L.; Pernstich, K. P.; Shen, T.; Hight Walker, A.R.; Cheng, G.; Hacker, C. A.; Richter, C. A.; Li, Q.; Gundlach, D. J.; Liang, X.Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett.2013, 102, 183110.
  • Li, W.; Liang, Y.; Yu, D.; Peng, L.; Pernstich, K. P.; Shen, T.; Hight Walker, A.R.; Cheng, G.; Hacker, C. A.; Richter, C. A.; Li, Q.; Gundlach, D. J.; Liang, X.68Ultraviolet/ozone treatment to reduce metal-graphene contact resistance. Appl. Phys. Lett.2013, 102, 183110.
  • Li, L.-J.; Chen, P. Nanoelectronic Biosensors Based on CVD grown Graphene.Nanoscale 2010, 2 (8), 1485-1488.
  • Levendorf, M. P.; Ruiz-Vargas, C. S.; Garg, S.; Park, J. Transfer-Free BatchFabrication of Single Layer Graphene Transistors. Nano Lett. 2009, 9 (12), 4479-4483.
  • Lee, Y.; Bea, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B.H.; Ahn, J.-H. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett. 2010,10, 490-493.
  • Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.; Sim, S.; Song, Y. I.; Hong, B. H.;Ahn, J.-H. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett. 2010, 10( 2 ) 490? 493.
  • Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B.H.; Ahn, J.-H. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett. 2010,10 (2), 490-493.44
  • Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S.-E.; Sim, S. H.; Song, Y. I.; Hong, B.H.; Ahn, J.-H. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Lett. 2010,10 (2), 490-493.14
  • Lee, Y.-H.; Lee, J.-H. Scalable Growth of Free-standing Graphene Wafers withCopper (Cu) Catalyst on SiO2/Si Substrate: Thermal Conductivity of the Wafers. Appl.Phys. Lett. 2010, 96 (8), 083101.
  • Lee, J.; Kim, Y.; Shin, H.-J.; Lee, C.; Lee, D.; Moon, C.-Y.; Lim, J.; Jun, S. C.Clean Transfer of Graphene and its Effect on Contact Resistance. Appl. Phys. Lett. 2013,103 (10), 103104.
  • Lee, J.; Kim, Y.; Shin, H.-J.; Lee, C.; Lee, D.; Lee, S.; Moon, C.-Y.; Lee, S. C.;Kim, S. J.; Ji, J. H.; Jun, S. C. Crack-release Transfer Method of Wafer-scale grownGraphene Onto Large-Area Substrates. ACS Appl. Mater. Interfaces 2014, 6, 12588-12593.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008, 321, 385-388.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Propertiesand Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.66
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Propertiesand Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385-388.13
  • Lee, C.; Kim, J.-H.; Zou, C.; Cho, I.-S.; Weisse, J.-M.; Nemeth, W.; Wang, Q.;Duin, A.-T.; Kim, T.-S.; Zheng, X. Peel-and-Stick: Mechanism Study for EfficientFabrication of Flexible/Transparent Thin-film Electronics. Scientific reports 2013, 3 :2917.111
  • Kwon, T.; An, H.; Seo, Y.-S.; Jung, J. Plasma Treatment to Improve ChemicalVapor Deposition-Grown Graphene to Metal Electrode Contact. Jpn. J. Appl. Phys. 2012,Part 1 51, 04DN04.
  • Koo, M.; Park, K.; Lee, S.-H.; Suh, M.; Jeon, D.-Y.; Choi, J.-W.; Kang, K.; Lee,K.-J.; Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. NanoLett. 2012, 12, 4810?4816.
  • Kim, S.-J.; Choi, T.; Lee, B.; Lee, S.; Choi, K.; Park, J.-B.; Yoo, J.-M.; Choi,Y.-S.; Ryu, J.; Kim, P.; Hone, J.; Hong, B.-H. Ultraclean Patterned Transfer of SingleLayer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Lett. 2015,15(5), 3236?3240
  • Kim, K.; Choi, J.-Y.; Kim, T.; Cho, S.-H.; Chung, H.-J. A role for graphene insilicon-based semiconductor devices. Nature 2011, 479, (7373), 338-344.
  • Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.;Kim, P.; Choi, J.-Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films forStretchable Transparent Electrodes. Nature 2009, 457 (7230), 706-710.80
  • Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.;Kim, P.; Choi, J.-Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films forStretchable Transparent Electrodes. Nature 2009, 457 (7230), 706-710.42
  • Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.;Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchabletransparent electrodes. Nature 2009, 457 (7230), 706-710.
  • Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H.-J.;Baik, J.; Choi, H. C. Copper-vapor-assisted Chemical Vapor Deposition for High-qualityand Metal-free Single-layer Graphene on Amorphous SiO2 substrate. ACS Nano 2013, 7(8), 6575-6582.
  • Kang, J.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.;Kim, M. K.; Choi, J.-B. Efficient Transfer of Large-Area Graphene Films onto RigidSubstrates by Hot Pressing. ACS Nano 2012, 6 (6), 5360-5365.
  • Jung, W.; Kim, D.; Lee, M.; Kim, S.; Kim, J.-H.; Han, C.-S. UltraconformalContact Transfer of Monolayer Graphene on Metal to Various Substrates. Adv. Mater.2014, 26 , 6394 ? 6400.
  • Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.;Bokor, J.; Zhang, Y. Direct Chemical Vapor Deposition of Graphene on DielectricSurfaces. Nano Lett. 2010, 10 (5), 1542-1548.
  • Huh, S.; Park, J.; Kim, Y. S.; Kim, K. S.; Hong, B. H.; Nam, J.-M. UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano 2011,5, 9799-9806.
  • Huang, Y.; Dong, X.; Shi, Y.; Li, C. M.; Li, L.-J.; Chen, P. NanoelectronicBiosensors Based on CVD grown Graphene. Nanoscale 2010, 2 (8), 1485-1488.
  • Hsu, C.-L.; Lin, C.-T.; Huang, J.-H.; Chu, C.-W.; Wei, K.-H.; Li, L.-J. Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells.ACS Nano 2012, 6, 5031-5039.
  • Hsu, A. ; Wang, H.; Kim, K. K.; Kong, J.; Palacios, T. Impact of GrapheneInterface Quality on Contact Resistance and RF Device Performance. IEEE ElectronDevice Lett. 2011, 32, 1008.
  • Hong, J.; Lee, S.; Lee, S.; Han, H.; Mahata, C.; Yeon, H.-W.; Koo, B.; Kim, S.-I.; Nam, T.; Byun, K.; Min, B.-W.; Kim, Y.-W.; Kim, H.; Joo, Y.-C.; Lee, T. Graphene asAn Atomically Thin Barrier to Cu Diffusion into Si. Nanoscale 2014, 6, 7503.
  • Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.;McGovern, I. T.; Holland, B.; Byrne, M.; Gun Ko, Y. K.et al. High-yield production ofgraphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563? 568.
  • Heo, J.; Chung, H.-J.; Lee, S.-H.; Yang, H.; Shin, J.; Chung, U.-I.; Seo, S.Integration of High Quality Top-Gated Graphene Field Effect Devices on 150 mmSubstrate. IEEE Device Research Conference (DRC), 2011 69th Annual, 31~32
  • Grantab, R.; Shenoy, V.-B.; Ruoff, R.-S. Anomalous Strength Characteristics ofTilt Grain Boundaries in Graphene. Science 2010, 330 (6006), 946-948.
  • Ghoneim, M. T.; Smith, C. E.; Hussain, M. M. Simplistic graphene transferprocess and its impact on contact resistance. Appl. Phys. Lett. 2013, 102, 183115.
  • Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat Mater 2007, 6 (3),183-191.
  • Geim, A. K. Graphene: Status and Prospects. Science 2009, 324 (5934), 1530-1534.
  • Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu,Q.; Peng, L.-M. Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains using Platinum. Nat. Commun. 2012, 3, 699.45
  • Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L.-P.; Zhang, Z.; Fu,Q.; Peng, L.-M. Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains using Platinum. Nat. Commun. 2012, 3, 699.15
  • Gao, L.; Ni, G.-X.; Liu, Y.; Liu, B.; Neto, A. C.; Loh, K. P. Face-to-FaceTransfer of Wafer-Scale Graphene Films. Nature 2014, 505, 190-194.
  • Fisichella, G.; Di Franco, S.; Roccaforte, F.; Ravesi, S.; Giannazo, F.Microscopic mechanisms of graphene electrolytic delamination from metal substrates.Appl. Phys. Lett. 2014, 104, 233105.
  • Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.;McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.;Waldmann, D.; Weber, H. B.; Seyller, T. Towards wafer-size graphene layers byatmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8 ( 3) 203? 207.81
  • De Jongh, P.; Vanmaekelbergh, D.; Kelly, J. Cu2O: Electrodeposition andCharacterization. Chem. Mater. 1999, 11 (12), 3512-3517.
  • Dan, Y.; Lu, Y.; Kybert, N. J.; Luo, Z.; Johnson, A. T. C. Intrinsic Response ofGraphene Vapor Sensors. Nano Lett. 2009, 9, 1472.
  • D. K. Schroder, Semiconductor Material and Device Characterization (Wiley,New York, 2006), p. 138?149.
  • Chen, S.; Lola, B.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.:Magnuson, C.-W.; Velamakanni, A.; Piner, R.-C.; Kang, J.; Park, J.; Ruoff, R.-S.Oxidation Resistance of Grpahene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321-1327.
  • Chen, C.-C.; Aykol, M.; Chang C.-C.; Levi, A. F. J.; Cronin, S. B. GraphenesiliconSchottky diodes. Nano Lett. 2011, 11, 1863.
  • Chen, C.-C.; Aykol, M. C.-C.; Chang, Levi, A. F. J.; Cronin, S. B. GraphenesiliconSchottky diodes. Nano Lett. 2011, 11, 1863.
  • Caldwell, J. D.; Anderson, T. J.; Culbertson, J. C.; Jernigan, G. G.; Hobart, K.D.; Kub, F. J.; Tadjer, M. J.; Tedesco, J. L.; Hite, J. K.; Mastro, M. A.et al. Technique forthe dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 2010, 4, 1108?1114.
  • Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics andoptoelectronics. Nature Photonics 2010, 4, 611-622.
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh Electron Mobility in Suspended Graphene. Solid State Commun., 2008, 146, 351-355.
  • Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.: Fudenberg, G.; Hone, J. ; Kim,P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid StateCommun. 2008, 146, 351-355.107
  • Blake, P.; Yang, R.; Morozov, S. V.; Schedin, F.; Ponomarenko, L. A.; Zhukov, A.A.; Nair, R. R.; Grigorieva, I. V.; Novoselov, K. S.; Geim, A. K. Influence of metalcontacts and charge inhomogeneity on transport properties of graphene near the neutralitypoint. Solid State Commun. 2009, 149, 1068.
  • Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.;Booth, T. J.; Geim, A. K. Making Graphene Visible. Appl. Phys. Lett. 2007, 91 (6),063124-063124-3.
  • Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.;Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.;Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8 (6), 1704-1708.
  • Berger, H. H. Models for Contacts to Planar Devices. Solid-State Electron. 1972,15, 145.
  • Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.;Hass, J.; Marchenkov, a. A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. ElectronicConfinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1991?1996.
  • Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.;Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. ElectronicConfinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191-1195.
  • Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.;Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008,8(3), 902?907.
  • Bajpai, R.; Roy, S.; Jain, L.; Kulshrestha, N.; Hazra, K. S.; Misra, D. S. Facileone-step transfer process of graphene. Nanotechnology 2011, 22, 225606.
  • Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.; Zheng, Y.; Balakrishnan, J.; Lei, T.;Kim, H.; Song, Y. I.et al. Roll-to-Roll Production of 30-inch Graphene Films forTransparent Electrodes. Nat. Nano-technol. 2010, 5, 574? 578.
  • Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei,T.; Kim, H. R.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B.43H.; Iijima, S. Roll-to-Roll Production of 30-inch Graphene Films for TransparentElectrodes. Nat. Nanotechnol. 2010, 5 (8), 574-578.
  • BCC Research Report July 2012, Report code : AVM075B