박사

대퇴골 골절 치료를 위한 복합재료 고정판의 생체 역학적 설계 : Bio-mechanical design of composite internal fixation devices for healing the long bones fractures

논문상세정보
' 대퇴골 골절 치료를 위한 복합재료 고정판의 생체 역학적 설계 : Bio-mechanical design of composite internal fixation devices for healing the long bones fractures' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • biodegradable functionally graded composites
  • bone fractures and healing process
  • finite element analysis
  • mechanical properties
  • optimal design of bone plate
  • pgf/pla composites
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
777 0

0.0%

' 대퇴골 골절 치료를 위한 복합재료 고정판의 생체 역학적 설계 : Bio-mechanical design of composite internal fixation devices for healing the long bones fractures' 의 참고문헌

  • Weir, N. A.; Buchanan, F. J.; Orr, J. F.; Farrar, D. F.; Dickson, G. R.,Degradation of poly-L-lactide: Part 2: increased temperature accelerateddegradation. P I Mech Eng H 2004, 218 (H5), 321-330.
  • Weber, S. C.; Szabo, R. M., Severely Comminuted Distal RadialFracture as an Unsolved Problem - Complications Associated with ExternalFixation and Pins and Plaster Techniques. J Hand Surg-Am 1986, 11A (2),157-165.
  • Vanhazendonk, J. M.; Vanderputten, J. C.; Keurentjes, J. T. F.; Prins,A., A Simple Experimental-Method for the Measurement of the Surface-Tension of Cellulosic Fibers and Its Relation with Chemical-Composition.Colloid Surface A 1993, 81, 251-261.
  • Uhthoff, H. K.; Poitras, P.; Backman, D. S., Internal plate fixation offractures: short history and recent developments. Journal of orthopaedicscience : official journal of the Japanese Orthopaedic Association 2006, 11(2), 118-26.
  • Tan, L. L.; Yu, X. M.; Wan, P.; Yang, K., Biodegradable Materials forBone Repairs: A Review. J Mater Sci Technol 2013, 29 (6), 503-513.
  • Staiger, M. P.; Pietak, A. M.; Huadmai, J.; Dias, G., Magnesium andits alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27 (9),1728-1734.
  • Son, D. S.; Mehboob, H.; Jung, H. J.; Chang, S. H., The finiteelement analysis for endochondral ossification process of a fractured tibiaapplied with a composite IM-rod based on a mechano-regulation theoryusing a deviatoric strain. Compos Part B-Eng 2014, 56, 189-196.
  • Son, D. S.; Chang, S. H., The simulation of bone healing process offractured tibia applied with composite bone plates according to thediaphyseal oblique angle and plate modulus. Compos Part B-Eng 2013, 45(1), 1325-1335.126
  • Sherman, W. O., Vanadium steel bone plates and screws. SurgGynecol Obstet 1912, 14, 629-34.
  • Schenk, R.; Willenegger, H., Morphological findings in primaryfracture healing. In: Krompecher S, Kerner E, editors. Callus formationsymposium on the biology of fracture healing. Budapest: Akademiai Kiado.1967, 75-86.
  • Salernitano, E.; Migliaresi, C., Composite materials for biomedicalapplications: a review. Journal of applied biomaterials & biomechanics :JABB 2003, 1 (1), 3-18.
  • Roux, W., Gesammelte Abhandlungen uber Entwicklungsmechanikder Organismen. Berlin: Wilhem Engelmann, Leipzig, 1895.
  • Reichert, J. C.; Saifzadeh, S.; Wullschleger, M. E.; Epari, D. R.;Schutz, M. A.; Duda, G. N.; Schell, H.; van Griensven, M.; Redl, H.;Hutmacher, D. W., The challenge of establishing preclinical models forsegmental bone defect research. Biomaterials 2009, 30 (12), 2149-63.
  • Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K. W.,Biomedical applications of polymer-composite materials: a review. ComposSci Technol 2001, 61 (9), 1189-1224.
  • Ramakrishna, S.; Hull, D., Tensile Behavior of Knitted Carbon-Fiber-Fabric/Epoxy Laminates .2. Prediction of Tensile Properties. Compos SciTechnol 1994, 50 (2), 249-258.
  • Prendergast, P. J.; Huiskes, R.; Soballe, K., Biophysical stimuli oncells during tissue differentiation at implant interfaces. J Biomech 1997, 30(6), 539-548.
  • Perren, S. M.; Cordey, J.; Rahn, B. A.; Gautier, E.; Schneider, E.,Early Temporary Porosis of Bone Induced by Internal-Fixation Implants - aReaction to Necrosis, Not to Stress Protection. Clin Orthop Relat R 1988,(232), 139-151.
  • Perren, S. M.; Cordey, J., The concept of interfragmentary strain in:Uhthoff, HK, (Eds), Current Concepts of Internal Fixation of Fractures,Springer-Verlag, Berlin, 1980;63-77.
  • Pauwels, F., Biomechanics of the Locomotor Apparatus, Berlin:Springer-Verlag, 1980.
  • Nagel, T.; Kelly, D. J., Mechano-regulation of mesenchymal stem celldifferentiation and collagen organisation during skeletal tissue repair.Biomech Model Mechan 2010, 9 (3), 359-372.
  • Muller, M. E.; Allgower, M.; Willenegger, H., Compression fixationwith plates. In: Technique of internal fixation of fractures. Berlin Springer;1965, 47-51.
  • Mehboob H; Chang SH, Evaluation of the development of tissuephenotypes: bone fracture healing using functionally graded materialcomposite bone plates. Compos Struct. 2014;117:105-113.
  • Mayer J. Gestricke aus Kohlenstoffasern fur biokompatibleVerbundwerkstoffe, dargestellt an einer homoelastischenOsteosyntheseplatte. PhD thesis, ETH Zurich, Switzerland, 1994.
  • Mano, J. F.; Sousa, R. A.; Boesel, L. F.; Neves, N. M.; Reis, R. L.,Bloinert, biodegradable and injectable polymeric matrix composites for hardtissue replacement: state of the art and recent developments. CompositesScience and Technology 2004, 64 (6), 789-817.
  • Lee, N. J.; Jang, J., The effect of fibre-content gradient on themechanical properties of glass-fibre-mat/polypropylene composites.Composites Science and Technology 2000, 60 (2), 209-217.134
  • Lane, W. A., Some remarks on the treatment of fractures. BMJ 1895,1, 861-3.
  • Lambotte, A., Technique et indication des protheses dans letraitement des fractures. Presse Med 1909, 17, 321.
  • Kim, H. J.; Kim, S. H.; Chang, S. H., Finite element analysis usinginterfragmentary strain theory for the fracture healing process to whichcomposite bone plates are applied. Compos Struct 2011, 93 (11), 2953-2962.
  • Kharazi, A. Z.; Fathi, M. H.; Bahmany, F., Design of a textilecomposite bone plate using 3D-finite element method. Materials &Design 2010, 31 (3), 1468-1474.
  • Kelly, D. J.; Prendergast, P. J., Prediction of the optimal mechanicalproperties for a scaffold used in osteochondral defect repair. Tissue Eng2006, 12 (9), 2509-2519.
  • Ji, F.; Tong, D.; Tang, H.; Cai, X. B.; Zhang, Q. L.; Li, J. F.; Wang, Q.G., Minimally invasive percutaneous plate osteosynthesis (MIPPO)technique applied in the treatment of humeral shaft distal fractures through alateral approach. Int Orthop 2009, 33 (2), 543-547.
  • Janssen, K. W.; Biert, J.; van Kampen, A., Treatment of distal tibialfractures: plate versus nail. International Orthopaedics 2007, 31 (5), 709-714.
  • Jain, R.; Podworny, N.; Hupel, T. M.; Weinberg, J.; Schemitsch, E.H., Influence of plate design on cortical bone perfusion and fracture healingin canine segmental tibial fractures. J Orthop Trauma 1999, 13(3) (3), 178-186.121
  • Isaksson, H.; Wilson, W.; van Donkelaar, C. C.; Huiskes, R.; Ito, K.,Comparison of biophysical stimuli for mechano-regulation of tissuedifferentiation during fracture healing. Journal of Biomechanics 2006, 39(8), 1507-1516.117
  • Isaksson HE. Mechanical and mechanobiological influences on bonefracture repair: identifying important cellular characteristics. PhD Thesis,Eindhoven University of Technology / AO Research Institute Davos(Switzerland); 2007.
  • Hasan, M. S.; Ahmed, I.; Parsons, A. J.; Walker, G. S.; Scotchford, C.A., The influence of coupling agents on mechanical property retention andlong-term cytocompatibility of phosphate glass fibre reinforced PLAcomposites. J Mech Behav Biomed 2013, 28, 1-14.
  • Goodship, A. E.; Kenwright, J., The Influence of InducedMicromovement Upon the Healing of Experimental Tibial Fractures. TheJournal of bone and joint surgery. British volume 1985, 67 (4), 650-655.
  • Gautier, E.; Perren, S. M., The Limited Contact DynamicCompression Plate (Lc-Dcp) - Biomechanical Research as a Basis for theModified Plate Design. Orthopade 1992, 21 (1), 11-23.
  • Ganesh, V. K.; Ramakrishna, K.; Ghista, D. N., Biomechanics ofbone-fracture fixation by stiffness-graded plates in comparison withstainless-steel plates. Biomedical engineering online 2005, 4, 46.
  • Fujihara, K.; Huang, Z. M.; Ramakrishna, S.; Satkunanantham, K.;Hamada, H., Development of braided carbon/peek composite bone plates.Adv Compos Lett 2001, 10 (1), 13-20.
  • Ferrero, F., Wettability measurements on plasma treated syntheticfabrics by capillary rise method. Polym Test 2003, 22 (5), 571-578.
  • Eggers, G. W., Internal contact splint. J Bone Joint Surg Am 1948,30A (1), 40-52.
  • Donahue, T. L. H.; Hull, M. L.; Rashid, M. M.; Jacobs, C. R., A finiteelement model of the human knee joint for the study of tibio-femoral contact.J Biomech Eng-T Asme 2002, 124 (3), 273-280.
  • Dickson, K.; Katzman, S.; Delgado, E.; Contreras, D., DelayedUnions and Nonunions of Open Tibial Fractures - Correlation withArteriography Results. Clinical Orthopaedics and Related Research 1994,(302), 189-193.
  • DiGioia, A. M., 3rd; Cheal, E. J.; Hayes, W. C., Three-dimensionalstrain fields in a uniform osteotomy gap. J Biomech Eng 1986, 108 (3), 273-80.
  • Danis, R., Theorie et pratique de osteosynthese. Paris: Masson; 1949.
  • D'Lima, D. D.; Patil, S.; Steklov, N.; Slamin, J. E.; Colwell, C. W.,Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty2006, 21 (2), 255-262.
  • Courtbrown, C. M.; Mcbirnie, J., The Epidemiology of TibialFractures. The Journal of bone and joint surgery. British volume 1995, 77B(3), 417-421.
  • Claes, L. E., Mechanical characterization of biodegradable implants.Clin Mater 1992, 10 (1-2), 41-6.
  • Checa, S.; Prendergast, P. J., A Mechanobiological Model for TissueDifferentiation that Includes Angiogenesis: A Lattice-Based ModelingApproach. Ann Biomed Eng 2009, 37 (1), 129-145.124
  • Cheal, E. J.; Mansmann, K. A.; DiGioia, A. M., 3rd; Hayes, W. C.;Perren, S. M., Role of interfragmentary strain in fracture healing: ovinemodel of a healing osteotomy. Journal of orthopaedic research : officialpublication of the Orthopaedic Research Society 1991, 9 (1), 131-42.
  • Bogey, R. A.; Perry, J.; Gitter, A. J., An EMG-to-force processingapproach for determining ankle muscle forces during normal human gait.IEEE transactions on neural systems and rehabilitation engineering : apublication of the IEEE Engineering in Medicine and Biology Society 2005,13 (3), 302-10.
  • Black, J., Othopaedic Biomaterials in Research and practice. NewYork: Churchill Livingstone. 1988, 197-210.
  • Berkin, C. R.; Marshall, D. V., Three-sided plate fixation for fracturesof the tibial and femoral shafts. A follow-up note. J Bone Joint Surg Am1972, 54 (5), 1105-1113.
  • Bagby, G. W.; Janes, J. M., The effect of compression on the rate offracture healing using a special plate. Am J Surg 1958, 95, 761-71.120
  • (a) Zhao, D.; Banks, S. A.; D'Lima, D. D.; Colwell, C. W.; Fregly, B.J., In vivo medial and lateral tibial loads during dynamic and high flexionactivities. Journal of orthopaedic research : official publication of theOrthopaedic Research Society 2007, 25 (5), 593-602; (b) Taylor, W. R.;Heller, M. O.; Bergmann, G.; Duda, G. N., Tibio-femoral loading during125human gait and stair climbing. Journal of orthopaedic research : officialpublication of the Orthopaedic Research Society 2004, 22 (3), 625-32.
  • (a) Walker, J.; Shadanbaz, S.; Woodfield, T. B.; Staiger, M. P.; Dias,G. J., Magnesium biomaterials for orthopedic application: A review from abiological perspective. Journal of biomedical materials research. Part B,Applied biomaterials 2014; (b) Sabir, M. I.; Xu, X. X.; Li, L., A review onbiodegradable polymeric materials for bone tissue engineering applications.J Mater Sci 2009, 44 (21), 5713-5724.
  • (a) Tormala, P.; Pohjonen, T.; Rokkanen, P., Bioabsorbable polymers:Materials technology and surgical applications. P I Mech Eng H 1998, 212(H2), 101-111; (b) Rokkanen, P.; Bostman, O.; Vainionpaa, S.; Makela, E.A.; Hirvensalo, E.; Partio, E. K.; Vihtonen, K.; Patiala, H.; Tormala, P.,Absorbable devices in the fixation of fractures. J Trauma 1996, 40 (3 Suppl),S123-7.
  • (a) Rho, J. Y.; Kuhn-Spearing, L.; Zioupos, P., Mechanical propertiesand the hierarchical structure of bone. Med Eng Phys 1998, 20 (2), 92-102;(b) Rho, J. Y.; Ashman, R. B.; Turner, C. H., Young's modulus of trabecularand cortical bone material: ultrasonic and microtensile measurements. JBiomech 1993, 26 (2), 111-9; (c) Mitton, D.; Rumelhart, C.; Hans, D.;Meunier, P. J., The effects of density and test conditions on measuredcompression and shear strength of cancellous bone from the lumbarvertebrae of ewes. Med Eng Phys 1997, 19 (5), 464-74; (d) Kuhn, J. L.;Goldstein, S. A.; Choi, K.; London, M.; Feldkamp, L. A.; Matthews, L. S.,Comparison of the trabecular and cortical tissue moduli from human iliac135crests. Journal of orthopaedic research : official publication of theOrthopaedic Research Society 1989, 7 (6), 876-84.
  • (a) Ramsay, S. D.; Pillar, R. M.; Yang, L.; Santerre, J. P., Calciumpolyphosphate/polyvinyl acid-carbonate copolymer based composites for usein biodegradable load-bearing composites for orthopaedic implant119fabrication. Bioceramics, Vol 17 2005, 284-286, 787-790; (b) Felfel, R. M.;Ahmed, I.; Parsons, A. J.; Haque, P.; Walker, G. S.; Rudd, C. D.,Investigation of Crystallinity, Molecular Weight Change, and MechanicalProperties of PLA/PBG Bioresorbable Composites as Bone Fracture FixationPlates. J Biomater Appl 2012, 26 (7), 765-789; (c) Felfel, R. M.; Ahmed, I.;Parsons, A. J.; Walker, G. S.; Rudd, C. D., In vitro degradation, flexural,compressive and shear properties of fully bioresorbable composite rods. JMech Behav Biomed 2011, 4 (7), 1462-1472.
  • (a) Ramakrishna, K.; Sridhar, I.; Sivashanker, S.; Ganesh, V. K.;Ghista, D. N., Analysis of an Internal Fixation of a Long Bone Fracture. JMech Med Biol 2005, 5 (1), 89-103; (b) Ramakrishna, S.; Hull, D., TensileBehavior of Knitted Carbon-Fiber-Fabric/Epoxy Laminates .1. Experimental.Compos Sci Technol 1994, 50 (2), 237-247; (c) Fujihara, K.; Huang, Z. M.;Ramakrishna, S.; Satknanantham, K.; Hamada, H., Performance study ofbraided carbon/PEEK composite compression bone plates. Biomaterials2003, 24 (15), 2661-7; (d) Fujihara, K.; Huang, Z. M.; Ramakrishna, S.;Hamada, H., Influence of processing conditions on bending property ofcontinuous carbon fiber reinforced PEEK composites. Composites Scienceand Technology 2004, 64 (16), 2525-2534; (e) Fujihara, K.; Huang, Z. M.;Ramakrishna, S.; Satknanantham, K.; Hamada, H., Feasibility of knittedcarbon/PEEK composites for orthopedic bone plates. Biomaterials 2004, 25(17), 3877-3885; (f) Fujihara, K.; Teo, K.; Gopal, R.; Loh, P. L.; Ganesh, V.K.; Ramakrishna, S.; Foong, K. W. C.; Chew, C. L., Fibrous compositematerials in dentistry and orthopaedics: review and applications. CompositesScience and Technology 2004, 64 (6), 775-788; (g) Huang, Z. M.; Fujihara,K., Stiffness and strength design of composite bone plates. Composites118Science and Technology 2005, 65 (1), 73-85; (h) Park, S. W.; Yoo, S. H.; An,S. T.; Chang, S. H., Material characterization of glass/polypropylenecomposite bone plates according to the forming. condition and performanceevaluation under a simulated human body environment. Compos Part B-Eng2012, 43 (3), 1101-1108.
  • (a) Perren, S. M., Evolution of the internal fixation of long bonefractures - The scientific basis of biological internal fixation: Choosing anew balance between stability and biology. The Journal of bone and jointsurgery. British volume 2002, 84B (8), 1093-1110; (b) Baumgaertel, F.; Buhl,M.; Rahn, B. A., Fracture healing in biological plate osteosynthesis. Injury1231998, 29, 3-6; (c) Perren, S. M., Physical and biological aspects of fracturehealing with special reference to internal fixation. Clin Orthop Relat Res1979, (138), 175-96.
  • (a) Moyen, B. J.; Lahey, P. J., Jr.; Weinberg, E. H.; Harris, W. H.,Effects on intact femora of dogs of the application and removal of metalplates. A metabolic and structural study comparing stiffer and more flexibleplates. J Bone Joint Surg Am 1978, 60 (7), 940-7; (b) Moyen, B. J.; Lahey, P.J.; Weinberg, E. H.; Rumelhart, C.; Harris, W. H., Effects of application ofmetal plates to bone. Comparison of a rigid with a flexible plate. ActaOrthop Belg 1980, 46 (6), 806-15.114
  • (a) Morrison, C.; Macnair, R.; Macdonald, C.; Wykman, A.; Goldie,I.; Grant, M. H., In-Vitro Biocompatibility Testing of Polymers forOrthopedic Implants Using Cultured Fibroblasts and Osteoblasts.Biomaterials 1995, 16 (13), 987-992; (b) Peluso, G.; Ambrosio, L.;Cinquegrani, M.; Nicolais, L.; Saiello, S.; Tajana, G., Rat PeritonealImmune-Response to Carbon-Fiber Reinforced Epoxy Composite Implants.Biomaterials 1991, 12 (2), 231-235.
  • (a) Moazen, M.; Mak, J. H.; Etchels, L. W.; Jin, Z. M.; Wilcox, R. K.;Jones, A. C.; Tsiridis, E., The Effect of Fracture Stability on the Performanceof Locking Plate Fixation in Periprosthetic Femoral Fractures. J Arthroplasty2013, 28 (9), 1589-1595; (b) Wieding, J.; Souffrant, R.; Fritsche, A.;Mittelmeier, W.; Bader, R., Finite Element Analysis of Osteosynthesis ScrewFixation in the Bone Stock: An Appropriate Method for Automatic ScrewModelling. PloS one 2012, 7 (3); (c) Gefen, A., Optimizing thebiomechanical compatibility of orthopedic screws for bone fracture fixation.Med Eng Phys 2002, 24 (5), 337-347.133
  • (a) Milan, J. L.; Planell, J. A.; Lacroix, D., Simulation of bone tissueformation within a porous scaffold under dynamic compression. BiomechModel Mechan 2010, 9 (5), 583-596; (b) Checa, S.; Prendergast, P. J., Effectof cell seeding and mechanical loading on vascularization and tissueformation inside a scaffold: A mechano-biological model using a latticeapproach to simulate cell activity. J Biomech 2010, 43 (5), 961-968.
  • (a) Liu, X.; Grant, D. M.; Palmer, G.; Parsons, A. J.; Rudd, C. D.;Ahmed, I., Magnesium coated phosphate glass fibers for unidirectionalreinforcement of polycaprolactone composites. Journal of biomedicalmaterials research. Part B, Applied biomaterials 2014; (b) Liu, X. L.; Grant,D. M.; Parsons, A. J.; Harper, L. T.; Rudd, C. D.; Ahmed, I., MagnesiumCoated Bioresorbable Phosphate Glass Fibres: Investigation of the Interfacebetween Fibre and Polyester Matrices. Biomed Res Int 2013.137
  • (a) Lacroix, D.; Prendergast, P., A mechano-regulation model fortissue differentiation during fracture healing: analysis of gap size andloading. Journal of Biomechanics 2002, 35 (9), 1163-1171; (b) Claes, L. E.;Heigele, C. A., Magnitudes of local stress and strain along bony surfacespredict the course and type of fracture healing. J Biomech 1999, 32 (3), 255-266.
  • (a) Lacroix, D.; Prendergast, P. J., A mechano-regulation model fortissue differentiation during fracture healing: analysis of gap size andloading. Journal of Biomechanics 2002, 35 (9), 1163-1171; (b) Carter, D. R.;Beaupre, G. S.; Giori, N. J.; Helms, J. A., Mechanobiology of skeletalregeneration. Clin Orthop Relat R 1998, (355), S41-S55; (c) Claes, L. E.;116Heigele, C. A., Magnitudes of local stress and strain along bony surfacespredict the course and type of fracture healing. Journal of Biomechanics1999, 32 (3), 255-266.
  • (a) Kim, H. J.; Kim, S. H.; Chang, S. H., Bio-mechanical analysis ofa fractured tibia with composite bone plates according to the diaphysealoblique fracture angle. Compos Part B-Eng 2011, 42 (4), 666-674; (b)Mehboob H, Chang S.H. Evaluation of the healing performance ofbiodegradable composite bone plates for fractured tibia by finite elementanalysis. Composite Structures. 2014;111:193-204; (c) Son, D. S.; Mehboob,H.; Chang, S. H., Simulation of the bone healing process of fractured longbones applied with a composite bone plate with consideration of the bloodvessel growth. Compos Part B-Eng 2014, 58, 443-450.
  • (a) Kim, H. J.; Chang, S. H.; Jung, H. J., The simulation of tissuedifferentiation at a fracture gap using a mechano-regulation theory dealingwith deviatoric strains in the presence of a composite bone plate. ComposPart B-Eng 2012, 43 (3), 978-987; (b) Mehboob, H.; Son, D. S.; Chang, S.H., Finite element analysis of tissue differentiation process of a tibia withvarious fracture configurations when a composite intramedullary rod wasapplied. Compos Sci Technol 2013, 80, 55-65.
  • (a) Khan, R. A.; Khan, M. A.; Sultana, S.; Khan, M. N.; Shubhra, Q.T. H.; Noor, F. G., Mechanical, Degradation, and Interfacial Properties of136Synthetic Degradable Fiber Reinforced Polypropylene Composites. J ReinfPlast Comp 2010, 29 (3), 466-476; (b) Andriano, K. P.; Daniels, A. U.;Heller, J., Biocompatibility and mechanical properties of a totally absorbablecomposite material for orthopaedic fixation devices. Journal of appliedbiomaterials : an official journal of the Society for Biomaterials 1992, 3 (3),197-206; (c) Khan, R. A.; Parsons, A. J.; Jones, I. A.; Walker, G. S.; Rudd, C.D., Surface Treatment of Phosphate Glass Fibers Using 2-HydroxyethylMethacrylate: Fabrication of Poly(caprolactone)-Based Composites. J ApplPolym Sci 2009, 111 (1), 246-254.
  • (a) Jiang, G.; Evans, M. E.; Jones, I. A.; Rudd, C. D.; Scotchford, C.A.; Walker, G. S., Preparation of poly(epsilon-caprolactone)/continuousbioglass fibre composite using monomer transfer moulding for bone implant.Biomaterials 2005, 26 (15), 2281-2288; (b) Andriano, K. P.; Daniels, A. U.;Heller, J., Biocompatibility and Mechanical-Properties of a TotallyAbsorbable Composite-Material for Orthopedic Fixation Devices. Journal of131applied biomaterials : an official journal of the Society for Biomaterials1992, 3 (3), 197-206.
  • (a) Isaksson, H., Recent advances in mechanobiological modeling ofbone regeneration. Mechanics Research Communications 2012, 42, 22-31;(b) Isaksson, H.; Wilson, W.; van Donkelaar, C. C.; Huiskes, R.; Ito, K.,Comparison of biophysical stimuli for mechano-regulation of tissuedifferentiation during fracture healing. J Biomech 2006, 39 (8), 1507-1516.
  • (a) Hazarika, S.; Chakravarthy, J.; Cooper, J., Minimally invasivelocking plate osteosynthesis for fractures of the distal tibia - Results in 20patients. Injury-International Journal of the Care of the Injured 2006, 37 (9),877-887; (b) Zou, J.; Zhang, W.; Zhang, C. Q., Comparison of minimallyinvasive percutaneous plate osteosynthesis with open reduction and internalfixation for treatment of extra-articular distal tibia fractures. Injury115International Journal of the Care of the Injured 2013, 44 (8), 1102-1106; (c)Redfern, D. J.; Syed, S. U.; Davies, S. J. M., Fractures of the distal tibia:minimally invasive plate osteosynthesis. Injury 2004, 35 (6), 615-620.
  • (a) Harper, L. T.; Ahmed, I.; Felfel, R. M.; Qian, C., Finite elementmodelling of the flexural performance of resorbable phosphate glass fibrereinforced PLA composite bone plates. J Mech Behav Biomed 2012, 15, 13-23; (b) Parsons AJ, Ahmed I, Haque P, Fitzpatrick B, Niazi MIK, Walker GS,122et al. Phosphate Glass Fibre Composites for Bone Repair. J Bionic Eng.2009;6(4):318-323; (c) Ahmed, I.; Jones, I. A.; Parsons, A. J.; Bernard, J.;Farmer, J.; Scotchford, C. A.; Walker, G. S.; Rudd, C. D., Composites forbone repair: phosphate glass fibre reinforced PLA with varying fibrearchitecture. Journal of materials science. Materials in medicine 2011, 22(8), 1825-34; (d) Haque, P.; Parsons, A. J.; Barker, I. A.; Ahmed, I.; Irvine,D. J.; Walker, G. S.; Rudd, C. D., Interfacial properties of phosphate glassfibres/PLA composites: Effect of the end functionalities of oligomeric PLAcoupling agents. Compos Sci Technol 2010, 70 (13), 1854-1860.
  • (a) Gillett, N.; Brown, S. A.; Dumbleton, J. H.; Pool, R. P., The Useof Short Carbon-Fiber Reinforced Thermoplastic Plates for FractureFixation. Biomaterials 1985, 6 (2), 113-121; (b) Jockisch, K. A.; Brown, S.A.; Bauer, T. W.; Merritt, K., Biological Response to Chopped-Carbon-Fiber-Reinforced Peek. J Biomed Mater Res 1992, 26 (2), 133-146.
  • (a) Foux, A.; Yeadon, A. J.; Uhthoff, H. K., Improved fracture healingwith less rigid plates - A biomechanical study in dogs. Clin Orthop Relat R1997, (339), 232-245; (b) Kim, J. H.; Kim, S. H.; Chang, S. H., Estimationof the movement of the inter-fragmentary gap of a fractured human femur inthe presence of a composite bone plate. J Compos Mater 2011, 45 (14),1491-1498.
  • (a) Felfel, R. M.; Ahmed, I.; Parsons, A. J.; Rudd, C. D.,Bioresorbable screws reinforced with phosphate glass fibre: Manufacturingand mechanical property characterisation. J Mech Behav Biomed 2013, 17,76-88; (b) Felfel, R. M.; Ahmed, I.; Parsons, A. J.; Rudd, C. D.,Bioresorbable composite screws manufactured via forging process: Pull-out,132shear, flexural and degradation characteristics. J Mech Behav Biomed 2013,18, 108-122; (c) Felfel, R. M.; Ahmed, I.; Parsons, A. J.; Harper, L. T.; Rudd,C. D., Initial mechanical properties of phosphate-glass fibre-reinforced rodsfor use as resorbable intramedullary nails. J Mater Sci 2012, 47 (12), 4884-4894; (d) Hasan, M. S.; Ahmed, I.; Parsons, A. J.; Rudd, C. D.; Walker, G.S.; Scotchford, C. A., Investigating the use of coupling agents to improve theinterfacial properties between a resorbable phosphate glass and polylacticacid matrix. J Biomater Appl 2013, 28 (3), 354-366; (e) Han, N.; Ahmed, I.;Parsons, A. J.; Harper, L.; Scotchford, C. A.; Scammell, B. E.; Rudd, C. D.,Influence of screw holes and gamma sterilization on properties of phosphateglass fiber-reinforced composite bone plates. J Biomater Appl 2013, 27 (8),990-1002.
  • (a) Claes, L., The Mechanical and Morphological Properties of Bonebeneath Internal-Fixation Plates of Differing Rigidity. Journal ofOrthopaedic Research 1989, 7 (2), 170-177; (b) Claes, L.; Kinzl, L.;Neugebauer, R., Experimental Studies on the Influence of Plate Material onStress-Relief and Atrophy of the Bone beneath Osteosynthesis Plates.Biomed Tech 1981, 26 (4), 66-71; (c) Uhthoff, H. K.; Dubuc, F. L., Bonestructure changes in the dog under rigid internal fixation. Clin Orthop RelatRes 1971, 81, 165-70.
  • (a) Claes, L. E.; Heigele, C. A.; Neidlinger-Wilke, C.; Kaspar, D.;Seidl, W.; Margevicius, K. J.; Augat, P., Effects of mechanical factors on thefracture healing process. Clin Orthop Relat R 1998, (355), S132-S147; (b)Claes, L.; Eckert-Hubner, K.; Augat, P., The fracture gap size influences thelocal vascularization and tissue differentiation in callus healing. LangenbeckArch Surg 2003, 388 (5), 316-322; (c) Mehta, M.; Strube, P.; Perka, C.;Duda, G. N., Influence of gender and mechanical stability on bone defecthealing: Males show a stronger biological response than females. Bone 2009,44 (2), S264-S264.
  • (a) Bradley, J. S.; Hastings, G. W.; Johnson-Nurse, C., Carbon fibrereinforced epoxy as a high strength, low modulus material for internal129fixation plates. Biomaterials 1980, 1 (1), 38-40; (b) McKenna, G. B.;Bradley, G. W.; Dunn, H. K.; Statton, W. O., Mechanical properties of somefibre reinforced polymer composites after implantation as fracture fixationplates. Biomaterials 1980, 1 (4), 189-92.
  • (a) Benli, S.; Aksoy, S.; Havitcioglu, H.; Kucuk, M., Evaluation ofbone plate with low-stiffness material in terms of stress distribution. JBiomech 2008, 41 (15), 3229-3235; (b) Fouad, H., Assessment of functiongradedmaterials as fracture fixation bone-plates under combined loadingconditions using finite element modelling. Med Eng Phys 2011, 33 (4), 456-463; (c) Fouad, H., Effects of the bone-plate material and the presence of agap between the fractured bone and plate on the predicted stresses at thefractured bone. Med Eng Phys 2010, 32 (7), 783-789; (d) MacLeod, A. R.;Pankaj, P.; Simpson, A. H. R. W., Does screw-bone interface modellingmatter in finite element analyses? J Biomech 2012, 45 (9), 1712-1716; (e)Prendergast, P. J., Finite element models in tissue mechanics and orthopaedicimplant design. Clin Biomech 1997, 12 (6), 343-366; (f) Huiskes, R.; Chao,E. Y. S., A Survey of Finite-Element Analysis in Orthopedic Biomechanics -the 1st Decade. J Biomech 1983, 16 (6), 385-&; (g) Avery, C. M. E.; Bujtar,P.; Simonovics, J.; Dezsi, T.; Varadi, K.; Sandor, G. K. B.; Pan, J. Z., A finiteelement analysis of bone plates available for prophylactic internal fixation ofthe radial osteocutaneous donor site using the sheep tibia model. Med EngPhys 2013, 35 (10), 1421-1430; (h) Ferguson, S. J.; Wyss, U. P.; Pichora, D.R., Finite element stress analysis of a hybrid fracture fixation plate. Med EngPhys 1996, 18 (3), 241-250; (i) Kim, S. H.; Chang, S. H.; Jung, H. J., Thefinite element analysis of a fractured tibia applied by composite bone plates127considering contact conditions and time-varying properties of curing tissues.Compos Struct 2010, 92 (9), 2109-2118; (j) Kim, S. H.; Chang, S. H.; Son,D. S., Finite element analysis of the effect of bending stiffness and contactcondition of composite bone plates with simple rectangular cross-section onthe bio-mechanical behaviour of fractured long bones. Compos Part B-Eng2011, 42 (6), 1731-1738.
  • (a) Baidya, K. P.; Ramakrishna, S.; Rahman, M.; Ritchie, A.,Quantitative radiographic analysis of fiber reinforced polymer composites. JBiomater Appl 2001, 15 (3), 279-289; (b) Okazaki, Y.; Gotoh, E.,Comparison of metal release from various metallic biomaterials in vitro.Biomaterials 2005, 26 (1), 11-21; (c) Teoh, S. H., Fatigue of biomaterials: areview. Int J Fatigue 2000, 22 (10), 825-837.
  • (a) Baidya, K. P.; Ramakrishna, S.; Rahman, M.; Ritchie, A.,Advanced textile composite ring for Ilizarov external fixator system.Proceedings of the Institution of Mechanical Engineers. Part H, Journal ofengineering in medicine 2001, 215 (1), 11-23; (b) Stiffler, K. S., Internalfracture fixation. Clin Tech Small Anim Pract 2004, 19 (3), 105-13.
  • (a) Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M., Biodegradable polymer matrix nanocomposites for tissue engineering: Areview. Polym Degrad Stabil 2010, 95 (11), 2126-2146; (b) Giannoudis PV,Dinopoulos H, Tsiridis E. Bone substitutes: An update. Injury. 2005;36:20-7.
  • (a) Ament, C.; Hofer, E. P., A fuzzy logic model of fracture healing. JBiomech 2000, 33 (8), 961-968; (b) Lacroix, D.; Prendergast, P. J.; Li, G.;Marsh, D., Biomechanical model to simulate tissue differentiation and boneregeneration: application to fracture healing. Med Biol Eng Comput 2002, 40(1), 14-21; (c) Bailon-Plaza, A.; van der Meulen, M. C., Beneficial effects ofmoderate, early loading and adverse effects of delayed or excessive loadingon bone healing. J Biomech 2003, 36 (8), 1069-77; (d) Kuiper, J. H.; Ashton,B. A.; Richardson, J. B., Computer simulation of fracture callus formationand stiffness restoration. 12th Conference of European Society ofBiomechanics, Dublin. 2000; (e) Gomez-Benito, M. J.; Garcia-Aznar, J. M.;Kuiper, J. H.; Doblare, M., A 3D computational simulation of fracture callusformation: influence of the stiffness of the external fixator. J Biomech Eng2006, 128 (3), 290-9; (f) Andreykiv, A.; van Keulen, F.; Prendergast, P. J.,Simulation of fracture healing incorporating mechanoregulation of tissuedifferentiation and dispersal/proliferation of cells. Biomech Model128Mechanobiol 2008, 7 (6), 443-61; (g) Isaksson, H.; van Donkelaar, C. C.;Huiskes, R.; Ito, K., A mechano-regulatory bone-healing modelincorporating cell-phenotype specific activity. J Theor Biol 2008, 252 (2),230-46.
  • (a) Ali, M. S.; French, T. A.; Hastings, G. W.; Rae, T.; Rushton, N.;Ross, E. R. S.; Wynnjones, C. H., Carbon-Fiber Composite Bone Plates -Development, Evaluation and Early Clinical-Experience. The Journal ofbone and joint surgery. British volume 1990, 72 (4), 586-591; (b)Schambron, T.; Lowe, A.; McGregor, H. V., Effects of environmental ageing130on the static and cyclic bending properties of braided carbon fibre/PEEKbone plates. Compos Part B-Eng 2008, 39 (7-8), 1216-1220.
  • (a) Akeson, W. H.; Woo, S. L.; Rutherford, L.; Coutts, R. D.;Gonsalves, M.; Amiel, D., The effects of rigidity of internal fixation plateson long bone remodeling. A biomechanical and quantitative histologicalstudy. Acta Orthop Scand 1976, 47 (3), 241-9; (b) Slatis, P.; Paavolainen, P.;Karaharju, E.; Holmstrom, T., Structural and biomechanical changes in boneafter rigid plate fixation. Can J Surg 1980, 23 (3), 247-50.
  • (a) Ahmed, I.; Parsons, A. J.; Palmer, G.; Knowles, J. C.; Walkers, G.S.; Rudd, C. D., Weight loss, ion release and initial mechanical properties ofa binary calcium phosphate glass fibre/PCL composite. Acta Biomater 2008,4 (5), 1307-1314; (b) Felfel, R. M.; Ahmed, I.; Parsons, A. J.; Haque, P.;Walker, G. S.; Rudd, C. D., Investigation of Crystallinity, Molecular WeightChange, and Mechanical Properties of PLA/PBG Bioresorbable Compositesas Bone Fracture Fixation Plates. J Biomater Appl 2012, 26 (7), 765-789.
  • (a) Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C., Phosphate glassesfor tissue engineering: Part 1. Processing and characterisation of a ternarybasedP(2)O(5)-CaO-Na(2)O glass system. Biomaterials 2004, 25 (3), 491-499; (b) Ahmed, I.; Lewis, M.; Olsen, I.; Knowles, J. C., Phosphate glassesfor tissue engineering: Part 2. Processing and characterisation of a ternarybasedP(2)O(5)-CaO-Na(2)O glass fibre system. Biomaterials 2004, 25 (3),501-507.
  • (a) Ahmed, I.; Cronin, P. S.; Abou Neel, E. A.; Parsons, A. J.;Knowles, J. C.; Rudd, C. D., Retention of Mechanical Properties andCytocompatibility of a Phosphate-Based Glass Fiber/Polylactic AcidComposite. J Biomed Mater Res B 2009, 89B (1), 18-27; (b) Zhou, H.;Lawrence, J. G.; Bhaduri, S. B., Fabrication aspects of PLA-CaP/PLGA-CaPcomposites for orthopedic applications: A review. Acta Biomaterialia 2012, 8(6), 1999-2016.