박사

A Study on the catalytic properties of Cu electrode for CO2 Reduction : 이산화탄소 환원을 위한 구리 전극의 촉매 특성 연구

김지홍 2015년
논문상세정보
' A Study on the catalytic properties of Cu electrode for CO2 Reduction : 이산화탄소 환원을 위한 구리 전극의 촉매 특성 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • catalytic property
  • copper
  • electrocatalyst
  • electrochemical co2 reduction
  • electroreduction of co2
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
248 0

0.0%

' A Study on the catalytic properties of Cu electrode for CO2 Reduction : 이산화탄소 환원을 위한 구리 전극의 촉매 특성 연구' 의 참고문헌

  • http://www.gamry.com/application-notes/physechem/potentiostat-fundamentals/
  • Yoshio Hori, Akira Murata and Ryutaro Takahashi, Formation of hydrocarbonsin the electrochemical reduction of carbon dioxide at a copper electrode inaqueous solution, J. Chem. Soc., Faraday Trans. 1, 85 (1989) 2309-2326.
  • Y. Hori, in Modern Aspects of Electrochemistry, ed. C. G. Vayenas, R. E. Whiteand M. E. Gamboa-Aldeco, Springer, New York, 2008, vol. 42, pp. 89?189.
  • Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys. Chem. B, 1997,101, 7075?7081.
  • Y. Hori, M.Murata and R. Takahashi, J. Chem. Soc. Faraday Trans. 1, 1989, 85,2309?2326.
  • Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett. (1985) 1695.
  • Y. Hori, K. Kikuchi, A. Murata, S. Suzuki, Chem. Lett. (1986) 897.
  • Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett., 1985, 1695?1698.
  • Y. Hori, I. Takahashi, O. Koga and N. Hoshi, J. Mol. Catal. A: Chem., 2003, 199,39?47.
  • Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Surface Science 335 (1995) 258-263.
  • Y. Hori, H. Wakebe, T. Tsukamoto and S. Koga, Electrochim. Acta., 11/12 (1994)1833-1839.
  • Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim. Acta, 1994, 39,1833?1839.
  • Y. Hori, A.Murata, R. Takahashi and S. Suzuki, J. Am. Chem. Soc., 1987, 109,5022?5023.
  • Xiaowa Nie, Monica R. Esopi, Michael J. Janik, and Aravind Asthagiri, Angew.Chem. Int. Ed. 52 (2013) 2459.
  • William J. Durand, Andrew A. Peterson, Felix Studt, Frank Abild-Pedersen, JensK. N?見rskov, Surface Science 605 (2011) 1354?1359.
  • W. Schmickler and S. Trasatti, J. Electrochem. Soc. 153 (2006) L31.
  • W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen, J. K. Norskov, Surf.Sci. 605 (2011) 1354 ? 1359.
  • W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen and J. K. N?見rskov,Surf. Sci., 2011, 605, 1354?1359.
  • W. Han, E. A. Stern, D. Haskel and A. R. Moodenbaugh, Phys. Rev B, 66 (2002)094101.
  • Truman E. Teeter and Pierre Van Rysselberghe, Reduction of Carbon Dioxide onMercury Cathodes, J. Chem. Phys. 22, 759 (1954).
  • Thomas J. Meyer, Acc. Chem. Res., 1989, 22 (5), pp 163?170.
  • This s/w is a freeware and available at http://xpspeak.software.informer.com.
  • Tang, W. et al. The importance of surface morphology in controlling theselectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem.Chem. Phys. 14, 76?81 (2012).
  • T.D. Hewitt, D. Roy, Chem. Phys. Let. 181 (5) (1991) 407.
  • Styring, Stenbjorn (21 December 2011). "Artificial photosynthesis for solarfuels". Faraday Discussions 155 (Advance Article): 357. Bibcode: 2012 FaDi.,155.357S
  • Smolinka, M. Heinen, Y. X. Chen, Z. Jusys, W. Lehnert, R. J. Behm,Electrochim. Acta, 2005, 50, 5189.
  • Satoshi Kaneco, Kenji Iiba, Kiyohisa Ohta, Takayuki Mizuno, Akira Saji,Electrochemical reduction of CO2 at an Ag electrode in KOH-methanol at lowtemperature, Electrochim. Acta., 44 (1998) 4, 579-578.
  • S. Trasatti, J. Electroanal. Chem. 39 (1972) 163.
  • S. Trasatti, Adv. Electrochem. Electrochem. Eng. and ElectrochemicalEngineering, Ed. by H. Gerischer and C.W. Tobias, Wiley, New York, Vol. 10,1977 p. 213.
  • Ratti V. K. and Ziman J. M., J. Phys. F: Metal Phys. 4, 1684 (1974).
  • Ralph E. White, Electrochemical cell design, New York: Plenum Press, (1984).
  • R. Chaplin, A. Wragg, J. Appl. Electrochem., 2003, 33, 1107.
  • Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Norskov, J. K.How copper catalyzes the electroreduction of carbon dioxide into hydrocarbonfuels. Energy Environ. Sci. 3, 1311?1315 (2010).
  • Peterson, A. A. & N?見rskov, J. K. Activity descriptors for CO2 electroreduction tomethane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251?258 (2012).
  • Peter W. Reynolds, J. Chem. Soc., 1950, 265-271.
  • P. Sabatier. Ber. Dtsch. Chem. Ges. 44 (1984) 1911.
  • P. J. Welford, B. A. Brookes, J. D. Wadhawan, H. B. McPeak, C. E. W. Hahn,R. G. Compton, J. Phys. Chem. B, 2001, 105, 5253.
  • Originally created by Robert A. Rohde from NOAA published data. Wikipedia
  • O??hayre R, Cha SW, ColellaW, Prinz FB (2009) Fuel cell fundamentals, 2nd edn.JohnWiley & Sons, Inc., NewYork
  • O. Johnson, J. Phys. Chem. Solids 42 (1981) 65-76.
  • NASA??s Goddard Institute of Space Studies, processtrends.com
  • Micahel J. Janik, Aravind Asthagiri, J. Catal. 312 (2014) 108-122.
  • M. T. Koper, J. Electroanal. Chem., 2011, 660, 254?260.
  • M. Newville, P. Livins, Y. Yacoby, E. A. Stern, and J. J. Rehr, ??Near-edge x-rayabsorptionfine structure of Pb: A comparison of theory and experiment, Phys. Rev. B47,pp14126--14131 (1993).
  • M. Newville, J. Synchrotron Rad. 8, pp 322-324 (2001).
  • M. Le, M. Ren, Z. Zhang, J. Electrochem. Soc., 158 (2011) E45-49.
  • M. Jitaru, Journal of the University of Chemical Technology and Metallurgy, 42,4 (2007) 333-344.
  • M. Gattrell, N. Gupta and A. Co, J. Electroanal. Chem., 2006, 594, 1?19.
  • Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodesresulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231?7234 (2012).
  • Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into theelectrochemical reduction of carbon dioxide on metallic copper surfaces. EnergyEnviron. Sci. 5, 7050?7059 (2012).
  • Kim, D. et al. Synergistic geometric and electronic effects for electrochemicalreduction of carbon dioxide using gold?copper bimetallic nanoparticles.Nat.Commun. 5:4948 doi: 10.1038/ncomms5948 (2014).
  • Kendra P. Kuhl, Etosha R. Cave, David N. Abram and Thomas F. Jaramilo,Energy Environ. Sci., 5 (2012) 7050-7059.
  • K.J.P. Schouten, Z.S. Qin, E.P. Gallent, M.T.M. Koper, J. Am. Chem. Soc. 134(2012) 9864.
  • K. W. Frese, in Electochemical and electrocatalytic reactions of carbon dioxide,ed. B. P. Sullivan, K. Krist and H. E. Guard, Elsevier, Amsterdam, 1993, pp.145?216.
  • K. W. Frese, Jr. and S. Leach, Electrochemical Reduction of Carbon Dioxide toMethane, Methanol, and CO on Ru Electrodes, J. Electrochem. Soc. 132 (1985)259
  • K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Energy Environ. Sci.,2012,
  • J.-M. Saveant, Chem. Rev., 2008, 108, 2348?2378.
  • J. Russel and T. P. Toney, M. F. Macromolecules, 26 (1993) 2847.
  • J. Norskov, T. Bligaard, J. Rossmeisl, C. Christensen., Nat. Chem. 1 (2009) 37-46.
  • J. K. N?見rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov,U. Stimming, J. Electrochem. Soc. 152 (2005) J23.
  • J. C. Vickerman, Surface analysis the principal techniques, John Wiley,Chichester (1997).
  • International Energy agency report (2012).
  • Hori, Y. in Modern Aspects of Electrochemistry Vol. 42, Ch. 3 eds Vayenas C.G., White R. E., Gamboa-Aldeco M. E. 89?189 Springer, New York (2008).
  • Hori, Y. et al. ??Deactivation of copper electrode?▽ in electrochemical reduction ofCO2. Electrochim. Acta 50, 5354?5369 (2005).
  • Hodges C. H. and Stott M., Phil. Msg. 26,315 (1912).
  • Handbook of the band structure of elemental solids, 2nd Ed (2014).Springer.ISBN 978-1-4419-8264-3 (eBook)
  • Gattrell, M., Gupta, N. & Co, A. A review of the aqueous electrochemicalreduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1?19(2006).
  • Gathman, Andrew. "Energy at the Speed of Light". Online Research. PennState.Retrieved 16 January 2012.
  • G. Schneider, Y. Lindqvist and C. I. Branden, Annu. Rev. Biophys. Biomol.Struct., 1992, 21, 119?143.
  • Electrochemical and electrocatalytic reactions of carbon dioxide, ed. B. P.Sullivan, K. Krist and H. E. Guard, Elsevier, Amsterdam, 1993.
  • E.A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Phys. B: Conden. Matt.208-209 (1995) pp117-120
  • E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Chem. Soc. Rev.,2009, 38, 89?99.
  • D.W. Dewulf, T. Jin, A. J. Bard, J. Electrochem. Soc. 136 (1989) 1686 ? 1691.
  • D. j. G. Ives and G. J. Janz, ??Reference Electrodes,?▽ Academic, New York(1961).
  • D. P. Summers, S. Leach and K. W. F. Jr., J. Electroanal. Chem., 1986, 205,219?232.
  • D. L. Nelson and M. M. Cox, Lehninger principles of biochemistry,W.H.Freeman, 5th edn.,2008, pp. 773?801.
  • D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev Lett 27(1971) 1204.
  • D. E. Sayers, E. A. Stern and F. W. Lytle, Phys. Rev. Lett., 35 (1975) 584.
  • Colin F. Poole, Gas Chromatography, Elsevier (2012).
  • Christopher Masters, Homogeneous Transition Metal Catalysis A, Gentle Art,Chapman and Hall, New York. 1981.
  • Brian A. Rosen, Amin Salehi-Khojin, Michael R. Thorson, Science 334, 6056(2011) 643-644.
  • Begum, P. G. Pickup, Electrochem. Commun., 2007, 9, 2525.
  • Bard AJ, Faulkner LR, Electrochemical methods, fundamentals and applications,2nd edn. (2001) JohnWiley & Sons, Inc., NewYork
  • B. Ravel, J. Synchrotron Radiat. 2001, 8, 314.
  • B. Hammer, Y. Morikawa, and J. K. N?見rskov, Phys. Rev. Lett. 76, 2141
  • B. Hammer, J.K. N?見rskov, Theoretical surface science and catalysis?calculationsand concepts, in: Helmut Knozinger, Bruce C. Gates (Eds.), Impact of SurfaceScience on Catalysis, volume 45 of Advances in Catalysis, Academic Press, 2000,p. 71.
  • B. E. Conway, E. M. Beatty, P. A. D. De Maine, Electrochim. Acta 7 (1962) 39.
  • Allen. J. Bard, Larry R. Faulkner, Electrochemical Methods-Fundamental andApplications, 2nd Ed. Wiley, Ch3 (2001).
  • A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B. 1998, 58,7565.
  • A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Norskov, EnergyEnviron. Sci. 3 (2010) 1311 ? 1315.