박사

Development of Heavy Metals and Phosphorus Treatment Technologies Utilizing Biochar for Application of Constructed wetlands

박종환 2015년
논문상세정보
' Development of Heavy Metals and Phosphorus Treatment Technologies Utilizing Biochar for Application of Constructed wetlands' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • biochar
  • constructed wetland
  • heavy metals
  • phosphorus
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
579 0

0.0%

' Development of Heavy Metals and Phosphorus Treatment Technologies Utilizing Biochar for Application of Constructed wetlands' 의 참고문헌

  • de-Bashan, L.E., Bashan, Y., 2004. Recent advances in removing phosphorus fromwastewater and its future use as fertilizer (1997?2003). Water Res. 38, 4222?4246.
  • Zach-Maor, A., Semiat, R., Shemer, H., 2011. Synthesis, performance, and modeling ofimmobilized nano-sized magnetite layer for phosphate removal. J. Coll. Interf. Sci. 357, 440?446.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L.,2011b. Removal of phosphate from aqueous solution by biochar derived fromanaerobically digested sugar beet tailings. J. Hazard. Mater. 190(1?3), 501?507.
  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A.R., Cao, X., Pullammanappallil, P., Yang, L.,2011a. Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential. Bioresour. Technol. 102(10), 6273?6278.
  • Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S., 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar)produced from hydrothermal carbonization of peanut hull to remove aqueous heavymetals: Batch and column tests. Chem. Eng. J. 200?202, 673?680.
  • Xu, X., Gao, X., Zhao, L., Wang, H., Yu, H., Gao, B., 2013. Removal of Cu, Zn, and Cdfrom aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 20, 358?368.
  • Wang, H.J., Zhou, A.L., Peng, F., Yu, H., Yang, J., 2007. Mechanism study on adsorption ofacidified multiwalled carbon nanotubes to Pb (ii). J. Colloid Interface Sci. 316, 277?283.
  • Uchimiya, M., Lima, I.M., Klasson, K.T., Chang, S.C., Wartelle, L.H., Rodgers, J.E., 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter103derived biochars in water and soil. J. Agric. Food Chem. 58, 5538?5544.
  • Uchimiya, M., Chang, S., Klasson, K.T., 2011. Screening biochars for heavy metal retentionin soil: role of oxygen functional groups. J. Hazard. Mater. 190 (1?3), 432?441.
  • Thomas, H.C., 1944. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664?1666.
  • Tanner, C.C., Sukias, J.P.S., Upsdell, M.P., 1998. Relationships between loading rates andpollutant removal during maturation of gravel-bed constructed wetlands. J. Environ. Qual. 27, 448?458.
  • Stumm, W., 1992. Chemistry of the solid-water interface. John Wiely, New York.
  • Streat, M., Hellgardt, K., Newton, N.L.R., 2008. Hydrous ferric oxide as an adsorbent inwater treatment: Part 1. Preparation and physical characterization. Process Safe. Environ. 86, 1?9.
  • Stratful, I., Scrimshaw, M.D., Lester, J.N., 2001. Conditions influencing the precipitation ofmagnesium ammonium phosphate. Water Res. 35, 4191?4199.
  • Sposito, G., 1989. The chemistry of soils. Oxford University Press, New York.
  • Southam, D.C., Lewis, T.W., McFarlane, A.J., Hohnston, H.H., 2004. Amorphous calciumsilicate as a chemisorbent for phosphate. Curr. Appl. Phys. 4, 355?358.
  • Singh, M., Srivastava, R.K., 2011. Sequencing batch reactor technology for biologicalwastewater treatment: a review. Asia-Pac. J. Chem. Eng. 6, 3?13.
  • Shaheen, S.M., Derbalah, A.S., Moghanm, F.S., 2012. Removal of heavy metals fromaqueous solution by zeolite in competitive sorption system. Int. J. Environ. Sci. Dev. 3, 362?367.
  • Serrano, S., Garrido, F., Campbell, C.G., Garcia-Gonzalez, M.T., 2005. Competitive sorptionof cadmium and lead in acid soils of Central Spain. Geoderma 124, 91?104.
  • Seo, D.C., Yu, K., DeLaune, R.D., 2008. Comparison of monometal and multimetaladsorption in Mississippi River alluvial wetland sediment: Batch and columnexperiments. Chemosphere 73, 1757?1764.
  • Seo, D.C., Cho, J.S., Lee, H.J., Heo, J.S., 2005. Phosphorus retention capacity of filter mediafor estimating the longevity of constructed wetland. Water Res. 39, 2445?2457.
  • Schwetmann, G., Taylor, R.M., 1989. Iron oxides. In Minerals In Soil Environments, 2nd ed.,Soil Sci. Sec. Amer. pp. 379?438.
  • Saha, U.K., Taniguchi, S., Sakurai, K., 2002. Simultaneous adsorption of cadmium, zinc,and lead on hydroxyalumium- and hydoroxyaluminosilicatemontmorillinitecomplexes. Soil Sci. Soc. Am. J. 66, 117?128.
  • Richardson, C.J., Craft, C.B., 1993. Effective phosphorus retention in wetlands: fact orfiction. In: Moshiri, G.A. (Ed.), Constructed Wetlands for Water QualityImprovement. Lewis Publishers, Boca Ration, FL, pp. 271?282.
  • Reddy, K.R., Smith, W.H., 1987. Aquatic Plants for Water Treatment and ResourceRecovery. Magnolia Publishing Inc., Orlando, FL, p. 1032.
  • Rao, J.R., Viraraghavan, T., 2002. Biosorption of phenol from a aqueous solution byAspergillus niger biomass. Bioresour. Technol. 85, 165?171.
  • Rajı, C., Anirudhan, T. S., 1998. Batch Cr(VI) Removal by polyacrylamide-grafted sawdust. kinetics and thermodynamic. Water Res. 32(12), 3772?3780.
  • Rajapaksha, A.U., Vithanage, M., Ahmad, M., Seo, D.C., Cho, J.S., Lee, S.E., Lee, S.S., Ok,Y.S., 2015. Enhanced sulfamethazine removal by steam-activated invasive plantderivedbiochar. J. Hazard. Mater. 290, 43?50.
  • Qian, T., Zhang, X., Hu, J., Jiang, H., 2013. Effects of environmental conditions on therelease of phosphorus from biochar. Chemosphere 93, 2069-2075.
  • Ou, E.C., Zhou, J.J., Mao, S.C., Wang, J.Q., Xia, F., Min, L., 2007. Highly efficient removalof phosphate by lanthanum-doped mesoporous SiO2. Colloid. Surface. 308, 47?53.
  • Newbold, D.J., Elwood, J.W., O’Neil, R.V., Sheldon, A.L., 1983. Phosphorus dynamics in awoodland stream ecosystem: a study of nutrient spiraling. Ecology 64, 1249?1263.
  • Neufeld, R.D., Thodos, G., 1969. Removal of orthophosphates from aqueous solutions withactivated alumina. Environ. Sci. Technol. 3, 661?667.
  • Namasivayam, C., Sangeetha, D., 2004. Equilibrium and kinetic studies of adsorption ofphosphate onto ZnCl2 activated coir pith carbon. J. Coll. Interf. Sci. 280, 359?365.
  • Mohanty, K., Das, D., Biswas, M.N., 2006. Preparation and characterization of activatedcarbons from Sterculia alata nutshell by chemical activation with zinc chloride toremoval phenol from wastewater. Adsorption 12(2), 119?132.
  • Mohan, D., Sharma, R., Singh, V.K., Steele, P., Pittman Jr., C.U., 2012. Fluoride removalfrom water using bio-char, a green waste low cost adsorbent: equilibrium uptake andsorption dynamics modeling. Ind. Eng. Chem. Res. 51(2), 900?914.
  • Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr., C.U., 2014. Organic and inorganiccontaminants from water with biochar, a renewable, low cost and sustainableadsorbent- A critical review. Bioresour. Technol. 160, 191?202.
  • Mitsch, W.J., Cronk, J.K., 1992. Creation and restoration of wetlands: some designconsideration for ecological engineering. Adv. Soil Sci. 17, 217?255.
  • McBride, M.B., 1994. Environmental Chemistry of Soils. Oxford Univ. Press, New York.
  • Matamoros, V., Puigagut, J., Garcia, J., Bayona, J.M., 2007. Behavior of selected priorityorganic pollutants in horizontal subsurface flow constructed wetlands: A preliminaryscreening. Chemosphere 69, 1374?1380.
  • Mann, R.A., 1997. Phosphorus adsorption and desorption characteristics of constructed100wetland gravel and steel-works by-products. Aust. J. Soil Res. 35, 375?384.
  • Mahmoud, D.K., Salleh, M.A.M., Karim, W.A.W.A., Idris, A., Abidin, Z.Z., 2012. Batchadsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic andthermodynamic studies. Chemical Engineering Journal 181, 449?457.
  • Ma, L.Q., Rao, G.N., 1997. Chemical fractionation of cadmium, copper, nickel, and zinc incontaminated soils. J. Environ. Qual. 26, 259?264.
  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., Qiu, R., 2012. Relative distribution ofPb2+ sorption mechanisms by sludge-derived biochar. Water Res. 46, 854?862.
  • Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Bathes, V., Krimissa, M., 2007. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 22(2), 249?275.
  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad,J.O., Thies, J., Luizao, F.J., Petersen, J., Neves, E.G., 2006. Black carbon increasescation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719?1730.
  • Li, J., Lv, G., Bai, W., Zhang, Y., Song, J., 2014. Modification and use of biochar from wheatstraw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalin. Water Treat. 1?13.
  • Lehmann, J., Joseph, S., 2009. Biochar for environmental management: an introduction. In:Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management Science andTechnology. Earthscans, UK, pp. 1?12.
  • Lee, S.S., Lim, J.E., Abd El-Azeem, S.A.M., Choi, B., Oh, S.E., Moon, D.H., Ok, Y.S., 2013. Heavy metal immobilization in soil near abandoned mines using eggshell waste andrapeseed residue. Environ. Sci. Pollut. Res. 20, 1719?1726.
  • Kumar, P., Sudha, S., Chand, S., Srivastava, V.C., 2010. Phosphate removal from aqueoussolution using coir-pith activated carbon. Separ. Sci. Technol. 45, 1463?1470.
  • Krishnan, K.A., Haridas, A., 2008. Removal of phosphate from aqueous solutions andsewage using natural and surface modified coir pith. J. Hazard. Mater. 152, 527?535.
  • Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure ofplant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247?1253.
  • Karaca, S., Gurses, A., Ejder, M., Acikyildiz, M., 2006. Adsorptive removal of phosphatefrom aqueous solutions using raw and calcinated dolomite. J. Hazard. Mater. 128,273?279.
  • Kadlec, R.H., 1997. An autobiotic wetland phosphorus model. Ecol. Eng. 8, 145?172.
  • Johansson, L., 1999. Blast furnace slag as phosphorus sorbents-column studies. Sci. Total. Environ. 229, 89?97.
  • Jia, Q., Lua, A.C., 2008. Effects of pyrolysis conditions on the physical characteristics of oilpalm-shell activated carbons used in aqueous phase phenol adsorption. J. Anal. Appl. Pyrol. 83, 175?179.
  • Iqbal, M., Saeed, A., Zafar, S.I., 2009. FTIR spectrophotometry, kinetics and adsorptionisotherms modeling, ion exchange, and EDX analysis for understanding themechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 164,161?171.
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A.R., Pullammanappallil, P., Cao, X.,2012. Removal of heavy metals from aqueous solution by biochars derived fromanaerobically digested biomass. Bioresour. Technol. 110, 50?56.
  • Harter, R.D., 1992. Competitive sorption of cobalt, copper and nickel ions by a calciumsaturatedsoil. Soil Sci. Soc. Am. J. 56, 444?449.
  • Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T., Shitumbanuma,98V., O’Toole, A., Sundqvist, K.L., Arp, H.P.H., Cornelissen, G., 2012. Quantifying thetotal and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 46(5), 2830?2838.
  • Gupta, V.K., Al Hayat, M., Singh, A.K., Pal, M.K., 2009. Nano level detection of Cd(II)using poly(vinyl chloride) based membranes of Schiff bases. Anal. Chim. Acta. 634,36?43.
  • Greenway, M., Woolley, A., 1999. Constructed wetlands in Queensland: performanceefficiency and nutrient bioaccumulation. Ecol. Eng. 12, 39?55.
  • Giles, C.H., McEwan, T.H., Nakhawa, S.N., Smith, D., 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis ofadsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3, 3973?3993.
  • Gieseke, A., Arnz, P., Amann, R., Schramm, A., 2002. Simultaneous P and N removal in asequencing batch biofilm reactor: insights from reactor- and microscale investigations. Water Res. 36, 501?509.
  • Genz, A., Kornmuller, A., Jekel, M., 2004. Advanced phosphorus removal from membranefiltrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Res. 38, 3523?3530.
  • Gardea-Torresdey, J.L., Becker-Hapak, M.K., Darnall, D.W., 1990. Effect of chemicalmodification of algal carboxyl groups on metal ion binding. Environ. Sci. Technol. 24.
  • Fontes, M.P.F., Gomes, P.C., 2003. Simultaneous competitive adsorption of heavy metals bythe mineral matrix of tropical soils. Appl. Geochem. 18, 795?804.
  • Echeverria, J.C., Morera, M.T., Mazkiaran, C., Garrido, J.J., 1998. Competitive sorption ofheavy metal by soils. Isotherm and fractional factorial experiments. Environ. Pollut. 101, 275?284.
  • Eberhardt, T.L., Min, S.H., Han, J.S., 2006. Phosphate removal by refined aspen wood fibertreated with carboxymethyl cellulose and ferrous chloride. Bioresour. Technol. 97,972371?2376.
  • Drizo, A., Forget, C., Chapuis, R. P., Comeau, Y., 2000. How Realistic are the LinearLangmuir Predictions of Phosphate Retention by Adsorbing Materials? First WorldCongress of the International Water Association, Paris.
  • Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. In: Lehmann, J.,Joseph, S. (Eds.), Biochar for Environmental Management Science and Technology. Earthscans, UK, pp. 13?32.
  • Ding, W., Dong, X., Ime, I.M., Gao, B., Ma, L.Q., 2014. Pyrolytic temperatures impact leadsorption mechanisms by bagasse biochars. Chemosphere 105, 68?74.
  • Diazo, A., Reddy, K.R., Moore, P.A., 1994. Solubility of inorganic P in stream water asinfluenced by pH and Ca concentration. Water Res. 28, 1755?1763.
  • Day, D., Evans, R.J., Lee, J.W., Reicosky, D., 2005. Economical CO2, SOx, and NOx capturefrom fossil-fuel utilization with combined renewable hydrogen production and largescalecarbon sequestration. Energy 30, 2558?2579.
  • Das, D.D., Schnitzer, M.I., Monreal, C.M., Mayer, P., 2009. Chemical composition of acid?base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresour. Technol. 100, 6524?6532.
  • Costa, J.F., Vilar, V.J., Botelho, C.M., da Silva, E.A., Boaventura, R.A., 2010. Applicationof the NernstePlanck approach to lead ion exchange in Ca-loaded Pelvetiacanaliculata. Water Res. 44, 3946?3958.
  • Chouyyok, W., Wiacek, R.J., Pattamakomsan, K., Sangvanich, T., Grudzien, R.M., Fryxell,96G.E., Yantasee, W., 2010. Phosphate removal by anion binding on functionalizednanoporous sorbents. Environ. Sci. Technol. 44, 3073?3078.
  • Chirone, R., Salatino, P., Scala, F., 2000. The relevance of attrition to the fate of ashesduring fluidized-bed combustion of a biomass. P. Combust. Inst. 28, 2279?2286.
  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B., Hay, A.G., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood andcorn straw in aqueous solution. Bioresour. Technol. 102, 8877?8884.
  • Chen, J.P., Yang, L., 2006. Study of a heavy metal biosorption onto raw and chemicallymodified Sargassum sp. via spectroscopic and modeling analysis. Langmuir 22,8906?8914.
  • Chen, J.G., Kong, H.N., Wu, D.Y., Chen, X.C., Zhang, D.L., Sun, Z.H., 2007. Phosphateimmobilization from aqueous solution by fly ashes in relation to their composition. J. Hazard. Mater. B139, 293?300.
  • Chen, B., Zhou, D., Zhu, L., 2008. Transitional adsorption and partition on nonpolar andpolar aromatic contaminants by biochars of pine needles with different pyrolytictemperatures. Environ. Sci. Technol. 42, 5137?5143.
  • Chen, B., Chen, Z., 2009. Sorption of naphthalene and 1-naphthol by biochars of orangepeels with different pyrolytic temperatures. Chemosphere 76, 127?133.
  • Chan, K.Y., Xu, Z., 2009. Biochar: nutrient properties and their enhancement. In: Lehmann,J., & Joseph, S. eds. Biochar for Environmental Management: Science andTechnology. London: Earthscan Publication Ltd.
  • Caturla, F., Molina-Sabio, M., Rodriguez-Reinoso, F., 1991. Preparation of activated carbonby chemical activation with ZnCl2. Carbon 29, 999?1007.
  • Cao, X., Ma, L., Liang, Y., Gao, B., Harris, W., 2011. Simultaneous immobilization of leadand atrazine in contaminated soils using dairy-manure biochar. Environ. Sci. Technol. 45, 4884?4889.
  • Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S., 2012. Impact of pyrolysistemperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419?428.
  • Bouchemal, N., Belhachemi, M., Merzougui, Z., Addoun, F., 2009. The effect oftemperature and impregnation ratio on the active carbon porosity. Desalin. WaterTreat. 10, 115?120.
  • Bohn, H., McNeal, G., O’connor, G., 1979. Soil Chemistry. New York: John Wiley andSons.
  • Biswas, B.K., Inoue, K., Ghimire, K.N., Harada, H., Ohto, K., Kawakita, H., 2008. Removaland recovery of phosphorus from water by means of adsorption onto orange waste gelloaded with zirconium. Bioresour. Technol. 99, 8685?8690.
  • Bhatnagar, A., Sillanpaa, M., 2011. A review of emerging adsorbents for nitrate removalfrom water. Chemical Engineering Journal 168, 493?504.
  • Bhargava, D.S., Sheldarkar, S.B., 1993. Use of TNSAC in phosphate adsorption studies andrelationships. Literature, experimental methodology, justification and effects ofprocess variables. Water Res. 27, 303?312.
  • Bansal, R.C., Donnet, J.P., Stoeckli, F., 1988. Active Carbon (pp. 27). New York: MarcelDekker.
  • Altundogan, H.S., Tumen, F., 2002. Removal of phosphates from aqueous solutions by usingbauxite. I. Effect of pH on the adsorption of various phosphates. J. Chem. Technol. Biotechnol. 77, 77?85.
  • Almaroai, Y.A., Usman, A.R.A., Ahmad, M., Moon, D.H., Cho, J.S., Joo, Y.K., Jeon, C.,Lee, S.S., Ok, Y.S., 2014. Effects of biochar, cow bone, and eggshell on Pb94availability to maize in contaminated soil irrigated with saline water. Environ. EarthSci. 71, 1289?1296.
  • Alloway, B.J., 1995. Soil processes and the behaviour of metals. In: Alloway, B.J. (Ed.),Heavy Metals in Soils, second ed. Blackie Academic and Professional, London, pp. 11?37.
  • Ali, I., 2010. The quest for active carbon adsorbent substitutes: inexpensive adsorbents fortoxic metal ions removal from wastewater. Sepn. Purifn. Rev. 39, 95?171.
  • Aksu, Z., Gonen, F., Demircan, Z., 2002. Biosorption of chromium (VI) ions byMowital B30H resin immobilized activated sludge in a packed bed: comparisonwith granular activated carbon. Process Biochem. 38, 175?186.
  • Ahmad, Z., EI-Sharkawi, F.H., Irshad, M., Honna, T., Yamamoto, S., Al-Busaidi, A.S., 2008. Changes in water-extractability of soil inorganic phosphate induced by chloride andsulfate salts. Environ. Sci. Pollut. Res. 15, 23?26.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M.,Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soiland water: A review. Chemosphere 99, 19-23.
  • Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., 2012. Effectsof pyrolysis temperature on soybean stover- and peanut shell-derived biocharproperties and TCE adsorption in water. Bioresour. Technol. 118, 536?544.
  • Adhikari, R., Singh, M.V., 2003. Sorption characteristics of lead and cadmium in some soilsof India. Geoderma, 114, 81?92.
  • Abd-Elfaltah, A., Wada, K., 1981. Adsorption of lead, copper, zinc, cobalt and cadmium bysoils that differ in cation exchange materials. J. Soil Sci. 32, 271?283.
  • APHA-AWWA-WEF., 2005. Standard Methods for the Examination of Water andWastewater.21st ed. Washington, DC: American Public Health Association.
  • ?zacar, M., 2003. Equilibrium and kinetic modelling of adsorption of phosphorus on101calcined alunite. Adsorption 9, 125?132.