박사

형태 및 상 변형에 따른 연골유래 세포외기질 생체소재의 조직재생 응용 : Application of Cartilage Extracellular Matrix Biomaterials on Tissue Repair

양순심 2015년
' 형태 및 상 변형에 따른 연골유래 세포외기질 생체소재의 조직재생 응용 : Application of Cartilage Extracellular Matrix Biomaterials on Tissue Repair' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • cartilage repair
  • cartilage-derived ecm (cecm)
  • ecm multilayer
  • human fetal derived progenitor cells (hfcpcs)
  • mesenchymal stem cells
  • osteochondral graft
  • osteogenesis
  • plga/alginate hybrid printing
  • porcine cartilage powder scaffolds
  • solid freeform fabrication (sff)
  • sustained release
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
114 0

0.0%

' 형태 및 상 변형에 따른 연골유래 세포외기질 생체소재의 조직재생 응용 : Application of Cartilage Extracellular Matrix Biomaterials on Tissue Repair' 의 참고문헌

  • van der Kraan PM, Buma P, van Kuppevelt T, van Den Berg WB. Interaction ofchondrocytes, extracellular matrix and growth factors: relevance for articular cartilagetissue engineering. Osteoarthritis and Cartilage 10:631-37. (2002)
  • Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering.Part I. Traditional factors. Tissue engineering 7:679-89. (2001)
  • Yang HS, La WG, Bhang SH, Kim HJ, Im GI, Lee H, et al. Hyaline cartilage regenerationby combined therapy of microfracture and long-term bone morphogenetic protein-2delivery. Tissue Eng Part A 17:1809-18. (2011)
  • Wilson R, Belluoccio D, Bateman JF. Proteomic analysis of cartilage proteins. Methods45:22-31. (2008)
  • Wells RG, Yankelev H, Lin HY, Lodish HF. Biosynthesis of the type I and type II TGF-betareceptors. Implications for complex formation. J Biol Chem 272:11444-51. (1997)
  • Wang Y, de Isla N, Huselstein C, Wang B, Netter P, Stoltz JF, et al. Effect of alginate89culture and mechanical stimulation on cartilaginous matrix synthesis of rat dedifferentiatedchondrocytes. Biomed Mater Eng 18:S47-54. (2008)
  • Wang Y, AS. A, F. C. Template Synthesis of Nanostructured Materials via Layer-by-LayerAssembly. Chem Mater 20:848?58. (2008)
  • Wang L, Chen D, Sun J. Layer-by-layer deposition of polymeric microgel films on surgicalsutures for loading and release of ibuprofen. Langmuir 25:7990-4. (2009)
  • Wake MC, Patrick CW, Jr., Mikos AG. Pore morphology effects on the fibrovascular tissuegrowth in porous polymer substrates. Cell Transplant 3:339-43. (1994)
  • Wahl DA, Sachlos E, Liu C, Czernuszka JT. Controlling the processing of collagenhydroxyapatitescaffolds for bone tissue engineering. J Mater Sci Mater Med 18:201-9.(2007)
  • Vinardell T, Thorpe SD, Buckley CT, Kelly DJ. Chondrogenesis and integration ofmesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng37:2556-65. (2009)86
  • Vats A, Tolley NS, Polak JM, Gough JE. Scaffolds and biomaterials for tissue engineering:a review of clinical applications. Clin Otolaryngol Allied Sci 28:165-72. (2003)
  • Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage.Biomaterials 21:431-40. (2000)
  • Strobel C, Bormann N, Kadow-Romacker A, Schmidmaier G, Wildemann B. Sequentialrelease kinetics of two (gentamicin and BMP-2) or three (gentamicin, IGF-I and BMP-2)substances from a one-component polymeric coating on implants. J Control Release156:37-45. (2011)
  • Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury 39 Suppl 1:S77-87.(2008)
  • Steinbrech DS, Mehrara BJ, Rowe NM, Dudziak ME, Luchs JS, Saadeh PB, et al. Geneexpression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins duringmembranous bone healing in rats. Plast Reconstr Surg 105:2028-38. (2000)
  • Solheim E, yen J, Hegna J, Austgulen OK, Harlem T, Strand T. Microfracture treatmentof single or multiple articular cartilage defects of the knee: a 5-year median follow-up of110 patients. Knee Surgery, Sports Traumatology, Arthroscopy 18:504-08. (2009)
  • Sohier J, Hamann D, Koenders M, Cucchiarini M, Madry H, van Blitterswijk C, et al.Tailored release of TGF-beta1 from porous scaffolds for cartilage tissue engineering. Int JPharm 332:80-9. (2007)
  • Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, et al. OsteochondralRepair Using a Scaffold-Free Tissue-Engineered Construct Derived from SynovialMesenchymal Stem Cells and a Hydroxyapatite-Based Artificial Bone. Tissue Eng Part A.(2014)
  • Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, et al. Stimulation of healingwithin a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solidfreeform fabrication technology. J Mater Sci Mater Med 23:2993-3002. (2012)
  • Shim JH, Kim JY, Park JK, Hahn SK, Rhie JW, Kang SW, et al. Effect of thermaldegradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition systemfollowed by change of cell growth rate. J Biomater Sci Polym Ed 21:1069-80. (2010)
  • Shim JH, Kim AJ, Park JY, Yi N, Kang I, Park J, et al. Effect of solid freeformfabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds oncellular activities of human adipose-derived stem cells and rat primary hepatocytes. J MaterSci Mater Med 24:1053-65. (2013)
  • Shen X, Chen L, Cai X, Tong T, Tong H, Hu J. A novel method for the fabrication ofhomogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold withhierarchical porosity. J Mater Sci Mater Med 22:299-305. (2011)
  • Sharma S, Srivastava D, Grover S, Sharma V. Biomaterials in tooth tissue engineering: areview. J Clin Diagn Res 8:309-15. (2014)
  • Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of fullthicknessdefects of articular cartilage. J Bone Joint Surg Am 75:532-53. (1993)
  • Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT. Tunable dualgrowth factor delivery from polyelectrolyte multilayer films. Biomaterials. (2011)
  • Schneider A, Francius G, Obeid R, Schwinte P, Hemmerle J, Frisch B, et al. Polyelectrolytemultilayers with a tunable Young's modulus: influence of film stiffness on cell adhesion.Langmuir 22:1193-200. (2006)
  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and futuretrends. Macromol Biosci 4:743-65. (2004)
  • Pedrozo HA, Schwartz Z, Mokeyev T, Ornoy A, Xin-Sheng W, Bonewald LF, et al.Vitamin D3 metabolites regulate LTBP1 and latent TGF-beta1 expression and latent TGFbeta1incorporation in the extracellular matrix of chondrocytes. J Cell Biochem 72:151-65.(1999)
  • Pedrozo HA, Schwartz Z, Gomez R, Ornoy A, Xin-Sheng W, Dallas SL, et al. Growth platechondrocytes store latent transforming growth factor (TGF)-beta 1 in their matrix throughlatent TGF-beta 1 binding protein-1. J Cell Physiol 177:343-54. (1998)
  • Pavlukhina S, Sukhishvili S. Polymer assemblies for controlled delivery of bioactivemolecules from surfaces. Adv Drug Deliv Rev 63:822-36. (2011)
  • Park JS, Woo DG, Yang HN, Lim HJ, Chung HM, Park KH. Heparin-bound transforminggrowth factor-beta3 enhances neocartilage formation by rabbit mesenchymal stem cells.Transplantation 85:589-96. (2008)
  • Owen SC, Shoichet MS. Design of three?dimensional biomimetic scaffolds. Journal ofBiomedical Materials Research Part A 94:1321-31. (2010)
  • Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integrationof engineered cartilage. J Orthop Res 19:1089-97. (2001)
  • O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today 14:88-95.(2011)
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissueengineering. J Bone Joint Surg Am 86-A:1541-58. (2004)
  • Mueller-Rath R, Gavenis K, Gravius S, Andereya S, Mumme T, Schneider U. In vivocultivation of human articular chondrocytes in a nude mouse-based contained defect organculture model. Biomed Mater Eng 17:357-66. (2007)
  • Morra M, Cassinelli C. Biomaterials surface characterization and modification. Int J ArtifOrgans 29:824-33. (2006)
  • Miura Y, Parvizi J, Fitzsimmons JS, O'Driscoll SW. Brief exposure to high-dosetransforming growth factor-beta1 enhances periosteal chondrogenesis in vitro: apreliminary report. J Bone Joint Surg Am 84-A:793-9. (2002)
  • Mierisch CM, Cohen SB, Jordan LC, Robertson PG, Balian G, Diduch DR. Transforminggrowth factor-beta in calcium alginate beads for the treatment of articular cartilage defectsin the rabbit. Arthroscopy 18:892-900. (2002)
  • Mao Z, Ma L, Zhou J, Gao C, Shen J. Bioactive Thin Film of Acidic Fibroblast Growth83Factor Fabricated by Layer-by-Layer Assembly. Bioconjugate Chemistry 16:1316-22.(2005)
  • Mano JF, Reis RL. Osteochondral defects: present situation and tissue engineeringapproaches. J Tissue Eng Regen Med 1:261-73. (2007)
  • Lin HR, Yeh YJ. Porous alginate/hydroxyapatite composite scaffolds for bone tissueengineering: preparation, characterization, and in vitro studies. J Biomed Mater Res B ApplBiomater 71:52-65. (2004)
  • Li TZ, Jin CZ, Choi BH, Kim MS, Kim YJ, Park SR, et al. Using Cartilage ExtracellularMatrix (CECM) Membrane to Enhance the Reparability of the Bone Marrow StimulationTechnique for Articular Cartilage Defect in Canine Model. Advanced Functional Materials22:4292-300. (2012)
  • Li TZ, Jin CZ, Choi BH, Kim MS, Kim YJ, Park SR, et al. Using Cartilage ExtracellularMatrix (CECM) Membrane to Enhance the Reparability of the Bone Marrow StimulationTechnique for Articular Cartilage Defect in Canine Model. Adv Funct Mater 22:4292-300.(2012)90
  • Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissuewith complex shape applied to ear regeneration. Biofabrication 6:024103. (2014)
  • Lantada AD, Morgado PL. Rapid prototyping for biomedical engineering: currentcapabilities and challenges. Annu Rev Biomed Eng 14:73-96. (2012)
  • LaPorta TF, Richter A, Sgaglione NA, Grande DA. Clinical Relevance of Scaffolds forCartilage Engineering. Orthopedic Clinics of North America 43:245-54. (2012)
  • Kyoung-Hwan Choi BRS, Byung Hyun Choi, Minhyoung Lee, So Ra Park, Byoung-Hyun Min. Cartilage Tissue Engineering using Chondrocyte-Derived Extracellular MatrixScaffold Suppressed Vessel Invasion During Chondrogenesis of Mesenchymal Stem CellsIn Vivo. Tissue Engineering and Regenerative Medicine 9:43-50. (2012)
  • Kurella A, Dahotre NB. Review paper: surface modification for bioimplants: the role of lasersurface engineering. J Biomater Appl 20:5-50. (2005)
  • Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M. Microfracture and bonemorphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair.Osteoarthritis Cartilage 14:1126-35. (2006)
  • Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCLalginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue EngRegen Med. (2013)
  • Kropp BP, Sawyer BD, Shannon HE, Rippy MK, Badylak SF, Adams MC, et al.Characterization of small intestinal submucosa regenerated canine detrusor: assessment ofreinnervation, in vitro compliance and contractility. J Urol 156:599-607. (1996)
  • Kittitheeranun P, Sanchavanakit N, Sajomsang W, Dubas ST. Loading of curcumin inpolyelectrolyte multilayers. Langmuir 26:6869-73. (2010)
  • Kim JM, Han TS, Kim MH, Oh DS, Kang SS, Kim G, et al. Osteogenic evaluation ofcalcium phosphate scaffold with drug-loaded poly (lactic-co-glycolic acid) microspheres inbeagle dogs. Tissue Engineering and Regenerative Medicine 9:175-83. (2012)84
  • Kim BS,Mooney DJ:Engineering smooth muscletissuewith apredefinedstructure.JBiomedMaterRes41:322-32,1998
  • Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. JBiomech Eng 131:111002. (2009)
  • Karp JM, Sarraf F, Shoichet MS, Davies JE. Fibrin-filled scaffolds for bone-tissueengineering: An in vivo study. J Biomed Mater Res A 71:162-71. (2004)
  • Karlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP. Polyelectrolyte multilayersfabricated from antifungal beta-peptides: design of surfaces that exhibit antifungal activityagainst Candida albicans. Biomacromolecules 11:2321-8. (2010)
  • Karadzic I, Vucic V, Jokanovic V, Debeljak-Martacic J, Markovic D, Petrovic S, et al.Effects of novel hydroxyapatite based 3D biomaterials on proliferation and osteoblasticdifferentiation of mesenchymal stem cells. J Biomed Mater Res A. (2014)
  • Kang SW, Lee SJ, Kim JS, Choi EH, Cha BH, Shim JH, et al. Effect of a scaffoldfabricated thermally from acetylated PLGA on the formation of engineered cartilage.Macromol Biosci 11:267-74. (2011)
  • Kakudo N, Shimotsuma A, Miyake S, Kushida S, Kusumoto K. Bone tissue engineeringusing human adipose-derived stem cells and honeycomb collagen scaffold. J Biomed MaterRes A 84:191-7. (2008)
  • Jung Y, Chung YI, Kim SH, Tae G, Kim YH, Rhie JW, et al. In situ chondrogenicdifferentiation of human adipose tissue-derived stem cells in a TGF-beta1 loaded fibrinpoly(lactide-caprolactone) nanoparticulate complex. Biomaterials 30:4657-64. (2009)
  • Jin LH, Choi BH, Kim YJ, Park SR, Jin CZ, Min BH. Implantation of bone marrowderivedbuffy coat can supplement bone marrow stimulation for articular cartilage repair.Osteoarthritis Cartilage 19:1440-8. (2011)
  • Jin CZ, Park SR, Choi BH, Park K, Min BH. In vivo cartilage tissue engineering using acell-derived extracellular matrix scaffold. Artif Organs 31:183-92. (2007)87
  • Jin CZ, Choi BH, Park SR, Min BH. Cartilage engineering using cell-derived extracellularmatrix scaffold in vitro. J Biomed Mater Res A 92:1567-77. (2010)
  • Jeon YH, Choi JH, Sung JK, Kim TK, Cho BC, Chung HY. Different effects of PLGA andchitosan scaffolds on human cartilage tissue engineering. J Craniofac Surg 18:1249-58.(2007)
  • Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequentialrelease of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds.Biomaterials 29:1518-25. (2008)
  • Ignotz RA, Endo T, Massague J. Regulation of fibronectin and type I collagen mRNAlevels by transforming growth factor-beta. J Biol Chem 262:6443-6. (1987)
  • Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articularcartilage. Osteoarthritis Cartilage 9:22-32. (2001)
  • Hunziker EB, Driesang IM, Morris EA. Chondrogenesis in cartilage repair is induced bymembers of the transforming growth factor-beta superfamily. Clin Orthop Relat Res:S171-81. (2001)
  • Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: anadvanced platform for tissue engineering scaffold fabrication. Biopolymers 97:83-93.(2012)
  • Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitrousing biodegradable scaffolds: investigating initial cell-seeding density and culture period.Journal of biomedical materials research 51:376-82. (2000)
  • Holland TA, Tessmar JKV, Tabata Y, Mikos AG. Transforming growth factor- 1 releasefrom oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilagewound healing environment. Journal of Controlled Release 94:101-14. (2004)
  • Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, et al.Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin withtransforming growth factor beta. Biochem J 302 ( Pt 2):527-34. (1994)
  • Hashimoto Y, Adachi S, Matsuno T, Omata K, Yoshitaka Y, Ozeki Y, et al. Effect of aninjectable 3D scaffold for osteoblast differentiation depends on bead size. Biomed MaterEng 19:391-400. (2009)
  • Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: a88year in review. Tissue Eng Part B Rev 20:1-16. (2014)
  • Hall FL, Han B, Kundu RK, Yee A, Nimni ME, Gordon EM. Phenotypic differentiation ofTGF-beta1-responsive pluripotent premesenchymal prehematopoietic progenitor (P4 stem)cells from murine bone marrow. J Hematother Stem Cell Res 10:261-71. (2001)
  • Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE. Cartilage tissueengineering: current limitations and solutions. Clin Orthop Relat Res:S176-85. (1999)
  • Goessler UR, Hormann K, Riedel F. Tissue engineering with chondrocytes and function ofthe extracellular matrix (Review). Int J Mol Med 13:505-13. (2004)
  • Gillogly SD, Myers TH. Treatment of Full-thickness Chondral Defects with AutologousChondrocyte Implantation. Orthopedic Clinics of North America 36:433-46. (2005)
  • Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, et al.Biofabrication of osteochondral tissue equivalents by printing topologically defined, cellladenhydrogel scaffolds. Tissue Eng Part C Methods 18:33-44. (2012)
  • Dierich A, Le Guen E, Messaddeq N, Stoltz JF, Netter P, Schaaf P, et al. Bone FormationMediated by Synergy-Acting Growth Factors Embedded in a Polyelectrolyte MultilayerFilm. Advanced Materials 19:693-97. (2007)85
  • Derynck R, Feng XH. TGF-beta receptor signaling. Biochim Biophys Acta 1333:F105-50.(1997)
  • Derby B. Printing and prototyping of tissues and scaffolds. Science 338:921-6. (2012)
  • Dawson JI, Wahl DA, Lanham SA, Kanczler JM, Czernuszka JT, Oreffo RO. Developmentof specific collagen scaffolds to support the osteogenic and chondrogenic differentiation ofhuman bone marrow stromal cells. Biomaterials 29:3105-16. (2008)
  • Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG. Effect of bone extracellularmatrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells.Biomaterials 26:971-7. (2005)
  • Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of apericardial acellular matrix biomaterial: biochemical and mechanical effects of cellextraction. J Biomed Mater Res 28:655-66. (1994)
  • Cohen NP, Foster RJ, Mow VC. Composition and dynamics of articular cartilage: structure,function, and maintaining healthy state. J Orthop Sports Phys Ther 28:203-15. (1998)
  • Cohen DL, Malone E, Lipson H, Bonassar LJ. Direct freeform fabrication of seededhydrogels in arbitrary geometries. Tissue Eng 12:1325-35. (2006)
  • Cobb MA, Badylak SF, Janas W, Simmons-Byrd A, Boop FA. Porcine small intestinalsubmucosa as a dural substitute. Surg Neurol 51:99-104. (1999)
  • Choi K-H, Choi BH, Park SR, Kim BJ, Min B-H. The chondrogenic differentiation ofmesenchymal stem cells on an extracellular matrix scaffold derived from porcinechondrocytes. Biomaterials 31:5355-65. (2010)
  • Choi JW, Choi BH, Park SH, Pai KS, Li TZ, Min BH, et al. Mechanical Stimulation byUltrasound Enhances Chondrogenic Differentiation of Mesenchymal Stem Cells in aFibrin?Hyaluronic Acid Hydrogel. Artificial organs 37:648-55. (2013)
  • Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting threedimensionalbiohybrid systems for future regenerative therapies. J Biomed Mater Res BAppl Biomater 98:160-70. (2011)
  • Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissuespecificconsiderations. Eur Spine J 17 Suppl 4:467-79. (2008)
  • Catelas I, Dwyer JF, Helgerson S. Controlled Release of Bioactive Transforming GrowthFactor Beta-1 from Fibrin GelsIn Vitro. Tissue Engineering Part C:Methods:110306233138079. (2008)
  • Cai DZ, Zeng C, Quan DP, Bu LS, Wang K, Lu HD, et al. Biodegradable chitosan scaffoldscontaining microspheres as carriers for controlled transforming growth factor-beta1delivery for cartilage tissue engineering. Chin Med J (Engl) 120:197-203. (2007)
  • Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membranecomponent of biologic scaffolds derived from extracellular matrix. Tissue Eng 12:519-26.(2006)
  • Brodie JC, Goldie E, Connel G, Merry J, Grant MH. Osteoblast interactions with calciumphosphate ceramics modified by coating with type I collagen. J Biomed Mater Res A73:409-21. (2005)
  • Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trendsand limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020-41. (2012)
  • Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in woundhealing. Am J Clin Dermatol 2:305-13. (2001)
  • Banglmaier RF, Sander EA, VandeVord PJ. Induction and quantification of collagen fiberalignment in a three-dimensional hydroxyapatite-collagen composite scaffold. ActaBiomater 17:26-35. (2015)
  • Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. TransplImmunol 12:367-77. (2004)82
  • Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587-93. (2007)
  • Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization andrecellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27-53.(2011)
  • Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: asubstrate for in vitro cell growth. J Biomater Sci Polym Ed 9:863-78. (1998)
  • Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material:Structure and function. Acta Biomater 5:1-13. (2009)
  • B.H. M, W.H. C, Y.S. L, S.R. P, Choi.B.H., Y.J. K, et al. Effect of Different Bone MarrowStimulation Techniques (BSTs) on MSCs Mobilization. Journal of Orthopaedic ResearchJOR-12-0683.R2(22380). (2013)
  • Anraku Y, Mizuta H, Sei A, Kudo S, Nakamura E, Senba K, et al. Analyses of early eventsduring chondrogenic repair in rat full-thickness articular cartilage defects. J Bone MinerMetab 27:272-86. (2009)