박사

Sn-3.0Ag-0.5Cu 솔더 연결부의 미세조직 및 기계적 물성치에 대한 시효처리 및 변형률 속도의 영향 = Effects of aging treatment and strain rate on mechanical properties and microstructure of Sn-3.0Ag-0.5Cu solder joints

2015년
논문상세정보
' Sn-3.0Ag-0.5Cu 솔더 연결부의 미세조직 및 기계적 물성치에 대한 시효처리 및 변형률 속도의 영향 = Effects of aging treatment and strain rate on mechanical properties and microstructure of Sn-3.0Ag-0.5Cu solder joints' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • activation energy
  • brittle fracture
  • fracture toughness
  • intermetallic compound (imc)
  • joint strength
  • lead-free solder joints
  • microstructures
  • nanoindentation tests
  • strain rate
  • thermal aging
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
176 0

0.0%

' Sn-3.0Ag-0.5Cu 솔더 연결부의 미세조직 및 기계적 물성치에 대한 시효처리 및 변형률 속도의 영향 = Effects of aging treatment and strain rate on mechanical properties and microstructure of Sn-3.0Ag-0.5Cu solder joints' 의 참고문헌

  • http://www.metallurgy.nist.gov/phase/solder/cusn.html.
  • http://en.wikipedia.org/wiki/Ball_grid_array.
  • Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar,R.Mahajan, Fracture of Sn-Ag-Cu solder joints on Cu substrates: I.Effects of loading and processing conditions, J. Electron.Mater. 41, pp.375?389, 2012.
  • Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, R. Sidhu, M. Renavikar, R.Rahajan, Fracture of Sn-Ag-Cu solder joints on Cu substrates: I.Effects of loading and processing conditions, J. Electron. Mater. 41, pp.375-389, 2012.
  • Y.S. Lai, P.F. Yang, C.L. Yeh, Experimental studies of board-levelreliability of chip-scale packages subjected to JEDEC drop test condition, Microelectron. Reliab. 46, pp. 645-650, 2006.
  • Y.M. Jen, Y.C. Chiou, C.L. Yu, Fracture mechanics study on theintermetallic compound cracks for the solder joints of electronicpackages, Eng. Fail. Anal. 18, pp. 797?810, 2011.
  • Y.H. Tian, C.J. Hang, C.Q. Wang, S.H. Yang, P.R. Lin, Effects of bumpsize on deformation and fracture behavior of Sn3.0Ag0.5Cu/Cu solderjoints during shear testing, Mater. Sci. Eng. A 529, pp. 468-478, 2011.
  • Y.A. Su, L.B. Tan, T.Y. Tee, V.B.C. Tan, Rate-dependent properties ofSn?Ag?Cu based lead-free solder joints for WLCSP, Microelectron.Reliab. 50, pp. 564-576, 2010.
  • X.Y. Li, F.H. Li, F. Guo, Y.W. Shi, Effect of isothermal aging andthermal cycling on interfacial IMC growth and fracture behavior ofSnAgCu/Cu Joints, J. Electron. Mater. 40, pp. 51?61, 2011.
  • X. Hu, Y. Li, Y. Liu, Y. Liu, and Z. Min, Microstructure and shearstrength of Sn37Pb/Cu solder joints subjected to isothermal aging, Microelectron. Reliab. 54, pp. 1575-1582, 2014.
  • X. Hu, W. Chen, X. Yu, Y. Li, Y. Liu, Z. Min, Shear strengths andfracture behaviors of Cu/Sn37Pb/Cu soldered joints subjected to differentdisplacement rates, J. Alloy. Compd. 600, pp. 13-20, 2014.
  • X. Deng, M. Koopman, N. Chawla, K.K. Chawla, Young ?s modulus of(Cu, Ag)-Sn intermetallics measured by nanoindentation, Mater. Sci. Eng.A 364, pp. 240?243, 2004.
  • X. Deng, G. Piotrowski, J. J. Williams, N. Chawla, Influence of initialmorphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growthand evolution during thermal aging of Sn?Ag solder/Cu joints, J.Electron. Mater 32(12), pp. 1403?1413, 2003.
  • W.C. Oliver, G.M. Pharr, An improved technique for determininghardness and elastic modulus using load and displacement sensingindentation experiments, J. Mater. Res. 7, pp. 1564?1583, 1992.
  • W. Li, M.B Zhou, H.B Qin, X. Ma, X.P Zhang, Experimental andnumerial study of the size effect on microstructure and mechanicalbehavior of Cu/Sn0.7Cu0.05Ni/Cu joints with very small solder volume, Int. Conf. Electro. Pack. Technol. High Density Pack., pp. 749?754, 2012.
  • W. K Choi, H. M. Lee, Effect of soldering and aging time on interfacialmicrostructure and growth of intermetallic compounds between Sn?3.5Agsolder alloy and Cu substrate, J. Electron. Mater. 29(10), pp. 1207?1213,2000.
  • V.M.F. Marques, C. Johnston, P.S. Crant, Nanomechanicalcharacterization of Sn-Ag-Cu/Cu joints ? Part 1: Young ?s modulus,hardness, Acta Metall 61, pp. 2460?2470, 2013.
  • V.L. Nguyen, H.K. Kim, The tensile impact properties of aged Sn?3Ag?
  • V.L. Nguyen, H.K. Kim, Mechanical properties of lead-free solder jointsunder high-speed shear impact loading, J. Electron. Mater. 43, pp.4171-4178, 2014.
  • V.L. Nguyen, H.K. Kim, Effect of thermal aging on the mechanicalproperties of Sn3.0Ag0.5Cu/Cu solder joints under high strain rateconditions, J. Electron. Mater. 44, pp. 2414?2421, 2015.
  • Tong An, Fei Qin, Effects of the intermetallic compound microstructureon the tensile behavior of Sn3.0Ag0.5Cu/Cu solder joint under variousstrain rates, Microelectron. Reliab. 54, pp. 932?938, 2014.
  • T.L. Anderson, Fracture Mechanics, 3rd edn., 2005.
  • T.H. You, Y.S. Kim, J.N. Kim, J.H. Lee, B.W. Jung, J.T. Moon, and H.M.Choe, Predicting the drop performance of solder joints by evaluating theelastic strain energy from high-speed ball pull tests, J. Electron. Mater.38, pp. 410-414, 2009.
  • S.S. Ha, J.K. Jang, S.O. Ha, J.W. Kim, J.W. Yoon, B.W. Kim, S.K. Park,S.B. Jung, Mechanical property evaluation of Sn-3.0A-0.5Cu BGA solderjoints using high-speed ball shear test, J. Electron. Mater. 38, pp.2489-2495, 2009.
  • S.P.V. Nadimplli and J.K. Spelt, Mixed-mode fracture load prediction inlead-free solder joints, Eng. Fract. Mech. 78, pp. 317-333, 2011.
  • S.M. Hayes, N. Chawla, D.R. Frear, Interfacial fracture toughness ofPb-free solders, Microelectron. Reliab. 49, pp. 269-287, 2009.
  • S.F.D. Santos, J.D.A. Rodrigues, Correlation between fracture toughness,work of fracture and fractal dimensions of alumina-mullite-zirconiacomposites, Mater. Res. 6, pp. 219?226, 2003.
  • S. M. Joo, H. K. Kim, Shear deformation behavior of a Sn?3Ag?0.5Cusingle solder ball at intermediate strain rates, Mater. Sci. Eng. A 528, pp.2711?2717, 2011.
  • S. Lotfian, J.M. Molina-Aldaregula, K.E. Yazzie, J. Llorca, N. Chawla, Mechanical characterization of lead-free Sn-Ag-Cu solder joints byhigh-temperature nanoindentation, J. Electron. Mater. 42, pp. 1085?1091,2013.
  • R.R. Chromick, R.P. Vinci, S.L. Allen, M.R. Notis, Nanoindentationmeasurements on Cu?Sn and Ag?Sn intermetallics formed in Pb-freesolder joints, J. Mater. Res. 18, pp. 2251?2261, 2003.
  • R.R. Chromick, R.P. Vinci, S.L. Allen, M.R. Notis, Measuring themechanical properties of Pb-free solder and Sn-based intermetallics bynanoindentation, JOM 55, pp. 66?69, 2003.
  • R.L. Norton, Machine design ? An integrate approach, pp. 286, 2002.
  • R.J. Fields, S.R. Low III, G.K. Lucey, The Metal Science of Joining, ed. by M.J. Cieslak, J.H. Perepesko, S. Kang, M.E. Glicksman, pp. 165?173(TMS, Warrendale, PA, 1992).
  • R. Darveaux, C. Reichman, Mechanical properties of lead-freesolders, Electro. Pack. Technol. Conf., pp. 283-289, 2006.
  • P.T. Vianco, J.A. Rejent, P.F. Hlava, Solid-state intermetallic compoundlayer growth between copper and 95.5Sn-3.9Ag-0.6Cu solder, J. Electron.Mater. 33, pp. 991?1004, 2004.
  • P.F. Yang, Y.S. Lai, S.R. Jian, J.Chen, R.S. Chen, Nanoindentationidentifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4intermetallic compounds derived by diffusion couples, Mater. Sci. Eng. A485, pp. 305?310, 2008.
  • P. Liu, P. Yao, and J. Liu, Evolutions of the interface and shearstrength between SnAgCu-xNi solder and Cu substrate during isothermalaging at 1500C, J. Alloy. Compd. 486, pp. 474-479, 2009.
  • P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, and R. Mahajan, Fracture of Sn-Ag-Cu solder joints on Cu substrates. II: Fracturemechanism map, J. Electron. Mater. 41, pp. 412-424, 2012.
  • P. Kumar, Z. Huang, I. Dutta, R. Sidhu, M. Renavikar, R. Mahajan, Fracture of Sn-Ag-Cu solder joints on Cu substrates. II: Fracturemechanism map, J. Electron. Mater. 41, pp. 412?424, 2012.
  • N. Zhang, Y. Shi, Z. Xia, Y. Lei, F. Guo, X. Li, Comparison of impacttoughness and fracture morphologies between Pb-containing and Pb-freesolder joints subject to the Charpy impact test, J. Electron. Mater. 37,pp. 1631?1639, 2008.
  • N. Zhang, Y. Shi, Y. Lei, Z. Xia, F. Guo, X. Li, Effect of thermal agingon impact absorbed energies of solder joints under high-strain-rateconditions, J. Electron. Mater. 38, pp. 2132?2147, 2009.
  • N. Mookam and K. Kanlayasiri, Evolution of intermetallic compoundsbetween Sn?0.3Ag?0.7Cu low-silver lead-free solder and Cu substrateduring thermal aging, J. Mater. Sci. Technol. 28(1), pp. 53?59, 2012.
  • N. Mookam and K. Kanlayasiri, Evolution of intermetallic compoundsbetween Sn-0.3Ag-0.7Cu low-silver lead-free solder and Cu substrateduring thermal aging, J. Mater. Sci. Technol. 28, pp. 53?59, 2012.
  • N. Hiroshi, I. Noriya, T. Tadashi, Impact strength of Sn-Ag-Cu solderjoints in electroless Ni-P/Au plating in laser reflow soldering, Trans.JWRI 41, pp. 33?36, 2012.
  • M.R. Ayatollahi, A. Karimzadeh, Determination of fracture toughness ofbone cement by nanoindentation test, Int. J. Frac. 175, pp. 193?198,2012.
  • M.R. Ayatollahi and M.R.M. Aliha, On determination of mode II fracturetoughness using semi-circular bend specimen, Int. J. Solids Struct. 43,pp. 5217-5227, 2006.
  • M.O. Alam, H. Lu, Chris Bailey, Y.C. Chan, Fracture mechanics analysisof solder joint intermetallic compounds in shear test, Comput. Mater. Sci.45, 576-583, 2009.
  • M.J. Mayo, W.D. Nix, A micro-indentation study of superplasticity inPb, Sn, and Sn-38% wt%Pb, Acta Metall 36, pp. 2183?2192, 1988.
  • M. Pajak, The influence of the strain rate on the strength of concretetaking into account the experimental techniques, Architecture CivilEngineering Environment (ACEE), pp. 77?86, 2001.
  • M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K.N. Tu, Ductile-to-brittletransition in Sn?Zn solder joints measured by impact test, Scr. Mater. 51,pp. 641-645, 2004.
  • L.H. Xu, J.H.L. Pang, Nanoindentation characterization of Ni-Cu-SnIMC layer subject to isothermal aging, Thin Solid Films 504, pp. 362?366,2006.
  • L.H. Xu, J.H.L. Pang, Nanoindenation on SnAgCu lead-free solderjoints and analysis, J. Electron. Mater. 35, pp. 2107?2115, 2006.
  • L.C. Tsao, T.T. Lo, S.F. Peng, Growth kinetics of the intermetalliccompounds during the interfacial reactions betweenSn3.5Ag0.9Cu-nanoTiO2 alloys and Cu substrate, Int. Conf. Electro.Pack. Technol. High Density Pack., pp. 190?194, 2010.
  • L.C. Tsao, Suppressing effect of 0.5 wt.% nano-TiO2 addition into Sn?
  • L. Zhang, X.Y. Fan, C.W. He, Intermetallic compound layer growthbetween SnAgCu solder and Cu substrate in electronic packaging, J.Mater. Sci: Mater Electron 24, pp. 3249?3254, 2013.
  • K.W. Lo, T. Tamilselvan, K.H. Chua, M.M. Zhao, A unified model forfracture mechanics, Eng. Fract. Mech. 54, pp. 189-210, 1996.
  • K.S. Kim, C.H. Yu, J.M. Yang, Aging treatment characteristics of solderbump joint for high reliability optical module, Thin Solid Films 462?463,pp. 402-407, 2004.
  • K.M. Kumar, V. Kripesh, L. Shen, K. Zeng, A.A.O. Tay, Nanoindentationstudy of Zn-based Pb free solders used in fine pitch interconnectapplications, Mater. Sci. Eng. A 423, pp. 57?63, 2006.
  • K.I. Schiffmann, Determination of fracture toughness of bulk materialsand thin films by nanoindentation: comparison of different models, Philosophical Magazinne 91, pp. 1163?1178, 2011.
  • K.E. Yazzie, H.X. Xie, J.J. Williams, N. Chawla, On the relationshipbetween solder-controlled and intermetallic compound (IMC)-controlledfracture in Sn-based solder joints, Scripta. Materialia 66, pp. 586-589,2012.
  • K.E. Yazzie, H.X. Xie, J.J. Williams, N. Chawla, On the relationshipbetween solder-controlled and intermetallic compound (IMC)-controlledfracture in Sn-based solder joints, Scr. Mater. 66, pp. 586-589, 2012.
  • K.E. Yazzie, H. Fie, H. Jiang, N. Chawla, Rate-dependent behavior of Snalloy?Cu couples: Effects of microstructure and composition on mechanicalshock resistance, Acta. Materialia 60, pp. 4336?4348, 2012.
  • K. Sweatman, S. Suenaga, T. Nishimura, Pan Pacific Symposium, Strengthof lead-free BGA spheres in high speed loading, 2008.
  • K. N. Tu, Solder Joint Technology (Spring), 2007.
  • K. N. Tu, Solder Joint Technology (Berlin: Springer), 2007.
  • J.Y.H. Chia, B. Cotterell, T.C. Chai, The mechanics of the solder ballshear test and the effect of shear rate, Mater. Sci. Eng. A 417, pp. 259?274, 2006.
  • J.Y.H. Chia, B. Cotterell, A.Y.H. Cheong, The specific work of fracturein ball shear test and the integrity of solder balls, Mater. Sci. Eng. A428, pp. 67?72, 2006.
  • J.X. Wang, H. Nishikawa, Impact strength of Sn?3.0Ag?0.5Cu solderbumps during isothermal aging, Microelectron. Reliab. 54, pp. 1583?1591,2014.
  • J.W. Yoon, S.W. Kim, S.B. Jung, Interfacial reaction and mechanicalproperties of eutectic Sn 0.7Cu/Ni BGA solder joints ? during isothermallong-term aging, J. Alloy. Compd. 391, pp. 82-89, 2005.
  • J.W. Yoon, S.B. Jung, Solder joint reliability evaluation of Sn?Zn/Au/Ni/Cu ball-grid-array package during aging, Mater. Sci. Eng. A452-453, pp. 46-54, 2007.
  • J.W. Yoon, S.B. Jung, Reliability studies of Sn?9Zn/Cu solder joints withaging treatment, J. Alloy. Compd. 407, pp. 141-149, 2006.
  • J.W. Yoon, S.B. Jung, Investigation of interfacial reactions between Sn?5Bi solder and Cu substrate, J. Alloys Compd. 359, pp. 202?208, 2003.
  • J.W. Yoon, B.I. Noh, Y.H. Lee, H.S. Lee, S.B Jung, Effects ofisothermal aging and temperature humidity treatment ? of substrate on jointreliability of Sn?3.0Ag?0.5Cu/OSP-finished Cu CSP solder joint, Microelectron. Reliab. 48, pp. 1864?1874, 2008.
  • J.W. Kim, S.B. Jung, Experimental and finite element analysis of theshear speed effects on the Sn?Ag and Sn?Ag?Cu BGA solder joints, Mater. Sci. Eng. A 371, pp. 267-276, 2004.
  • J.W. Kim, S.B. Jung, Characterization of the shear test method withlow melting point In?48Sn solder joints, Mater. Sci. Eng. A 397, pp.145-152, 2005.
  • J.S. Kang, R.A. Gagliano, G. Ghosh, M.E. Fine, Isothermal solidificationof Cu/Sn diffusion couples to form thin-solder joints, J. Electron. Mater.31, pp. 1238?1243, 2002.
  • J.S. Field, R. Dukino, N. Iwashita, M.V. Swain, Nanoindentation fractureof fused silica and glassy carbon with a corner cube and 450 apicalangle indenters, ICF100873OR, (2001).
  • J.L. Hay, G.M. Pharr, Instrumented indentation testing, ASM handbook,vol. 8, ed. By H. Kuhn & D. Medlin, (Materials Park, OH, ASMinternational, 1990) p. 232.
  • J.H Kuang, C.M Hsu, and W.C Chiu, The variation of shear strength ofthe lead-free Sn/3.0Ag/0.5Cu solder balls, Electro. Pack. Technol. Conf.,pp. 910?913, 2007.
  • J.E. Bradby, J.S. Williams, Pop-in events induced by sphericalindentation in compound semiconductors, J. Mater. Res. 19, pp. 380?386,2004.
  • J. Weertman, Fracture mechanics: A unified view for Griffith-Irwin-Orowan cracks, Acta Metall. 26, pp. 1731-1738, 1978.
  • J. Wang, H. Nishikawa, Impact strength of Sn?3.0Ag?0.5Cu solder bumpsduring isothermal aging, Microelectron. Reliab. 54, pp. 1583-1591, 2014.
  • J. M. Song, Y.L. Shen, C.W. Su, Y.S. Lai, Y.T. Chiu, Strain ratedependence on nanoindentation responses of interfacial intermetalliccompounds in electronic solder joints with Cu and Ag substrates, Mater. Trans. 50, pp. 1231?1234, 2009.
  • I.D. You, H.K. Kim, Evaluation of the joint strength between Sn?3.0Ag?
  • I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Tensile properties of Sn-Agbased lead-free solders and strain rate sensitivity, Mater. Sci. Eng. A 366,pp. 50?55, 2004.
  • I. D. You, H. K. Kim, Evaluation of the joint strength between Sn?3.0Ag?0.5Cu solders and Cu substrate at high strain rates, Mater. Sci. Eng. A556, pp. 551?557, 2012.
  • I. D. You, H. K. Kim, Evaluation of the joint strength between Sn ?
  • H.T. Lee, M.H. Chen, H.M. Jao, Influence of interfacial intermetalliccompound on fracture behavior of solder joints, Mater. Sci. Eng. A 358,pp. 134-141, 2003.
  • H.T. Lee, M.H. Chen, Influence of intermetallic compounds on theadhesive strength of solder joints, Mater. Sci. Eng. A 333, pp. 24?34,2002.
  • H.F. Zou, Z.F. Zhang, Ductile-to-brittle transition induced by increasingstrain rate in Sn-3Cu/Cu joints, J. Mater. Res. 23, pp. 1614?1617, 2008.
  • H.B. Qin, X.P. Zhang, M.B. Zou, J.B. Zeng, Y.W. Mai, Size and constrainteffects on mechanical and fracture behaviour of micro-scaleNi/Sn3.0Ag0.5Cu/Ni solder joints, Mater. Sci. Eng. A 617, pp. 14?23, 2014.
  • H. Tsukamoto, T. Nishimura, S. Suenaga, K. Nogita, Shear and tensileimpact strength of lead-free solder ball grid arrays placed on Ni (P)/Ausurface-finished substrates, Mater. Scie. Eng. B 171, pp. 162?171, 2010.
  • H. Tsukamoto, T. Nishimura, S. Suenaga, K. Nogita, Shear and tensileimpact strength of lead-free solder ball grid arrays placed on Ni (P)/Ausurface-finished substrates, Mater. Sci. Eng. B 171, pp. 162?171, 2010.
  • H. Tsukamoto, T. Nishimura, S. Suenaga, K. Nogita, Shear and tensileimpact strength of lead-free solder ball grid arrays placed on Ni (P)/Ausurface-finished substrates, Mater. Sci. Eng. B 171, 162-171, 2010.
  • H. Nayeb-Hashemi, P. Yang, Mixed mode I/II fracture and fatigue crackgrowth along 63Sn?37Pb solder/brass interface, Int. J. Fatigue 23, pp.325-335, 2001.
  • H. Fei, K. Yazzie, N. Chawla, and H. Jiang, Modeling fracture ofSn-rich (Pb-free) solder joints under mechanical shock conditions, J.Electron. Mater. 41, pp. 2089-2099, 2012.
  • H. D. Blair, T. Y. Pan, J. M. Nicholson, R. P. Cooper, S. W. Oh, A. R.Farah, Manufacturing concerns of the electronic industry regardingintermetallic compound formation during the soldering stage, IEEE/CMPT Int. El. Mfg. 19, pp. 282 ? 292, 1996.
  • G.Y. Jang, J.W. Lee, J.G. Duh, The nanoindentation characteristics ofCu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solderbump, J. Electron. Mater. 33, pp. 1103?1110, 2004.
  • G.J. Zhao, G.M. Sheng, L. L. Wu, X. J. Yuan, Interfacial characteristicsand microstructural evolution of Sn?6.5Zn solder/Cu substrate joints duringaging, Trans. Nonferrous Met. Soc. China 22, pp. 1954?1960, 2012.
  • G.H. Xiao, G.H, Yuan, C.N. Jia, X.X. Yang, Z.G Li, X.F Shu, Strainrate sensitivity of Sn-3.0Ag-0.5Cu solder investigated bynanoindentation, Mater. Sci. Eng. A 423, pp. 336?339, 2006.
  • G. Ghosh, Elastic properties, hardness, and indentation fracturetoughness of intermetallic relevant to electronic packaging, J. Mater.Res. 19, pp. 1439?1454, 2004.
  • F. Song, S.W.R. Lee, K. Newman, B. Sykes, S. Clark, High-speed solderball shear and pull tests vs. board level mechanical drop tests:Correlation of failure mode and loading speed, Electro. Compon.Technol. Conf., pp. 1504?1513, 2007.
  • F. Song, S.W.R. Lee, K. Newman, B. Sykes, S. Clark, Brittle failuremechanism of SnAgCu and SnPb solder balls during high speed ball shearand cold ball pull tests, Electro. Compon. Technol. Conf., pp. 364?372,2007.
  • F. Song, S.W.R. Lee, Investigation of IMC thickness effect on thelead-free solder ball attachment strength: Comparison between ball sheartest and cold bump pull test results, Electro. Compon. Technol. Conf.,pp. 1196?1203, 2006.
  • F. Song, R Lee, K. Newman, B. Sykes, S. Clark, Brittle failuremechanism of SnAgCu and SnPb solder balls during high speed ball shearand cold ball pull tests, Proc. Electro. Compon. Technol. Conf., pp. 364?372, 2007.
  • F. Sergejev, M. Antonov, Comparative study on indentation fracturetoughness measurements of cemented carbides, Proc. Estonian Acad.Sci. Eng. 12, pp. 388?398, 2006.
  • E.H. Wong, S.K.W. Seah, V.P.W. Shim, A review of board level solderjoints for mobile applications, Microelectron. Reliab. 48, pp. 1747-1758,2008.
  • D.S. Liu, C.Y. Kuo, C.L. Hsu, G.S. Shen, Y.R. Chen, K.C. Lo, Failuremode analysis of lead-free solder joints under high speed impacttesting, Mater. Sci. Eng. A 494, pp. 196-202, 2008.
  • D.S. Liu, C.Y. Kuo, C.L. Hsu, C.L. Chung, A high-speed micro-impacttesting system for evaluating the properties of lead-free solder joints, Exp. Tech. 34, pp. 68-73, 2010.
  • D.R. Flanders, E.G. Jacobs, R.F. Pinizzotto, Activation energies ofintermetallic growth of Sn-Ag eutectic solder on copper substrates, J.Electron. Mater. 26, pp. 883-887, 1997.
  • D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L Lai, Intermetalliccompounds growth between Sn?3.5Ag lead-free solder and Cu substrateby dipping method, J. Alloys Compd. 392, pp. 192?199, 2005.
  • D.H. Li, C.Q. Liu, P.P. Conway, Characteristics of intermetallics andmicromechanical properties during thermal ageing of Sn-Ag-Cu flip-chipsolder interconnects, Mater. Sci. Eng. A 391, pp. 95-103, 2005.
  • D.G. Kim, J.W. Kim, S.B. Jung, Effect of aging conditions on interfacialreaction and mechanical joint strength between Sn?3.0Ag?0.5Cu solder andNi?P UBM, Mater. Scie. Eng. B 121, pp. 204-210, 2005.
  • D. Yang, T. Anderson, Fracture toughness of SiC, Application Note.
  • D. R. Flanders, E. G. Jacobs , R. F. Pinizzotto, Activation energies ofintermetallic growth of Sn?Ag eutectic solder on copper substrates, J.Electron. Mater. 26(7), pp. 883?887, 1997.
  • D. Casellas, J. Caro, S. Molas, J.M. Prado, I. Valls, Fracture toughnessof carbides in tool steels evaluated by nanoindentation, Acta Metall 55,pp. 4277?4286, 2007.
  • C.M. Chuang, K.L. Lin, Effect of microelements addition on theinterfacial reaction between Sn-Ag-Cu solders and the Cu substrate, J.Electron. Mater. 32, pp. 1426?1431, 2003.
  • C.E. Turner, Fracture toughness and specific fracture energy, Mater.Sci. Eng. 11, pp. 275?282, 1973.
  • C. Y. Yu, W. Y. Chen, J. G. Duh, Improving the impact toughness of Sn?Ag?Cu/Cu?Zn Pb-free solder joints under high speed shear testing, J.Alloy. Compd. 586, pp. 633?638, 2014.
  • C. Andersson, P. Sun, J. Liu, Tensile properties and microstructuralcharacterization of Sn-0.7Cu-0.4Co bulk solder alloy for electronicsapplications, J. Alloys Compd. 457, pp. 97?105, 2008.
  • B.Y. Wu, H.W. Zhong, Y.C. Chan, M.O. Alam, Shearing tests of solderjoints on tape ball grid array substrates, J. Mater. Res. 21, pp.2224-2231, 2006.
  • B.L. Chen, G.Y. Li, An investigation of effects of Sb on theintermetallic formation in Sn-3.5Ag-0.7Cu solder joints, IEEE Transac.Compon. Pack. Technol. 28, pp. 534?541, 2005.
  • B.D. Agarwal, G.S. Giare, Fracture toughness of short fiber compositesin modes II and III, Eng. Fract. Mech. 15, pp. 219-230, 1981.
  • B. Roggeman, U.M Tino, D. Barbini, Reliability Investigation of Sn/Su/NiSolder Joints, SMTA Int. Conf. Proc., pp. 403?408, 2009.
  • B. Balakrisnan, C.C. Chum, M. Li, Z. Chen, T. Cahyadi, Fracturetoughness of Cu-Sn intermetallic thin films, J. Electron. Mater 32, pp.166?171, 2003.
  • A.N Tong, Q.I.N Fei, J. Li, Influence of strain rate effect on behavior ofsolder joints under drop impact loadings, Int. Conf. Electro. Pack.Technol. High Density Pack., pp. 375?378, 2009.
  • A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, Microstructure, kineticanalysis and hardness of Sn?Ag?Cu?1 wt% nano-ZrO2 composite solder onOSP-Cu pads, J. Alloys Compd. 509, pp. 3319?3325, 2011.
  • A.C. Fischer-Cripps, Nanoindentation, second ed. (Springer-NewYork), pp. 148?150, 2002.
  • A.B. de Morais, Calculation of stress intensity factors by the forcemethod, Eng. Fract. Mech. 74, pp. 739-750, 2007.
  • 5Cu/Cu solder joints, Microelectron. Reliab. (2015), in press.8. S.M. Joo, H.K. Kim, Shear deformation behavior of a Sn?3Ag?0.5Cusingle solder ball at intermediate strain rates, Mater. Sci. Eng. A 528, pp.2711?2717, 2011.
  • 5Cu/Cu solder joints, Microelectron. Reliab. (2015), in press.7. J.J. Guo, K. Wang, T. Fujita, J.W. McCauley, J.P. Singh, M.W.Chen, Nanoindentation characterization of deformation and failure ofaluminum oxynitride, Acta Metall 59, pp. 1671?1679, 2011.
  • 5Cu solders and Cu substrate at high strain rates, Mater. Sci. Eng. A556, pp. 551-557, 2012.
  • 5Ag?0.5Cu solder alloy on the intermetallic growth with Cu substrateduring isothermal aging, J. Alloys Compd. 509, pp. 8441?8448, 2011.
  • 0Ag ? 0.5Cu solders and Cu substrate at high strain rates, Mater. Sci.Eng. A 556, pp. 551?557, 2012.