박사

Detection of initial dips in functional near-infrared spectroscopy signals for brain computer interface

논문상세정보
' Detection of initial dips in functional near-infrared spectroscopy signals for brain computer interface' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • bci연구
  • brain-computer interfaces
  • classification
  • detection of initial dip
  • fnirs
  • functional near-infrared spectroscopy
  • functional neuroimaging
  • linear discriminant analysis
  • vector-based phase analysis
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
960 0

0.0%

' Detection of initial dips in functional near-infrared spectroscopy signals for brain computer interface' 의 참고문헌

  • van der Heiden, L., Liberati, G., Sitaram, R., Kim, S., Ja?kowski, P.,Raffone, A., Belardinelli, M. O., Birbaumer, N., & Veit. R. (2014).
  • Zhang, Y., Brooks, D., Franceschini, M., & Boas, D. (2005). Eigenvectorbasedspatial filtering for reduction of physiological interference indiffuse optical imaging. J. Biomed. Opt. 10:011014.
  • Zhang, Q., Strangman, G. E., & Ganis, G., (2009). Adaptive filtering toreduce global interference in non-invasive NIRS measures of brainactivation: How well and when does it work? NeuroImage 45, 788-794.
  • Zhang, Q., Brown, E. N., & Strangman, G. E. (2007). Adaptive filtering toreduce global interference in evoked brain activity detection: a humansubject case study. J. Biomed. Opt. 12(6): 064009.
  • Yoshino, K., Oka, N., Yamamoto, K., Takahashi, H., Kato, T., 2013b. Correlation of prefrontal cortical activation with changing vehiclespeeds in actual driving: a vector-based functional near-infraredspectroscopy study. Front. Hum. Neurosci. 7, 895.
  • Yoshino, K., Oka, N., Yamamoto, K., Takahashi, H., Kato, T., 2013a. Functional brain imaging using near-infrared spectroscopy duringactual driving on an express-way. Front. Hum. Neurosci. 7, 882.
  • Yoshino, K., & Kato, T. (2012). Vector-based phase classificationof initial dips during word listening using near-infrared spectroscopy. Neuroreport 23(16), 947-951.
  • Yang, Y., & Raine, A. (2009). Prefrontal structure and functional brainimaging findings in antisocial, violent, and psychopathic individuals: ameta-analysis, Psychiatry Res. 174, 81-88.
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., &Vaughan, T. M. (2002). Brain-computer interfaces for communicationand control. Clin. Neurophysiol. 113, 767-791.
  • Wolf, M., Wolf, U., Choi, J.H., Gupta, R., Safonova, L.P., Paunescu, L.A.,Michalos, A., & Gratton, E. (2002). Functional frequency-domain nearinfraredspectroscopy detects fast neuronal signal in the motor cortex. NeuroImage, 17(4), 1868-1875.
  • White, B.R., Snyder, A.Z., Cohen, A.L., Petersen, S.E., Raichle, M.E.,Schlaggar, B.L., & Culver, J.P. (2009). Resting-state functionalconnectivity in the human brain revealed with diffuse opticaltomography. NeuroImage, 47(1), 148-156.
  • Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd,W., Goebel, R., & Birbaumer, N. (2004). Principles of a brain-computerinterface (BCI) based on real-time functional magnetic resonanceimaging (fMRI). IEEE Trans. Biomed. Eng. 51(6), 966-970.
  • Weiskopf, N. (2012). Real-time fMRI and its application to neurofeedback. NeuroImage, 62(2), 682-692.
  • Watanabe, M., Bartels, A., Macke, J. H., Murayama, Y., & Logothetis, N. K. (2013). Temporal jitter of the BOLD signal reveals a reliable initial dipand improved spatial resolution. Curr. Biol. 23(21): 2146-50.
  • Watanabe, E., Maki, A., Kawaguchi, F., Takashiro, K., Yamashita, Y.,Koizumi, H., & Mayanagi, Y. (1998). Non-invasive assessment oflanguage dominance with near-infrared spectroscopic mapping. Neurosci. Lett., 256(1), 49-52.
  • Wang, D., Miao, D., & Blohm, G. (2012). Multi-class motor imagery EEGdecoding for brain-computer interfaces. Front. Neurosci. 6:151.
  • WO/2003/068070. Available:http://www.wipo.int/patentscope/search/en/WO2003068070. Accessed10 June 2015.
  • Volz, K. G., Schubotz, R. I., & von Cramon, D. Y. (2006). Decision-making128and the frontal lobes. Curr. Opin. Neurol. 19, 401-406.
  • Villringer, A., Planck, J., Hock, C., Schleinkofer, L., & Dirnagl, U. (1993). Near infrared spectroscopy (NIRS): a new tool to study hemodynamicchanges during activation of brain function in human adults. Neurosci. Lett. 154, 101-104.
  • Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy andimaging of human brain function. Trends Neurosci. 20(10): 435-442.
  • Utsugi, K., Obata, A., Sato, H., Aoki, R., Maki, A., Koizumi, H., Sagara, K.,Kawamichi, H., Atsumori, H., & Katura, T. (2008). GO-STOP controlusing optical brain-computer interface during calculation task. IEICE T. Commun. E91B(7), 2133-2141.
  • Turnip, A., Hong, K.-S., & Jeong, M.-Y. (2011). Real-time featureextraction of EEG-based P300 using adaptive nonlinear principalcomponent analysis. Biomed. Eng. Online 10:83.
  • Turnip, A., & Hong, K.-S. (2012). Classifying mental activities from EEGP300signals using adaptive neural network. Int. J. Innovat. Comput.
  • Tomita, Y., Vialatte, F. B., Dreyfus, G., Mitsukura, Y., Bakardjian, H., &Cichocki, A. (2012). Bimodal BCI using simultaneously NIRS andEEG. IEEE Trans. Biomed. Eng. 61(4), 1274-84.
  • Tanaka, H., & Katura, T. (2011). Classification of change detection andchange blindness from near-infrared spectroscopy signals. J. Biomed. Opt. 16(8):087001.
  • Takahashi, T., Takikawa, Y., Kawagoe, R., Shibuya, S., Iwano, T., &Kitazawa, S. (2011). Influence of skin blood flow on near-infraredspectroscopy signals measured on the forehead during a verbal fluencytask. NeuroImage 57, 991-1002.
  • Tak, S., & Ye, J.C. (2014). Statistical analysis of fNIRS data: Acomprehensive review. NeuroImage 85, 72-91.
  • Tachtsidis, I., Koh, P. H., Stubbs, C., & Elwell, C. E. (2009). “Functionaloptical topography analysis using statistical parametric mapping (SPM)methodology with and without physiological confounds.” in OxygenTransport to Tissue XXXI eds.
  • Suto, T., Fukuda, M., Ito, M., Uehara, T., & Mikuni, M. (2004). Multichannel near-infrared spectroscopy in depression andschizophrenia: Cognitive brain activation study. Biological Psychiatry,55(5), 501-511.
  • Suh, M., Bahar, S., Mehta, A., & Schwartz, T. (2006). Blood volume andhemoglobin oxygenation response following electrical stimulation ofhuman cortex. NeuroImage 31:66-75.
  • Sorger, B., Dahmen, B., Reithler, J., Gosseries, O., Maudoux, A., Laureys,S., & Goebel, R. (2009). Another kind of ‘BOLD response’: answeringmultiple-choice questions via online decoded single-trial brain signals.
  • Soekadar, S. R., Witkowski, M., Cossio, E. G., Birbaumer, N., & Cohen, L. G. (2014). Learned EEG-based brain self-regulation of motor-relatedoscillations during application of transcranial electric brain stimulation:feasibility and limitations. Front. Behav. Neurosci. 8:93.
  • Sitaram, R., Caria, A., & Birbaumer, N. (2009). Hemodynamic braincomputerinterfaces for communication and rehabilitation. NeuralNetworks, 22(9), 1320-1328.
  • Sitaram, R. Zhang, H. H., Guan, C. T., Thulasidas, M., Hoshi, Y., Ishikawa,A., Shimizu, K., & Birbaumer, N. (2007). Temporal classification ofmultichannel near-infrared spectroscopy signals of motor imagery fordeveloping a brain-computer interface. NeuroImage 34(4), 1416-1427.
  • Shin, J., & Jeong, J. (2014). Multiclass classification of hemodynamicresponses for performance improvement of functional near-infraredspectroscopy-based brain-computer interface. J. Biomed. Opt. 19:067009.
  • Seo, Y., Lee, S., Koh, D., & Kim, B.-M. (2012). Partial least squaresdiscriminantanalysis for the prediction of hemodynamic changes usingnear-infrared spectroscopy. J. Opt. Soc. Korea 16(1), 57-62.
  • Schudlo, L. C., & Chau, T. (2014). Dynamic topographical patternclassification of multichannel prefrontal NIRS signals: II. Onlinedifferentiation of mental arithmetic and rest. J. Neural Eng. 11:016003.
  • Sato, H., Yahata, N., Funane, T., Takizawa, R., Katura, T., Atsumori, H., etal. (2013). A NIRS-fMRI investigation of prefrontal cortex activityduring a working memory task. NeuroImage 83C, 158-173.
  • Sato, H., Tanaka, N., Uchida, M., Hirabayashi, Y., Kanai, M., Ashida, T.,Konishi, I., & Maki, A. (2006). Wavelet analysis for detecting bodymovementartifacts in optical topography signals. NeuroImage 33, 580-587.
  • Sardouie S. H., & Shamsollahi M. B. (2012). Selection of efficient featuresfor discrimination of hand movements from MEG using a BCIcompetition IV data set. Front. Neurosci. 6:42.
  • Santosa, H., Hong, M. J., Kim, S.-P., & Hong, K.-S. (2013). Noise reductionin functional near-infrared spectroscopy signals by independentcomponent analysis. Rev. Sci. Instrum. 84:073106.
  • Santosa, H., Hong, M. J., & Hong, K.-S. (2014). Lateralization of musicprocessing with noises in the auditory cortex: an fNIRS study. Front. Behav. Neurosci. 8:418.
  • Sano, M., Sano, S., Oka, N., Yoshino, K., & Kato, T. (2013). Increasedoxygen load in the prefrontal cortex from mouth breathing: a vectorbasednear-infrared spectroscopy study. Neuroreport 24, 935-940.
  • Sagara, K., & Kido, K. (2012). Evaluation of a 2-channel NIRS-basedoptical brain switch for motor disabilities’ communication tools. IEICET. Inf. Syst., E95D(3), 829-834.
  • Saager, R. B., Telleri, N. L., & Berger, A. J. (2011). Two-detector correctednear infrared spectroscopy (C-NIRS) detects hemodynamic activationresponses more robustly than single-detector NIRS. NeuroImage 55(4),1679-85.
  • Saager, R. B., & Berger, A. J. (2005). Direct characterization and removal ofinterfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 22(9), 1874-82.
  • Rea, M., Rana, M., Lugato, N., Terekhin, P., Gizzi, L., Brotz, D., Fallgatter,A., Birbaumer, N., Ranganatha S., & Caria, A. (2014). Lower limbmovement preparation in chronic stroke: a pilot study toward an fNIRSBCIfor gait rehabilitation. Neurorehabil. Neural Repair 28(6), 564-575.
  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selectedapplications in speech recognition. Proc. IEEE 77(2), 257-286.
  • Prog. Brain Res. 177, 275-292Stangl, M., Bauernfeind, G, Kurzmann, J., Scerer, R., & Neuper, C. (2013).
  • Power, S., & Chau, T. (2013). Automatic single-trial classification ofprefrontal hemodynamic activity in an individual with Duchennemuscular dystrophy. Dev. Neurorehabil 16(1), 67-72.
  • Power, S. D., Kushki, A., & Chau, T. (2012b). Intersession consistency ofsingle-trial classification of the prefrontal response to mental arithmeticand the no-control state by NIRS. PLOS ONE, 7(7): e37791.
  • Power, S. D., Kushki, A., & Chau, T. (2011). Towards a system-paced nearinfraredspectroscopy brain-computer interface: differentiatingprefrontal activity due to mental arithmetic and mental singing from theno-control state. J. Neural Eng. 8(6):066004.
  • Power, S. D., Falk, T. H., & Chau, T. (2010). Classification of prefrontalactivity due to mental arithmetic and music imagery using hiddenMarkov models and frequency domain near-infrared spectroscopy. J. Neural Eng. 7(2):026002.
  • Plichta, M., Herrmann, M., Baehne, C., Ehlis, A.-C., Richter, M., Pauli, P.,& Fallgatter, A. J. (2006). Event-related functional near-infraredspectroscopy (fNIRS): are the measurements reliable? NeuroImage31(1), 116-124.
  • Pernkopf, F., O’Leary, P. (2001). “Feature selection for classification usinggenetic algorithms with a novel encoding,” in Computer Analysis ofImages and Patterns, ed. W. Skarbek (Heidelberg: Springer-Verlag),161-168.
  • Okada, E., Firbank, M., Schweiger, M., Arridge, S. R., Cope, M., & Delpy,D. T. (1997). Theortical and experimental investigation of near-infraredlight propagation in a model of the adult head. Appl. Opt. 36, 21-31.
  • Oka, N., Yoshino, K., Yamamoto, K., Takahashi, H., Li, S., Sugimachi, T.,Nakano, K., Suda, Y., & Kato, T. (2015). Greater activity in the frontalcortex on left curves: A vector-based fNIRS study of left and right curvedriving. PLoS ONE 10(5):e0127594.
  • Ogata, H., Mukai, T., & Yagi, T. (2007). A study on the frontal cortex incognitive tasks using near-infrared spectroscopy. Proc IEEE EMBS(Lyon, France), 4731-4734.
  • Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, areview. Sensors 2(2), 1211-1279.
  • NeuroImage 23(1), S275-S288Boas, D. A., Chen, K., Grebert, D., & Franceschini, M. A. (2004b).
  • Naseer, N., Hong, M. J., & Hong, K.-S. (2014). Online binary decisiondecoding using functional near-infrared spectroscopy for thedevelopment of brain-computer interface. Exp. Brain Res. 232(2), 555-564.
  • Naseer, N., & Hong, K.-S. (2015).fNIRS-based BCIs: a review. Front. Hum. Neurosci.9:3.
  • Naseer, N., & Hong, K.-S. (2015). Decoding answers to four-choicequestions using functional near infrared spectroscopy. J. Near InfraredSpectrosc. 23(1).
  • Naseer, N., & Hong, K.-S. (2013). Classification of functional near-infraredspectroscopy signals corresponding to the right- and left-wrist motorimagery for development of a brain-computer interface. Neurosci. Lett. 553, 84-49.
  • Naito, M., Michioka, Y., Ozawa, K., Ito, Y., Kiguchi, M., & Kanazawa, T. (2007). A communication means for totally locked-in ALS patientsbased on changes in cerebral blood volume measured with near-infraredlight. IEICE T. Inf. Syst. E90D(7), 1028-1037.
  • Nagaoka, T., Sakatani, K. Awano, T., Yokose, N., Hoshino, T., Murata, Y.,Katayama, Y. Ishikawa, A., & Eda, H. (2010). “Development of a newrehabilitation system based on a brain-computer interface using nearinfraredspectroscopy” in Experimental Medicine and Biology, OxygenTransport in Tissue XXXI, eds. E. Takashi, & D. F. Bruley (New York:Springer USA), 497-503.
  • Moghimi, S., Kushki, A., Power, S., Guerguerian, A. M., & Chau, T. (2012). Automatic detection of a prefrontal cortical response to emotionallyrated music using multi-channel near-infrared spectroscopy. J. NeuralEng. 9(2):026022.
  • Misawa, T., Takano, S., Shimokawa, T., & Hirobayashi, S. (2012). A braincomputerinterface for motor assist by the prefrontal cortex. Electron. Comm. Jpn. 95(10), 1-8.
  • Mihara, M., Miyai, I., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T.,Okibayashi, M., Danjo, N., Ishikawa, A., Inoue, Y., & Kubota, K.
  • Mihara, M., Hattori, N., Hatakenaka, M., Yagura, H., & Kawano, T. (2013). Near-infrared spectroscopy-mediated neurofeedback enhances efficacyof motor imagery-based training in poststroke victims a pilot study. Stroke, 44(4), 1091-1098.
  • Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer,N., & Kubler, A. (2007). An MEG-based brain-computer interface(BCI). NeuroImage 36(3), 581-593.
  • McCormick, P.W., Stewart, M., Lewis, G., Dujovny, M., & Ausman, J. I. (1992). Intracerebral penetration of infrared light: technical note. J. Neurosurg. 76, 315-318.
  • Matsuo, K., Kato, T., Fukuda, M., & Kato, N. (2000). Alteration ofhemoglobin oxygenation in the frontal region in elderly depressedpatients as measured by near-infrared spectroscopy. Journal ofNeuropsychiatry and Clinical Neurosciences, 12(4), 465-471.
  • Malonek, D., & Grinvald, A. (1996). Interactions between electrical activityand cortical microcirculation revealed by imaging spectroscopy:implications for functional brain mapping. Science 272, 551-554.
  • Luu, S., & Chau, T. (2009). Decoding subjective preferences from singletrialnear-infrared spectroscopy signals. J. Neural Eng. 6(1):016003.
  • Lu, C.M., Zhang, Y.J., Biswal, B.B., Zang, Y.F., Peng, D.L., & Zhu, C.Z. (2010). Use of fNIRS to assess resting state functional connectivity. J.ofNeurosci. Methods, 186(2), 242-249.
  • Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., & Arnaldi, B. (2007). Areview of classification algorithms for EEG-based brain-computerinterfaces. J. Neural Eng. 4:R1.
  • Liu, Y., Ayaz, H., Curtin, A., & Onaral, B. Shewokis, P. A. (2013). “Towards a hybrid P300-based BCI using simultaneous fNIR and EEG.”in Foundations of Augmented Cognition, eds. D. Schmorrow, & C. Fidopiastis (Heidelberg: Springer-Verlag), 335-344.
  • Liebert, A., Wabnitz, H., Steinbrink, J., Moller, M., Macdonald, R.,Rinneberg, H., Villringer, A., & Obrig, H. (2005). Bed-side assessmentof cerebral perfusion in stroke patients based on optical monitoring of adye bolus by time-resolved diffuse reflectance. Neuroimage, 24(2), 426-435.
  • LaConte, S. M. (2011). Decoding fMRI brain states in real-time. NeuroImage, 56(2), 440-454.
  • Koo, B., Lee, H.-G, Nam, Y., Kang, H., Koh, C.-S, Shin, H.-C, & Choi, S. (2014). A hybrid NIRS-EEG system for self-paced brain computerinterface with online motor imagery. J. Neurosci. Methods, in press.
  • Kohno, S., Miyai, I., Seiyama, A., Oda, I., Ishikawa, A., Tsuneishi, S., Amita,T., & Shimizu, K. (2007). Removal of the skin blood flow artifact infunctional near-infrared spectroscopic imaging data throughindependent component analysis. J. Biomed. Opt. 12(6):062111.
  • Kober, S. E., Wood, G., Kurzmann, J., Friedrich, E. V., Stangl, M., Wippel,T., Valjamae, A., & Neuper, C, (2014). Near-infrared spectroscopybased neurofeedback training increases specific motor imagery relatedcortical activation compared to sham feedback. Biol. Psychol. 95, 21-30.
  • Ko, K. E., & Sim, K. B. (2012). Harmony search-based hidden Markovmodel optimization for online classification of single trial EEGs duringmotor imagery tasks. Int. J. Control. Autom. 11(3), 608-613.
  • Kleih, S. C., & Kubler, A. (2013). Empathy, motivation, and P300-BCIperformance. Front. Hum. Neurosci. 7:642.
  • Kirilina, E., Yu, N., Jelzow, A., Wabnitz, H., Jacobs, A. M., & Tachtsidis, I. (2013). Identifying and quantifying main components of physiologicalnoise in functional near infrared spectroscopy on the prefrontalcortex. Front. Hum. Neurosci. 7:864.
  • Kirilina, E., Jelzow, A., Heine, A., Niessing, M., Wabnitz, H., Bruhl, R.,Ittermann, B., Jacobs, A. M., Tachtsidis, I. (2012). The physiologicalorigin of task-evoked systemic artefacts in functional near infraredspectroscopy. NeuroImage 61(1), 70-81.
  • Kim, J.-Y., Kang, H.-C., Cho, J.-H., Lee, J.-H, Kim, H.-D, Im, C.-H. (2014). Combined use of multiple computational intracranial EEG analysistechniques for the localization of epileptogenic zones in Lennox-Gastaut syndrome. Clin. EEG Neurosci. 45(3), 169-178.
  • Kim, D.S., Duong, T.Q., & Kim, S.G. (2000). High-resolution mapping ofiso-orientation columns by fMRI. Nat. Neurosci. 3, 164-169.
  • Khoa, T. Q. D., & Nakagawa, M. (2008). Functional near-infraredspectroscope for cognition brain tasks by wavelets analysis and neuralnetworks. Int. J. Biol. Life Sci. 4, 28-33.
  • Khan, M. J., Hong, M. J., & Hong K.-S. (2014). Decoding of fourmovement directions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8:244.
  • Kato, T., Kamei, A., Takashima, S., & Ozaki, T. (1993). Human visualcortical function during photic stimulation monitoring by means ofnear-infrared spectroscopy. J. Cereb. Blood Flow Metab. 13, 516-520.
  • Kato, T. (2006). Apparatus for evaluating biological function. Patent no. WO/2003/068070. Available online:http://www.wipo.int/patentscope/search/en/WO2003068070. Accessed: 27 March 2015.
  • Kato, T. (2006). Apparatus for evaluating biological function.
  • Kato, T. (2004). Principle and technique of NIRS imaging for human brainFORCE: fast-oxygen response in capillary event. Proc. of InternationalSociety for Brain Electromagnetic Topography, 1270, 85-90.
  • Kato, T. (2004). Principle and technique of NIRS imaging for human brainFORCE: fast-oxygen response in capillary event. Proc ISBET 2004;1270:85-90.
  • Kamran, M. A., & Hong, K.-S. (2014). Reduction of physiological effects infNIRS waveforms for efficient brain-state decoding. Neurosci. Lett. 580,130-136.
  • Kamran, M. A., & Hong, K.-S. (2013). Linear parameter-varying model andadaptive filtering technique for detecting neuronal activities: an fNIRSstudy. J. Neural Eng. 10:056002.
  • Kaiser, V., Gauernfeind, G., Kreilinger, A., Kaufmann, T., Kubler, A.,Neuper, C., & Muller-Putz, G. R. (2014). Cortical effects of usertraining in a motor imagery based brain-computer interface measuredby fNIRS and EEG. NeuroImage 85, 432-444.
  • Jones, M., Berwick, J., Johnston, D., Mayhew, J. (2001). Concurrent opticalimaging spectroscopy and laser-Doppler flowmetry: the relationshipbetween blood flow, oxygenation, and volume in rodent barrel cortex. NeuroImage 13:1002-1015.
  • Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral andmyocardial oxygen sufficiency and circulatory parameters. Science 198,1264-1267.
  • Izzetoglu, M., Devaraj, A., Bunce, S., & Onaral, B. (2005). Motion artifactcancellation in NIR spectroscopy using Wiener filtering. IEEETrans.Biomed. Eng. 52(5), 934-938.
  • Insula and inferior frontal triangularis activations distinguish betweenconditioned brain responses using emotional sounds for basic BCIcommunication. Front. Behav. Neurosci. 8:247.
  • Inform. Control 8, 6429-6443Tranel, D., Bechara, A., Denburg, N. L. (2002). Asymmetric functional rolesof right and left ventromedial prefrontal cortices in social conduct,decision-making, and emotional processing. Cortex 38, 589-612.
  • Improving the diffuse optical imaging spatial resolution of the cerebralhemodynamic response to brain activation in humans. Opt. lett. 29(13),1506-1508.
  • Hwang, H.-J., Lim, J.-H., Kim, D.-W., & Im, C.-H. (2014). Evaluation ofvarious mental task combinations for near-infrared spectroscopy-basedbrain-computer interfaces, J. Biomed. Opt. 19(7):077005.
  • Hwang, H.-J., Kim, S., Choi, S., & Im, C.-H. (2013). EEG-based braincomputerinterfaces: a thorough literature survey. Int J. Hum. Comp. Int. 29(12), 814-826.
  • Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2006). A temporal comparison of BOLD, ASL, and NIRShemodynamic responses to motor stimuli in adult humans. NeuroImage29(2), 368-382.
  • Huppert, T. J., Diamond, S. G., Fransceshini, M. A., & Boas, D. A. (2009). HomER: a review of time-series analysis methods for near-infraredspectroscopy of the brain. Appl. Opt. 48(10), D280-D298.
  • Hu, X.-S., Hong, K.-S., Ge, S.S., & Jeong, M.-Y. (2010). Kalman estimatorandgeneral linear model-based on-line brain activation mapping bynear-infrared spectroscopy. Biomed. Eng. Online 9:82.
  • Hu, X.-S., Hong, K.-S., & Ge, S.S. (2011). Recognition of stimulus-evokedneuronal optical response by identifying chaos levels of near-infraredspectroscopy time series. Neurosci. Lett. 504(2), 115-120.
  • Hu, X.-S., Hong, K.-S., & Ge, S. S. (2013). Reduction of trial-to-trialvariations in functional near-infrared spectroscopy signals byaccounting for resting-state functional connectivity. J. Biomed. Opt. 18(1): 017003.
  • Hu, X.-S., Hong, K.-S., & Ge, S. S. (2012). fNIRS-based online deceptiondecoding. J Neural Eng. 9(2):026012.
  • Hu, X., Le, T.H., & Ugurbil, K. (1997). Evaluation of the early response infMRI in individual subjects using short stimulus duration. Magn. Reson. Med. 37, 877-884.
  • Hu, X., & Yacoub, E. (2012). The story of the initial dip in fMRI. NeuroImage 62(2), 1103-1108.
  • Hoshi, Y., Onoe, H., Watanabe, Y., Andersson, J., Bergstrom, M., Lilja, A.,Landstrom, B., & Tamura, M. (1994). Non-synchronous behavior ofneuronal-activity, oxidative-metabolism and blood-supply duringmental tasks in man, Neurosci. Lett. 172, 129-133.
  • Hoshi, Y., & Tamura, M. (1997). Near-infrared optical detection ofsequential brain activation in the prefrontal cortex during mental tasks. NeuroImage 5(4), 292-297.
  • Hoshi, Y., & Chen, S.J. (2002). Regional cerebral blood flow changesassociated with emotions in children. Pediatric Neurology, 27(4), 275-281.
  • Hoshi, Y. (2012). Functional near-infrared spectroscopy: current status andfuture prospects. Journal of Biomedical Optics, 12:062106.
  • Hong, K.-S., Naseer, N., & Kim, Y.-H. (2014). Classification of prefrontaland motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587,87-92.
  • Hong, K.-S., & Nguyen, H.-D. (2014). State-space models of impulsehemodynamic responses over motor, somatosensory, and visual cortices. Biomed. Opt. Express 5, 1778-1798.
  • Holper, L., & Wolf, M. (2011). Single-trial classification of motor imagerydiffering in task complexity: a functional near-infrared spectroscopystudy. J. Neuroeng. Rehabil. 8:34.
  • Hock, C., Villringer, K., MullerSpahn, F., Wenzel, R., Heekeren, H.,SchuhHofer, S., Hofmann, M., Minoshima, S., Schwaiger, M., Dirnagl,U., & Villringer, A. (1997). Decrease in parietal cerebral hemoglobinoxygenation during performance of a verbal fluency task in patientswith Alzheimer's disease monitored by means of near-infraredspectroscopy (NIRS): Correlation with simultaneous rCBF-PETmeasurements. Brain Research, 755(2), 293-303.
  • Hock, C., Villringer, K., MullerSpahn, F., Hofmann, M., SchuhHofer, S.,Heekeren, H., Wenzel, R., Dirnagl, U., & Villringer, A. (1996). Nearinfrared spectroscopy in the diagnosis of Alzheimer's disease. Neurobiology of Alzheimer's Disease, 777, 22-29.
  • Herrmann, M.J., Huter, T., Plichta, M.M., Ehlis, A.C., Alpers, G.W.,Muhlberger, A., & Fallgatter, A.J. (2008). Enhancement of activity ofthe primary visual cortex during processing of emotional stimuli asmeasured with event-related functional near-infrared spectroscopy andevent-related potentials. Human Brain Mapping, 29(1), 28-35.
  • Hammer, E. M., Kaufmann, T., Kleih, S. C., Blankertz, B., & Kubler, A. (2014). Visuo-motor coordination ability predicts performance withbrain-computer interfaces controlled by modulation of sensorimotorrhythms (SMR). Front. Hum. Neurosci. 8:574.
  • Hai, N. T., Cuong, N. Q., Khoa, T. Q. D., & Toi, V. V. (2013). Temporalhemodynamic classification of two hands tapping using functional nearinfraredspectroscopy. Front. Hum. Neurosci. 7:516.
  • Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. I:A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44, 124-141.
  • Grinvald, A., Frostig, R. D., Siegel, R. M., & Bartfeld, R. M. (1991). Highresolutionoptical imaging of functional brain architecture in the awakemonkey. Proc. Natl. Acad. Sci. 88, 11559-11563.
  • Gratton, G., Corballis, P.M., Cho, E.H., Fabiani, M., & Hood, D.C. (1995). Shades of Gray-Matter - Noninvasive Optical-Images of Human BrainResponses during Visual-Stimulation. Psychophysiology, 32(5), 505-509.
  • Gratton, G., Brumback, C. R., Gordon, B. A., Pearson, M. A., Low, K. A., &Fabiani, M. (2006). Effects of measurement method, wavelength, andsource-detector distance on the fast optical signal. NeuroImage32,1576-1590.
  • Gratton, G., & Fabiani, M. (2003). The event-related optical signal (EROS)in visual cortex: replicability, consistency, localization, and resolution. Psychophysiology, 40(4), 561-571.
  • Gratton, G., & Fabiani, M. (2001b). Shedding light on brain function: theevent-related optical signal. Trends in Cognitive Sciences, 5(8), 357-363.
  • Gratton, G., & Fabiani, M. (2001a). The event-related optical signal: a newtool for studying brain function. International Journal ofPsychophysiology, 42(2), 109-121.
  • Gagnon, L., Yucel, M. A., Dehaes, M., Cooper, R. J., Perdue, K. L., Selb, J.,Huppert, T. J., Hoge, R. D., & Boas, D. A. (2012). Quantification of thecortical contribution to the NIRS signal over the motor cortex usingconcurrent NIRS-fMRI measurements. NeuroImage 59, 3933-3940.
  • Funane, T, Atsumori, H., Katura, T., Obata, A. N., Sato, H., Tanikawa, Y.,Okada, E., & Kiguchi, M. (2014). Quantitative evaluation of deep andshallow tissue layers' contribution to fNIRS signal using multi-distance115optodes and independent component analysis. NeuroImage 85, 150-165.
  • Franceschini, M, A., Joseph, D. K., Huppert, T. J., Diamond, S. G., & Boas,D. A. (2006). Diffuse optical imaging of the whole head. J. Biomed. Opt. 11:054007.
  • Ferrari, M., Mottola, L., & Quaresima, V. (2004). Principles, techniques, andlimitations of near infrared spectroscopy. Can. J. Appl. Physiol. 29,463-87.
  • Ferrari, M., Giannini, I., Sideri, G., & Zanette, E. (1985). Continuous noninvasive monitoring of human brain by near infrared spectroscopy. Adv. Exp. Med. Biol. 191, 873-882.
  • Fekete, T., Rubin, D., Carlson. J. M., & Mujica-Parodi. L. R. (2011). TheNIRS analysis package: noise reduction and statistical inference. PLOSONE 6(9):e24322.
  • Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Muller, K. R.,& Blankertz, B. (2012). Enhanced performance by a hybrid NIRS-EEGbrain-computer interface. NeuroImage 59(1), 519-529.
  • Faress, A., & Chau, T. (2013). Towards a multimodal brain-computerinterface: combining fNIRS and fTCD measurements to enable higherclassification accuracy. NeuroImage 77, 186-194.
  • Fallgatter, A.J., Roesler, M., Sitzmann, L., Heidrich, A., Mueller, T.J., &Strik, W.K. (1997). Loss of functional hemispheric asymmetry inAlzheimer's dementia assessed with near-infrared spectroscopy. Cognitive Brain Research, 6(1), 67-72.
  • Fallgatter, A.J., Ehlis, A.C., Wagener, A., Michel, T., & Herrmann, M.J. (2004). Near-infrared spectroscopy in psychiatry. Nervenarzt, 75(9),911-916.
  • Falk, T. H., Guirgis, M., Power, S., & Chau, T. (2011). Taking NIRS-BCIsoutside the lab: towards achieving robustness against environment noise. IEEE Trans. Neural Syst. Rehabil. Eng. 19(2), 136-146.
  • Ernst, T., & Hennig, J. (1994). Observation of a fast response in functionalMR. Magn. Reson. Med. 32, 146-149.
  • Ernst, L.H., Schneider, S., Ehlis, A.C., & Fallgatter, A.J. (2012). Functionalnear infrared spectroscopy in psychiatry: a critical review. Journal ofnear Infrared Spectroscopy, 20(1), 93-105.
  • E. Takahashi, & D. F. Bruley (Boston,MA, Springer US), 237-243Tai, K., & Chau, T. (2009). Single-trial classification of NIRS signals duringemotional induction tasks: towards a corporeal machine interface. J. Neuroeng. Rehabil. 6:39.
  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., & Wyatt, J.
  • Cui, X., Bray, S., & Reiss, A. L. (2010b). Speeded near-infraredspectroscopy (NIRS) response detection. PLOS ONE 5(11):e15474.
  • Cui, X., Bray, S., & Reiss, A. L. (2010a). Functional near infraredspectroscopy (NIRS) signal improvement based on negative correlationbetween oxygenated and deoxygenated hemoglobin dynamics. NeuroImage 49(4), 3039-3046.
  • Coyle, S., Ward, T., Markham, C., & McDarby, G. (2004). On the suitabilityof near-infrared (NIR) systems for next-generation brain-computerinterfaces. Physiol. Meas. 25(4), 815-822.
  • Coyle, S. M., Ward, T. E., & Markham, C. M. (2007). Brain-computerinterface using a simplified functional near-infrared spectroscopysystem. J. Neural Eng. 4(3), 219-226.
  • Cooper, R. J., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K.,Ashina, M., & Boas D. A. (2012). A systematic comparison of motionartifact correction techniques for functional near-infraredspectroscopy. Front. Neurosci. 6:147.
  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vectormachines. ACM Trans. Intell. Syst. Technol. 2, 1-27.
  • Chan, J., Power, S., & Chau, T. (2012). Investigating the need for modelingtemporal dependencies in a brain-computer interface with real-timefeedback based on near infrared spectra. J. Near Infrared Spectrosc. 20(1), 107-116.
  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern113recognition. Data Min. Knowl. Discov. 2(2), 121-167.
  • Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T.,Mellinger, J., Caria A., Soekadar, S., Fourkas, A., & Birbaumer, N.
  • Boas, D, A., Dale, A. M., & Franceschini, M. A. (2004a). Diffuse opticalimaging of brain activation: approaches to optimizing image sensitivity,resolution, and accuracy.
  • Bhutta, M. R., Hong, M. J., Kim, Y.-H., & Hong, K.-S., 2015. Single-triallie detection using a combined fNIRS-polygraph system. Front. Psychol. 6:709.
  • Bhutta, M. R., Hong, K.-S., Kim, B.-M., Hong, M. J., Kim, Y.-H., & Lee,S.-H. (2014). Note: three wavelengths near-infrared spectroscopysystem for compensating the light absorbance by water. Rev. Sci. Intrum. 85:026111.
  • Bauernfeind, G., Scherer, R., Pfurtscheller, G., & Neuper, C. (2011). Singletrialclassification of antagonistic oxyhemoglobin responses duringmental arithmetic. Med. Biol. Eng. Comput. 49(9), 979-984.
  • Bauernfeind, G., Leeb, R., Wriessnegger, S. C., & Pfurtscheller, G. (2008). Development, set-up and first results for a one-channel near-infraredspectroscopy system. Biomed. Tech. 53(1), 36-43.
  • Ayaz, H., Shewokis, P., Bunce, S., Schultheis, M., & Onaral, B. (2009). “Assessment of cognitive neural correlates for a functional near infrared-based brain computer interface system.” in Foundations ofAugmented Cognition. Neuroergonomics and Operational Neuroscienceeds. D. D. Schmorrow, I. V. Estabrooke, & M. Grootjen (Heidelberg:Springer-Verlag), 699-708.
  • Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral,B. (2012). Optical brain monitoring for operator training and mentalworkload assessment. NeuroImage 59(1), 36-47.
  • Aqil, M., Hong, K.-S., Jeong, M.-Y., & Ge, S.S. (2012b). Detection ofevent-related hemodynamic response to neuroactivation by dynamicmodeling of brain activity. NeuroImage 63(1), 553-568.
  • Aqil, M., Hong, K.-S., Jeong, M.-Y., & Ge, S.S. (2012a). Cortical brainimaging by adaptive filtering of NIRS signals. Neurosci. Lett. 514, 35-41.
  • Anthony, M., & Bartlett P. L. (2009). Neural Network Learning: TheoreticalFoundations. New York: Cambridge University Press.
  • Akiyama, T., Ohira, T., Kawase, T., & Kato, T. (2006). TMS orientation forNIRS-functional motor mapping. Brain Topogr. 19:1-9.
  • Akin, A., Bilensoy, D., Emir, U. E., Gulsoy, M., Candansayar, S., & Bolay,H. (2006). Cerebrovascular dynamics in patients with migraine: nearinfraredspectroscopy study. Neurosci. Lett. 400, 86-91.
  • Adhika, D. R., Hazrati, M. K., & Hofmann, U. G. (2012). An experimentalsetup for brain activity measurement based on near infraredspectroscopy. Biomed. Tech. 57(1), 609-612.
  • Abibullaev, B., An, J., & Moon, J. I. (2011). Neural network classificationof brain hemodynamic responses from four mental tasks. Int. J. Optomechatronics 5(4), 340-359.
  • Abibullaev, B., & An, J. (2012). Classification of frontal cortexhemodynamic responses during cognitive tasks using wavelettransforms and machine learning algorithms. Med. Eng. Phys. 34(10),1394-1410.
  • Abdelnour, A. F., & Huppert, T. (2009). Real-time imaging of human brainfunction by near-infrared spectroscopy using an adaptive general linearmodel. NeuroImage 46(1), 133-143.
  • A hemodynamic brain-computer interface based on real-timeclassification of near infrared spectroscopy signals during motorimagery and mental arithmetic. J. Near Infrared Spectrosc. 21(3), 157-171.
  • 124Power, S. D., Khushki, A., & Chau, T. (2012a). Automatic single trialdiscrimination of mental arithmetic, mental singing and the no-controlstate from the prefrontal activity: towards a three-state NIRS-BCI. BMCRes. Notes 5:141.
  • 120Kato, T. (2007). Biofunction diagnosis device, biofunction diagnosis method,bioprobe, bioprobe wearing tool, bioprobe support tool, and bioprobewearing assisting tool. WO/2006/009178. Available:http://www.wipo.int/patentscope/search/en/WO2006009178. Accessed10 June 2015.
  • Think to move: a neuromagnetic brain-computer interface (BCI)system for chronic stroke. Stroke 39(3), 910-917.
  • Neurofeedback using real-time near-infrared spectroscopy122enhances motor imagery related cortical activation. PLOS ONE7(3):e32234.
  • Estimation of optical pathlength through tissue from direct timeof flight measurement. Phys. Med. Biol. 33, 1433-42.