박사

Control of Air Pollutants in a Wet Chemical Reactor Combined with Corona Discharge

박현우 2015년
논문상세정보
' Control of Air Pollutants in a Wet Chemical Reactor Combined with Corona Discharge' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • aerosol particle
  • corona discharge
  • electrostatic precipitator
  • gas residence time
  • h2s
  • koh
  • naclo2
  • naoh
  • no
  • rate coefficient
  • reaction rate
  • removal efficiency
  • so2
  • specific energy density
  • wet chemical reactor
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
310 0

0.0%

' Control of Air Pollutants in a Wet Chemical Reactor Combined with Corona Discharge' 의 참고문헌

  • Z. Wang, J. Zhou, Y. Zhu, Z. Wen, J. Liu, K. Cen, Simultaneous removal of NOx, SO2 and Hg in nitrogen flowin a narrow reactor by ozone injection: experimental results Fuel Proc. Technol. 88 (2007) 817-823.
  • Y.X. Chen, Y. Jiang, W.Z. Li, R.C. Jin, S.Z. Tang, W.B. Hu,108 Adsorption and interaction of H2S/SO2 on TiO2 Catal.Today 50 (1999) 39-47.
  • Y.G. Adewuyi, X. He, H. Shaw, W. Lolertpihop, Simultaneous absorption and oxidation of NO and SO2 byaqueous solutions of sodium chlorite Chem. Eng. Commun.174 (1999) 21-51.
  • Y.G. Adewuyi, S.O. Owusu, Ultrasonic-induced aqueousremoval of nitric oxide from gases: effects of sulfur dioxide,chloride, and chemical oxidant J. Phys. Chem. A 110 (2006)11098-11107.
  • Y.G. Adewuyi, N.Y. Sakai, Simultaneous absorption andoxidation of nitric oxide and sulfur dioxide by aqueoussolutions of sodium persulfate activated by temperature Ind. Eng. Chem. Res. 52 (2013) 11702-11711.
  • Y.G. Adewuyi, N.Y. Sakai, Removal of nitric oxide by111aqueous sodium persulfate simultaneously activated bytemperature and Fe2+ in a lab-scale bubble reactor Ind. Eng.Chem. Res. 52 (2013) 14687-14697.
  • Y. Zhao, T. Guo, Z. Chen, Y. Du, Simultaneous removal ofSO2 and NO using M/NaClO2 complex absorbent Chem.Eng. J. 160 (2010) 42-47.
  • Y. Zhao, P. Xu, D. Fu, J. Huang, H. Yu, Experimental studyon simultaneous desulfurization and denitrification based onhighly active absorbent J. Environ. Sci. China 18 (2006) 281-286.
  • X.H. Wang, T.H. Sun, J. Yang, L. Zhao, J.P. Jia, LowtemperatureH2S removal from gas streams with SBA-15supported ZnO nanoparticles Chem. Eng. J. 142 (2008) 48-55.
  • X. Li, G. Zhang, H. Pan, Experimental study on ozonephotolytic and photocatalytic degradation of H2S using106continuous flow mode J. Hazard. Mater. 199-200 (2012)255-261.
  • X. Jiang, J.H. Tay, Removal mechanisms of H2S usingexhausted carbon in biofiltration J. Hazard. Mater. 185(2011) 1543-1549.
  • W.L. McCabe, J.C. Smith, and P. Harriott, Unit operations ofchemical engineering 5th edition, McGraw-Hill, New York,1993.
  • W.J. Liang, H.P. Fang, J. Li, F. Zheng, J.X. Li, Y.Q. Jin, Performance of non-thermal DBD plasma reactor duringthe removal of hydrogen sulfide J. Electrost. 69 (2011) 206-213.
  • W. Sun, S. Ding, S. Zeng, S. Su, W. Jiang, Simultaneousabsorption of NOx and SO2 from flue gas with pyrolusiteslurry combined with gas-phase oxidation of NO using ozone J. Hazard. Mater. 192 (2011) 124-130.
  • V. Dalaine, J.M. Cormier, S. Pellerin, P. Lefaucheux, H2Sdestruction in 50 Hz and 25 Hz gliding arc reactors J. Appl.Phy. 84 (1998) 1215-1221.
  • T.W. Chien, H. Chu, H.T. Hsueh, Kinetic study onabsorption of SO2 and NOx with acidic NaClO2 solutions usingthe spraying column J. Environ. Eng. 129 (2003) 967-974.
  • T.W. Chen, H. Chu, Removal of SO2 and NO from flue gasby wet scrubbing using an aqueous NaClO2 solution J.118Hazard. Mater. 80 (2000) 43-57.
  • T. Nunnally, K. Gutsol, A. Rabinovich, A. Fridman, A.110Starikovsky, A. Gutsol, R.W. Potter, Dissociation of H2S innon-equilibrium gliding arc tonado discharge Int. J.Hydrogen Energy 34 (2009) 7618-7625.
  • SICK Sensor Intelligence, SICK AG Co., www.sick.com.
  • S.S. Shiffman, E.A. Sattely Miller, M.S. Suggs, B.G. Graham, The effect of environmental odors emanating fromcommercial swine operations on the mood of nearbyresidents Brain Res. Bull. 37 (1995) 369-375.
  • S.J. Park, S.I. Nam, E.S. Choi, Removal of odor emitted fromcomposting facilities using a porous ceramic biofilter Water Sci. Technol. 44 (2011) 301-308.
  • S. John, J.C. Hamann, S.S. Muknahallipetna, S. Legowski, J.F.Ackerman, M.D. Argyle, Energy efficiency of hydrogensulfide decomposition in a pulsed corona discharge reactor Chem. Eng. Sci. 64 (2009) 4826-4834.
  • Q. Zhang, Removal technology of SO2 and NOx in flue gasand engineering instances Chemical Industry Press, Beijing,2002.
  • Q. Yu, H. Yang, K. Zeng, Z. Zhang, G. Yu, Simultaneous115removal of NO and SO2 from dry gas stream using nonthermalplasma J. Environ. Sci. 19 (2007) 1393-1397.
  • P.F. Biard, A. Couvert, C. Renner, J.P. Levasseur, Wetscrubbing intensification applied to hydrogen sulphideremoval in waste water treatment plant Canadian J. Chem.Eng. 88 (2010) 682-687.
  • P. Fang, C. Cen, Z. Tang, P. Zhong, D. Cen, Z. Chen, Simultaneous removal of SO2 and NOx by wet scrubbingusing urea solution Chem. Eng. J. 168 (2011) 52-59.
  • P. Fang, C. Cen, X. Wang, Z. Tang, Z. Tang, D. Chen, Simultaneous removal of SO2, NO and Hg0 by wetscrubbing using urea+KMnO4 solution Fuel Proc. Technol.106 (2013) 645-653.
  • N.D. Hutson, R. Kryzynska, R. Srivastava, Simultaneousremoval of SO2, NOx and Hg from coal flue gas using aNaClO2-enhanced wet scrubber Ind. Eng. Chem. Res. 47(2008) 5825-5831.
  • M.Y. Shin, D.W. Park, J.S. Chung, Vanadium containingcatalysts for the selective oxidation of H2S to elemental sulfurin the presence of excess water Catal. Today 63 (2000) 405-411.
  • M.B. Chang, T.D. Tseng, Gas-phase removal of H2S and NH3with dielectric barrier discharge J. Environ. Eng. 122 (1996)41-46.
  • M.A. Sidiqi, J. Pitersen, K. Lucas, A study on the effect ofnitrogen dioxide on the absorption of sulfur dioxide in wetflue gas cleaning processes Ind. Eng. Chem. Res. 40 (2001)2116-2127.
  • M. Wang, Y. Sun, T. Zhu, Removal of NOx, SO2, and Hg fromsimulated flue gas by plasma-absorption hybrid system IEEE Trans. Plasma Sci. 41 (2013) 312-318.
  • L.A. Fenouil, S. Lynn, Study of calcium-based sorbents forhigh-temperature H2S removal. 2. kinetics of H2S sorption bycalcined limestone Ind. Eng. Chem. Res. 34 (1995) 2334-2342.
  • L. Wang, W. Zhao, Z. Wu, Simultaneous absorption of NOand SO2 by Fe? EDTA combined with Na2SO3 solution Chem. Eng. J. 132 (2007) 227-232.
  • L. Haung, Y. Dang, Removal of SO2 and NOx by pulsedcorona combined with in situ Ca(OH)2 absorption ChineseJ. Chem. Eng. 19 (2011) 518-522.
  • L. Chen, J. Huang, C.L. Yang, Absorption of H2S in NaOClcaustic aqueous solution Environ. Prog. 20 (2001) 175-181.
  • K.C. Pillai, S.J. Chung, T. Raju, I.S. Moon, Experimentalaspects of combined NOx and SO2 removal from flue-gasmixture in an integrated wet scrubber-electrochemical cellsystem Chemosphere 76 (2009) 657-664.
  • K. Sakanishi, Z. Wu, A. Matsumura, I. Saito, T. Hanaoka, T.Minowa, M. Tada, T. Iwasaki, Simultaneous removal of107H2S and COS using activated carbons and their supportedcatalysts Catal. Today 104 (2005) 94-100.
  • K. Gutsol, T. Nunnally, A. Rabinovich, A. Fridman, A.Starikovsky, A. Gutsol, A. Kemoun, Plasma assisteddissociation of hydrogen sulfide Int. J. Hydrogen Energy 37(2012) 1335-1347.
  • J.S. Chang, K. Urashima, Y.X. Tong, W.P. Liu, H.Y. Wei, F.M.Yang, X.J. Liu, Simultaneous removal of NOx and SO2 fromcoal boiler flue gases by DC corona discharge ammoniaradical shower systems: pilot plant tests J. Electrost. 57(2003) 313-323.
  • J.J. Ruan, W. Li, Y. Shi, Y. Nie, X. Wang, T.E. Tan, Decomposition of simulated odors in municipal wastewatertreatment plants by a wire-plate pulse corona reactor Chemosphere 59 (2005) 327-333.
  • J. Zhang, R. Zhang, X. Chen, M. Tong, W. Kang, S. Guo, Y. Zhou,J. Lu, Simultaneous removal of NO and SO2 from flue gasby ozone oxidation and NaOH absorption Ind. Eng. Chem.Res. 53 (2014) 6450-6456.112
  • J. Ye, J. Shang, Q. Li, W. Xu, J. Liu, X. Feng, T. Zhu, The useof vacuum ultraviolet irradiation to oxidize SO2 and NOx forsimultaneous desulfurization and denitrification J. Hazard.Mater. 271 (2014) 89-97.
  • J. Wei, Y. Luo, P. Yu, B. Cai, H. Tan, Removal of NO fromflue gas by wet scrubbing with NaClO2/(NH2)2CO solutions J. Ind. Eng. Chem. 15 (2009) 16-22.
  • J. Krischan, A. Makaruk, M. Harasek, Design and scale-upof an oxidative scrubbing process for the selective removal ofhydrogen sulfide from biogas J. Hazard. Mater. 215-216(2012) 49-56.
  • I. Traus, H. Suhr, J.E. Harry, D.R. Evans, Application of arotating high-pressure glow discharge for the dissociation ofhydrogen sulfide Plasma Chem. Plasma Proc. 13 (1993) 77-91.
  • I. Traus, H. Suhr, Hydrogen sulfide dissociation in ozonizerdischarges and operation of ozonizers at elevatedtemperature Plasma Chem. Plasma Proc. 12 (1992) 275-285.
  • H.W. Park, C.H. Lee, S. Choi, D.W. Park, Continuoustreatment of hydrogen sulfide on a large scale using wetelectrostaticprecipitator Chem. Eng. J. 243 (2014) 448-454.116
  • H.W. Park, C.H. Lee, D.W. Park, Removal of H2S in air bycorona discharge under continuous flow condition J. Phys.:Conf. Series 441 (2013) 012004.
  • H.K. Lee, B.R. Deshwal, K.S. Yoo, Simultaneous removal ofSO2 and NO by sodium chlorite solution in wetted wallcolumn Korean J. Chem. Eng. 22 (2005) 208-213.
  • H.J. White, Industrial electrostatic precipitation reading, MA:Addison-Wesley, 1973.
  • H.J. Son, J.H. Lee, H2S removal with an immobilized cellhybrid reactor Proc. Biochem. 40 (2005) 2197-2203.
  • H.B. Ma, P. Chen, R. Ruan, H2S and NH3 removal by silentdischarge plasma and ozone combo-system Plasma Chem.Plasma Proc. 21 (2001) 611-624.
  • F.J. Trujillo, K.M. Hardiman, A.A. Adesina, Catalyticdecomposition of H2S in a double-pipe packed bedmembrane reactor: numerical simulation studies Chem.Eng. J. 143 (2008) 273-281.
  • F. Xu, Z. Luo, W. Cao, P. Wang, B. Wei, X. Gao, M. Fang, K.Cen, Simultaneous oxidation of NO, SO2 and Hg0 from fluegas by pulsed corona discharge J. Environ. Sci. 21 (2009)328-332.
  • F. Work, C.F. Warner, W.T. Davis, Air pollution its originand control Pearson Education Korea and Dong HwaTechnology Publishing Co., Korea, 2009.
  • E.G. Krasheninnikov, V.D. Rusanov, S.V. Sanyuk, A.A. Fridman, Dissociation of hydrogen sulfide in an RF discharge Zh.Tekh. Fiz. 56 (1986) 1104-1109.
  • E.B. Myers, T.J. Overcamp, Hydrogen peroxide scrubber forthe control of nitrogen oxides Environ. Eng. Sci. 19 (2002)321-327.
  • E. Sada, H. Kumazawa, Y. Yamanka, I. Kudo, T. Kondo, Kinetic of absorption of sulfur dioxide and nitric oxide inaqueous mixed solutions of sodium chlorite and sodiumhydroxide J. Chem. Eng. Jpn. 11 (1978) 276-282.
  • E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption oflean NOx in aqueous solutions of NaClO2 and NaOH Ind.Eng. Chem. Proc. Des. Dev. 18 (1979) 275-287.
  • E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption ofNO in aqueous mixed solutions of NaClO2 and NaOH Chem.Eng. Sci. 33 (1978) 315-318.
  • Data for fossil fuel energy consumption , The World Bank,www.worldbank.org.
  • D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, Simultaneousremoval of SO2 and NO by wet scrubbing using aqueouschloride dioxide solution J. Hazard. Mater. B 135 (2006)412-417.
  • D.N. Thanh, K. Block, T.J. Bandosz, Adsorption of hydrogensulfide on mont-morillonites modified with iron Chemosphere 59 (2005) 343-353.
  • D.J. Helfritch, Pulsed corona discharge for hydrogen sulfidedecomposition IEEE Trans. Ind. Appl. 29 (1993) 882-886.
  • D. Ramirez-Saenz, P.B. Zarate-Segura, C. Guerro-Barajas, E.I.Garcia-Pena, H2S and volatile fatty acids elimination bybiofiltration: clean-up process for biogas potential use J.Hazard. Mater. 163 (2009) 1272-1281.
  • D. Park, D.S. Lee, J.Y. Joung, J.M. Park, Comparison ofdifferent bioreactor systems for indirect H2S removal using109iron-oxidizing bacteria Proc. Biochem. 40 (2005) 1461-1467.
  • C.L. Yang, H. Shaw, Aqueous absorption of NOx induced bysodium chlorite oxidation in the presence of sulfur dioxide Environ. Prog. 17 (1998) 80-85.
  • C.L. Mantell, Adsorption 2nd edition, McGraw-Hill, New York,1951.
  • C.J. Yu, F. Xu, Z.Y. Luo, W. Cao, B. Wei, X. Gao, M.X. Fang, K.F.Cen, Influences of water vapor and fly ash addition on NOand SO2 gas conversion efficiencies enhanced by pulsedcorona discharge J. Electrost. 67 (2009) 829-834.
  • C. Liu, J. Liu, J. Li, H. He, S. Peng, C. Li, Y. Chen, Removal ofH2S by co-immobilized bacteria and fungi biocatalysts in abio-trickling filter Proc. Saf. Environ. Protect. 91 (2013) 145-152.
  • C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in anaqueous solution of NaClO2 Chem. Eng. Technol. 21 (1998)61-70.
  • B.R. Deshwal, S.H. Lee, J.H. Jung, B.H. Shon, H.K. Lee, Studyon the removal of NOx from simulated flue gas using acidicNaClO2 solution J. Environ. Sci. 20 (2008) 33-38.
  • B.R. Deshwal, H.K. Lee, Mass transfer in the absorption ofSO2 and NOx using aqueous euchlorine scrubbing solution J. Environ. Sci. 21 (2009) 155-161.
  • B.R. Deshwal, H.K. Lee, Kinetics and mechanism ofchloride based chlorine dioxide generation process fromacidic sodium chlorate J. Hazard. Mater. 108 (2004) 173-182.
  • B.R. Deshwal, H.D. Jo, H.K. Lee, Reaction kinetics of117decomposition of acidic sodium chlorite Can. J. Chem. Eng.82 (2004) 619-623.
  • B.H. Yoon, L.J. Wang, S.L. Yoon, S. Kim, Mechanism ofchlorate formation in chlorine dioxide delignification Appita J. 57 (2004) 472-474.
  • A.C. Stern, ed. Air pollution Vol. I, 2nd edition, AcademicPress, New York, 1968.
  • A.A. Patsias, W. Nimmo, B.M. Gibbs, P.T. Williams, Calciumbasedsorbents for simultaneous NOx/SOx reduction in adown-fired furnace Fuel 84 (2005) 1864-1873.113
  • A. Pourmohammadbagher, E. Jamshidi, H. Ale-Ebrahim, S.Dabir, Study on simultaneous removal of NOx and SO2 withNaClO2 in a novel swirl wet system Ind. Eng. Chem. Res.11450 (2011) 8278-8284.
  • A. Nasonova, H.C. Pham, D.J. Kim, K.S. Kim, NO and SO2removal in non-thermal plasma reactor packed with glassbeads-TiO2 thin film coated by PCVD process Chem. Eng. J.156 (2010) 557-561.
  • A. Couvert, I. Charron, A. Laplanche, C. Renner, L. Partia, B.Requieme, Treatment of odorous sulphur compounds bychemical scrubbing with hydrogen peroxide-application to alaboratory plant Chem. Eng. Sci. 61 (2006) 7240-7248.
  • A. Bagreev, S. Katikaneni, S. Parab, T.J. Bandosz, Desulfulization of digester gas: prediction of activatedcarbon bed performance at low concentrations of hydrogensulfide Catal. Today 99 (2005) 329-337.