박사

마크로라이드 유도내성 및 획득내성이 Mycobacterium abscessus 폐질환 치료성적에 미치는 영향과 치료실패 시 유전형의 변화 = Effect of inducible and acquired macrolide resistance on the treatment outcome of Mycobacterium abscessus lung disease and genotype variability in patients with treatment failure

정병호 2015년
논문상세정보
' 마크로라이드 유도내성 및 획득내성이 Mycobacterium abscessus 폐질환 치료성적에 미치는 영향과 치료실패 시 유전형의 변화 = Effect of inducible and acquired macrolide resistance on the treatment outcome of Mycobacterium abscessus lung disease and genotype variability in patients with treatment failure' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • mycobacterium abscessus
  • 비결핵항산균
  • 유도내성
  • 유전형
  • 획득내성
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
41 0

0.0%

' 마크로라이드 유도내성 및 획득내성이 Mycobacterium abscessus 폐질환 치료성적에 미치는 영향과 치료실패 시 유전형의 변화 = Effect of inducible and acquired macrolide resistance on the treatment outcome of Mycobacterium abscessus lung disease and genotype variability in patients with treatment failure' 의 참고문헌

  • Zelazny AM, Root JM, Shea YR, et al. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. Journal Clin Microbiol 2009; 47:1985-1995
  • Yoshida S, Tsuyuguchi K, Suzuki K, et al. Rapid identification of strains belonging to the Mycobacterium abscessus group through erm(41) gene pyrosequencing. Diagn Microbiol Infect Dis 2014; 79:331-336
  • Yoshida S, Tsuyuguchi K, Suzuki K, et al. Further isolation of Mycobacterium abscessus subsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int Journal Antimicrob Agents 2013; 42:226-231
  • Yoshida S, Arikawa K, Tsuyuguchi K, et al. Investigation of the population structure of Mycobacterium abscessus complex strains using 17-locus variable number tandem repeat typing and the further distinction of Mycobacterium massiliense hsp65 genotypes. Journal Med Microbiol 2015; 64:254-261
  • Wallace RJ, Jr., Zhang Y, Brown BA, et al. Polyclonal Mycobacterium avium complex infections in patients with nodular bronchiectasis. Am Journal Respir Crit Care Med 1998; 158:1235-1244
  • Wallace RJ, Jr., Brown BA, Griffith DE, et al. Clarithromycin regimens for pulmonary Mycobacterium avium complex. The first 50 patients. Am Journal Respir Crit Care Med 1996; 153:1766-1772
  • Wallace Jr RJ, Zhang Y, Brown-Elliott BA, et al. Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. Journal Infect Dis 2002; 186:266-273
  • Thomson RM, Yew WW. When and how to treat pulmonary non-tuberculous mycobacterial diseases. Respirology 2009; 14:12-26
  • Tanaka E, Kimoto T, Tsuyuguchi K, et al. Effect of clarithromycin regimen for Mycobacterium avium complex pulmonary disease. Am Journal Respir Crit Care Med 1999; 160:866-872
  • Sim YS, Park HY, Jeon K, et al. Standardized combination antibiotic treatment of Mycobacterium avium complex lung disease. Yonsei Med Journal 2010; 51:888-894
  • Schaefer WB, Davis CL, Cohn ML. Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am Rev Respir Dis 1970; 102:499-506
  • Roux AL, Catherinot E, Soismier N, et al. Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients. Journal Cyst Fibros 2014
  • Recht J, Martinez A, Torello S, et al. Genetic analysis of sliding motility in Mycobacterium smegmatis. Journal Bacteriol 2000; 182:4348-4351
  • Nessar R, Reyrat JM, Davidson LB, et al. Deletion of the mmpL4b gene in the Mycobacterium abscessus glycopeptidolipid biosynthetic pathway results in loss of surface colonization capability, but enhanced ability to replicate in human macrophages and stimulate their innate immune response. Microbiology 2011; 157:1187-1195
  • Nash KA. Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38). Antimicrob Agents Chemother 2003; 47:3053-3060
  • Nash KA, Zhang Y, Brown-Elliott BA, et al. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. Journal Antimicrob Chemother 2005; 55:170-177
  • Nash KA, Brown-Elliott BA, Wallace RJ, Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009; 53:1367-1376
  • Nash KA, Andini N, Zhang Y, et al. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother 2006; 50:3476-3478
  • Nakanaga K, Sekizuka T, Fukano H, et al. Discrimination of Mycobacterium abscessus subsp. massiliense from Mycobacterium abscessus subsp. abscessus in clinical isolates by multiplex PCR. Journal Clin Microbiol 2014; 52:251-259
  • Mougari F, Raskine L, Ferroni A, et al. Clonal relationship and differentiation among Mycobacterium abscessus isolates as determined using the semiautomated repetitive extragenic palindromic sequence PCR-based DiversiLab system. Journal Clin Microbiol 2014; 52:1969-1977
  • Moore M, Frerichs JB. An unusual acid-fast infection of the knee with subcutaneous, abscesslike lesions of the gluteal region; report of a case with a study of the organism, Mycobacterium abscessus, n. sp. Journal Invest Dermatol 1953; 20:133-169
  • Miwa S, Shirai M, Toyoshima M, et al. Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc 2014; 11:23-29
  • Maurer FP, Ruegger V, Ritter C, et al. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). Journal Antimicrob Chemother 2012; 67:2606-2611
  • Maurer FP, Castelberg C, Quiblier C, et al. Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus. Journal Antimicrob Chemother 2014; 69:1559-1563
  • Macheras E, Roux AL, Ripoll F, et al. Inaccuracy of single-target sequencing for discriminating species of the Mycobacterium abscessus group. Journal Clin Microbiol 2009; 47:2596-2600
  • Macheras E, Roux AL, Bastian S, et al. Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. Journal Clin Microbiol 2011; 49:491-499
  • Lyu J, Kim BJ, Kim BJ, et al. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with Mycobacterium abscessus lung disease. Respir Med 2014
  • Lyu J, Jang HJ, Song JW, et al. Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir Med 2011; 105:781-787
  • Lee SH, Yoo HK, Kim SH, et al. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med 2014; 34:31-37
  • Lee SH, Yoo HK, Kim SH, et al. Detection and assessment of clarithromycin inducible resistant strains among Korean Mycobacterium abscessus clinical strains: PCR methods. Journal Clin Lab Anal 2014; 28:409-414
  • Lam PK, Griffith DE, Aksamit TR, et al. Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am Journal Respir Crit Care Med 2006; 173:1283-1289
  • Kreutzfeldt KM, McAdam PR, Claxton P, et al. Molecular longitudinal tracking of Mycobacterium abscessus spp. during chronic infection of the human lung. PLoS One 2013; 8:e63237
  • Koh WJ, Stout JE, Yew WW. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int Journal Tuberc Lung Dis 2014; 18:1141-1148
  • Koh WJ, Kwon OJ, Jeon K, et al. Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. Chest 2006; 129:341-348
  • Koh WJ, Jeong BH, Jeon K, et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M. avium complex lung disease. Chest 2012; 142:1482-1488
  • Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am Journal Respir Crit Care Med 2011; 183:405-410
  • Kobashi Y, Abe M, Mouri K, et al. Relationship between clinical efficacy for pulmonary MAC and drug-sensitivity test for isolated MAC in a recent 6-year period. Journal Infect Chemother 2012; 18:436-443
  • Kim HY, Kook Y, Yun YJ, et al. Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. Journal Clin Microbiol 2008; 46:3384-3390
  • Kim HY, Kim BJ, Kook Y, et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 2010; 54:347-353
  • Kim H, Kim SH, Shim TS, et al. Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int Journal Syst Evol Microbiol 2005; 55:1649-1656
  • Kim EY, Chi SY, Oh IJ, et al. Treatment outcome of combination therapy including clarithromycin for Mycobacterium avium complex pulmonary disease. Korean Journal Intern Med 2011; 26:54-59
  • Jonsson BE, Gilljam M, Lindblad A, et al. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. Journal Clin Microbiol 2007; 45:1497-1504
  • Jeon K, Kwon OJ, Lee NY, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am Journal Respir Crit Care Med 2009; 180:896-902
  • Jarand J, Levin A, Zhang L, et al. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis 2011; 52:565-571
  • Jamal MA, Maeda S, Nakata N, et al. Molecular basis of clarithromycin-resistance in Mycobacterium avium intracellulare complex. Tuber Lung Dis 2000; 80:1-4
  • Inagaki T, Yagi T, Ichikawa K, et al. Evaluation of a rapid detection method of clarithromycin resistance genes in Mycobacterium avium complex isolates. Journal Antimicrob Chemother 2011; 66:722-729
  • Huang CW, Chen JH, Hu ST, et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int Journal Antimicrob Agents 2013; 41:218-223
  • Howard ST, Rhoades E, Recht J, et al. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 2006; 152:1581-1590
  • Hoefsloot W, van Ingen J, Andrejak C, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir Journal 2013; 42:1604-1613
  • Hasegawa N, Nishimura T, Ohtani S, et al. Therapeutic effects of various initial combinations of chemotherapy including clarithromycin against Mycobacterium avium complex pulmonary disease. Chest 2009; 136:1569-1575
  • Harris KA, Kenna DT, Blauwendraat C, et al. Molecular fingerprinting of Mycobacterium abscessus strains in a cohort of pediatric cystic fibrosis patients. Journal Clin Microbiol 2012; 50:1758-1761
  • Harmsen D, Dostal S, Roth A, et al. RIDOM: comprehensive and public sequence database for identification of Mycobacterium species. BMC Infect Dis 2003; 3:26
  • Harada T, Akiyama Y, Kurashima A, et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. Journal Clin Microbiol 2012; 50:3556-3561
  • Griffith DE, Brown BA, Murphy DT, et al. Initial (6-month) results of three-times-weekly azithromycin in treatment regimens for Mycobacterium avium complex lung disease in human immunodeficiency virus-negative patients. Journal Infect Dis 1998; 178:121-126
  • Griffith DE, Brown BA, Girard WM, et al. Azithromycin-containing regimens for treatment of Mycobacterium avium complex lung disease. Clin Infect Dis 2001; 32:1547-1553
  • Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am Journal Respir Crit Care Med 2007; 175:367-416
  • Fujita K, Ito Y, Hirai T, et al. Association between polyclonal and mixed mycobacterial Mycobacterium avium complex infection and environmental exposure. Ann Am Thorac Soc 2014; 11:45-53
  • Fujikane T, Fujiuchi S, Yamazaki Y, et al. Efficacy and outcomes of clarithromycin treatment for pulmonary MAC disease. Int Journal Tuberc Lung Dis 2005; 9:1281-1287
  • Fregnan GB, Smith DW. Description of various colony forms of mycobacteria. Journal Bacteriol 1962; 83:819-827
  • Eckstein TM, Inamine JM, Lambert ML, et al. A genetic mechanism for deletion of the ser2 gene cluster and formation of rough morphological variants of Mycobacterium avium. Journal Bacteriol 2000; 182:6177-6182
  • Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am Journal Respir Crit Care Med 2000; 161:1376-1395
  • Daley CL, Griffith DE. Pulmonary non-tuberculous mycobacterial infections. Int Journal Tuberc Lung Dis 2010; 14:665-671
  • Christianson S, Grierson W, Wolfe J, et al. Rapid molecular detection of macrolide resistance in the Mycobacterium avium complex: are we there yet? Journal Clin Microbiol 2013; 51:2425-2426
  • Choi GE, Shin SJ, Won CJ, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am Journal Respir Crit Care Med 2012; 186:917-925
  • Carter G, Wu M, Drummond DC, et al. Characterization of biofilm formation by clinical isolates of Mycobacterium avium. Journal Med Microbiol 2003; 52:747-752
  • Bryant JM, Grogono DM, Greaves D, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013; 381:1551-1560
  • Brown-Elliott BA, Vasireddy S, Vasireddy R, et al. Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. Journal Clin Microbiol 2015; 53:1211-1215
  • Ben Salah I, Adekambi T, Raoult D, et al. rpoB sequence-based identification of Mycobacterium avium complex species. Microbiology 2008; 154:3715-3723
  • Bastian S, Veziris N, Roux AL, et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 2011; 55:775-781
  • Barrow WW, Brennan PJ. Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. Journal Bacteriol 1982; 150:381-384
  • Adekambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and latepigmenting rapidly growing mycobacteria. Journal Clin Microbiol 2003; 41:5699-5708