박사

Metal and semiconductor nanostructures for energy conversion applications

논문상세정보
' Metal and semiconductor nanostructures for energy conversion applications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • graphene
  • nanomaterials
  • photoelectrochemical
  • sers
  • thermoelectric
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
670 0

0.0%

' Metal and semiconductor nanostructures for energy conversion applications' 의 참고문헌

  • van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.;Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C., Grains and grain boundaries in highlycrystalline monolayer molybdenum disulphide. Nat Mater 2013, 12 (6), 554-561.
  • http://www.sciencealert.com/audi-have-successfully-made-diesel-fuel-from-air-and-water.
  • http://www.heatrecar.com/content-page.php?id_page=6.
  • http://www.bbc.co.uk/bitesize/standard/physics/energy_matters/generation_of_electricity/revision/1/.
  • http://nextbigfuture.com/2012/01/engine-friction-can-be-overcome-for-18.html.
  • http://news.nationalgeographic.com/energy/2015/04/150428-audi-ediesel-made-from-water-air/.
  • http://ec.europa.eu/clima/policies/package/docs/trends_to_2030_update_2009_en.pdf.
  • Zuev, Y. M.; Chang, W.; Kim, P., Thermoelectric and Magnetothermoelectric TransportMeasurements of Graphene. Phys Rev Lett 2009, 102 (9).
  • Zhou, L.; He, B.; Yang, Y.; He, Y., Facile approach to surface functionalized MoS2 nanosheets. RSC Advances 2014, 4 (61), 32570-32578.
  • Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K., Ag/ZnO heterostructure nanocrystals:synthesis, characterization, and photocatalysis. Inorg Chem 2007, 46 (17), 6980-6.
  • Zhao, W. Y.; Fan, S. F.; Xiao, N.; Liu, D. Y.; Tay, Y. Y.; Yu, C.; Sim, D. H.; Hng, H. H.; Zhang, Q. C.; Boey, F.; Ma, J.; Zhao, X. B.; Zhang, H.; Yan, Q. Y., Flexible carbon nanotube papers withimproved thermoelectric properties. Energ Environ Sci 2012, 5 (1), 5364-5369.
  • Zhang, Y. C.; Day, T.; Snedaker, M. L.; Wang, H.; Kramer, S.; Birkel, C. S.; Ji, X. L.; Liu, D. Y.;Snyder, G. J.; Stucky, G. D., A Mesoporous Anisotropic n-Type Bi2Te3 Monolith with Low ThermalConductivity as an Efficient Thermoelectric Material. Adv Mater 2012, 24 (37), 5065-5070.
  • Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B.,Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemicaletching. J Phys Chem C 2008, 112 (12), 4444-4450.
  • Zhang, L. W.; Baumanis, C.; Robben, L.; Kandiel, T.; Bahnemann, D., Bi2WO6 Inverse Opals:94Facile Fabrication and Efficient Visible-Light-Driven Photocatalytic and Photoelectrochemical Water-Splitting Activity. Small 2011, 7 (19), 2714-2720.
  • Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I., Aligned two- andthree-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater 2005, 4(10), 787-793.
  • Zhang, G.; Li, B. W., Impacts of doping on thermal and thermoelectric properties of nanomaterials. Nanoscale 2010, 2 (7), 1058-1068.
  • Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G., Perspectives onthermoelectrics: from fundamentals to device applications. Energ Environ Sci 2012, 5 (1), 5147-5162.
  • Zayat, M.; Parejo, P. G.; Levy, D., Preventing UV-light damage of light sensitive materials using ahighly protective UV-absorbing coating. Chem Soc Rev 2007, 36 (8), 1270-1281.
  • Yuan, S. J.; Roldan, R.; Jauho, A. P.; Katsnelson, M. I., Electronic properties of disorderedgraphene antidot lattices. Phys Rev B 2013, 87 (8).
  • Yuan, S. J.; Roldan, R.; Jauho, A. P.; Katsnelson, M. I., Electronic properties of disorderedgraphene antidot lattices. Phys Rev B 2013, 87 (8), 085430.
  • Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F., Highly efficient gatetunablephotocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol2013, 8 (12), 952-958.
  • Yu, D. S.; Dai, L. M., Self-Assembled Graphene/Carbon Nanotube Hybrid Films forSupercapacitors. J Phys Chem Lett 2010, 1 (2), 467-470.
  • Yousefi, M.; Amiri, M.; Azimirad, R.; Moshfegh, A. Z., Enhanced photoelectrochemical activityof Ce doped ZnO nanocomposite thin films under visible light. J Electroanal Chem 2011, 661 (1),106-112.
  • Yoshitake, T.; Shimakawa, Y.; Kuroshima, S.; Kimura, H.; Ichihashi, T.; Kubo, Y.; Kasuya, D.;Takahashi, K.; Kokai, F.; Yudasaka, M.; Iijima, S., Preparation of fine platinum catalyst supported onsingle-wall carbon nanohorns for fuel cell application. Physica B 2002, 323 (1-4), 124-126.
  • Yoshio, M.; Wang, H. Y.; Fukuda, K.; Hara, Y.; Adachi, Y., Effect of carbon coating onelectrochemical performance of treated natural graphite as lithium-ion battery anode material. JElectrochem Soc 2000, 147 (4), 1245-1250.
  • Yokoya, T.; Kiss, T.; Chainani, A.; Shin, S.; Nohara, M.; Takagi, H., Fermi surface sheetdependentsuperconductivity in 2H-NbSe2. Science 2001, 294 (5551), 2518-2520.
  • Yigen, S.; Tayari, V.; Island, J. O.; Porter, J. M.; Champagne, A. R., Electronic thermal conductivitymeasurements in intrinsic graphene. Phys Rev B 2013, 87 (24), 241411.
  • Yigen, S.; Champagne, A. R., Wiedemann-franz relation and thermal-transistor effect in suspendedgraphene. Nano Lett 2014, 14 (1), 289-93.
  • Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y.,Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett 2009, 9(6), 2331-2336.
  • Yang, P. D.; Yan, R. X.; Fardy, M., Semiconductor Nanowire: What's Next? Nano Lett2010, 10 (5), 1529-1536.
  • Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.;Wakabayashi, K.; Tsukagoshi, K., Strong Enhancement of Raman Scattering from a Bulk-InactiveVibrational Mode in Few-Layer MoTe2. Acs Nano 2014, 8 (4), 3895-3903.
  • Yadav, G. G.; Susoreny, J. A.; Zhang, G. Q.; Yang, H. R.; Wu, Y., Nanostructure-based138thermoelectric conversion: an insight into the feasibility and sustainability for large-scale deployment. Nanoscale 2011, 3 (9), 3555-3562.
  • Xu, Y.; Li, Z. Y.; Duan, W. H., Thermal and Thermoelectric Properties of Graphene. Small 2014,10 (11), 2182-2199.
  • Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F., Flexible Solid-StateSupercapacitors Based on Three-Dimensional Graphene Hydrogel Films. Acs Nano 2013, 7 (5), 4042-4049.
  • Xiao, X. Y.; Beechem, T. E.; Brumbach, M. T.; Lambert, T. N.; Davis, D. J.; Michael, J. R.;Washburn, C. M.; Wang, J.; Brozik, S. M.; Wheeler, D. R.; Burckel, D. B.; Polsky, R.,Lithographically Defined Three-Dimensional Graphene Structures. Acs Nano 2012, 6 (4), 3573-3579.
  • Xiao, N.; Dong, X. C.; Song, L.; Liu, D. Y.; Tay, Y.; Wu, S. X.; Li, L. J.; Zhao, Y.; Yu, T.; Zhang,H.; Huang, W.; Hng, H. H.; Ajayan, P. M.; Yan, Q. Y., Enhanced Thermopower of Graphene Filmswith Oxygen Plasma Treatment. Acs Nano 2011, 5 (4), 2749-2755.
  • Xiang, Q. J.; Yu, J. G.; Jaroniec, M., Synergetic Effect of MoS2 and Graphene as Cocatalysts forEnhanced Photocatalytic H-2 Production Activity of TiO2 Nanoparticles. J Am Chem Soc 2012, 134(15), 6575-6578.
  • Xia, Y. N.; Halas, N. J., Shape-controlled synthesis and surface plasmonic properties ofmetallic nanostructures. Mrs Bull 2005, 30 (5), 338-344.
  • Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Mullen, K., Three126Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-StateSupercapacitors. Adv Mater 2012, 24 (37), 5130-5135.
  • Wu, M. X.; Lin, X.; Wang, T. H.; Qiu, J. S.; Ma, T. L., Low-cost dye-sensitized solar cell based onnine kinds of carbon counter electrodes. Energ Environ Sci 2011, 4 (6), 2308-2315.
  • Wood, C., Materials for Thermoelectric Energy-Conversion. Rep Prog Phys 1988, 51 (4), 459-539.
  • Willner, I.; Eichen, Y.; Frank, A. J., Tailored Semiconductor Receptor Colloids - ImprovedPhotosensitized H-2 Evolution from Water with Tio2-Beta-Cyclodextrin Colloids. J Am Chem Soc1989, 111 (5), 1884-1886.
  • Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N., Polyol synthesis of silver nanoparticles:Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes andtetrahedrons. Nano Lett 2004, 4 (9), 1733-1739.
  • Wei, Y. G.; Wu, W. Z.; Guo, R.; Yuan, D. J.; Das, S. M.; Wang, Z. L., Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays. Nano Lett 2010, 10 (9),3414-3419.
  • Warren, S. C.; Thimsen, E., Plasmonic solar water splitting. Energ Environ Sci 2012, 5 (1), 5133-5146.
  • Wang, Z. L.; Wu, W. Z., Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems. Angew Chem Int Edit 2012, 51 (47), 11700-11721.
  • Wang, Z. L., Self-Powered Nanosensors and Nanosystems. Adv Mater 2012, 24 (2), 280-285.
  • Wang, Z. L., Novel nanostructures of ZnO for nanoscale photonics, optoelectronics,piezoelectricity, and sensing. Appl Phys a-Mater 2007, 88 (1), 7-15.
  • Wang, J. Y.; Zhao, R. Q.; Yang, M. M.; Liu, Z. F.; Liu, Z. R., Inverse relationship between carriermobility and bandgap in graphene. J Chem Phys 2013, 138 (8).
  • Wang, H.; Yuan, H.; Sae Hong, S.; Li, Y.; Cui, Y., Physical and chemical tuning of twodimensionaltransition metal dichalcogenides. Chem Soc Rev 2014.
  • Wang, H.; Halas, N. J., Mesoscopic Au "Meatball" particles. Adv Mater 2008, 20 (4), 820-825.
  • Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N.
  • Walsh, D.; Kim, Y. Y.; Miyamoto, A.; Meldrum, F. C., Synthesis of Macroporous CalciumCarbonate/Magnetite Nanocomposites and their Application in Photocatalytic Water Splitting. Small2011, 7 (15), 2168-2172.
  • Waller, M. R.; Townsend, T. K.; Zhao, J.; Sabio, E. M.; Chamousis, R. L.; Browning, N. D.;Osterloh, F. E., Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in theQuantum Confinement Regime. Chem Mater 2012, 24 (4), 698-704.
  • Vlassiouk, I.; Smirnov, S.; Ivanov, I.; Fulvio, P. F.; Dai, S.; Meyer, H.; Chi, M. F.; Hensley, D.;Datskos, P.; Lavrik, N. V., Electrical and thermal conductivity of low temperature CVD graphene: theeffect of disorder. Nanotechnology 2011, 22 (27).
  • Vining, C. B., Semiconductors are cool. Nature 2001, 413 (6856), 577-578.
  • Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B., Thin-film thermoelectric deviceswith high room-temperature figures of merit. Nature 2001, 413 (6856), 597-602.
  • Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueoussolutions. Adv Mater 2003, 15 (5), 464-466.
  • Vasudev, A. P.; Schuller, J. A.; Brongersma, M. L., Nanophotonic light trapping with patternedtransparent conductive oxides. Opt Express 2012, 20 (10), A385-A394.
  • Vaneski, A.; Susha, A. S.; Rodriguez-Fernandez, J.; Berr, M.; Jackel, F.; Feldmann, J.; Rogach, A. L., Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated withNoble Metals: Synthesis and Function. Adv Funct Mater 2011, 21 (9), 1547-1556.
  • Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X.; Wang, F.; Louie, S. G.; Crommie, M. F., Giant bandgap renormalizationand excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 2014,13 (12), 1091-5.
  • U.S EIA Annual energy outlook 2015 with projections to 2040.
  • Turner, J. A., Sustainable hydrogen production. Science 2004, 305 (5686), 972-974.
  • Tropschuh, P. F.; Pham, E., Audi Future Energies: Balancing Business and EnvironmentalConcerns. Lect N Mobil 2014, 185-190.
  • Townsend, T. K.; Browning, N. D.; Osterloh, F. E., Nanoscale Strontium Titanate Photocatalysts forOverall Water Splitting. Acs Nano 2012, 6 (8), 7420-7426.
  • Tong, L. M.; Zhu, T.; Liu, Z. F., Approaching the electromagnetic mechanism of surface-enhancedRaman scattering: from self-assembled arrays to individual gold nanoparticles. Chem Soc Rev 2011,40 (3), 1296-1304.
  • Tie, S. F.; Tan, C. W., A review of energy sources and energy management system in electricvehicles. Renew Sust Energ Rev 2013, 20, 82-102.
  • Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L.,95Plasmon Enhanced Solar-to-Fuel Energy Conversion. Nano Lett 2011, 11 (8), 3440-3446.
  • Thiyagarajan, P.; Oh, M.-W.; Yoon, J.-C.; Jang, J.-H., Thermoelectric properties of nanoporousthree-dimensional graphene networks. Appl Phys Lett 2014, 105 (3), 033905.
  • Thiyagarajan, P.; Ahn, H. J.; Lee, J. S.; Yoon, J. C.; Jang, J. H., Hierarchical Metal/SemiconductorNanostructure for Efficient Water Splitting. Small 2013, 9 (13), 2341-2347.
  • Tang, J. Y.; Wang, H. T.; Lee, D. H.; Fardy, M.; Huo, Z. Y.; Russell, T. P.; Yang, P. D., HoleySilicon as an Efficient Thermoelectric Material. Nano Lett 2010, 10 (10), 4279-4283.
  • Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Dasari, A.; Yu, Z. Z., Three dimensionalgraphene aerogels and their electrically conductive composites. Carbon 2014, 77, 592-599.
  • Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P., Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett2007, 99 (24), 246803.
  • Tan, C.; Zhang, H., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 2014.
  • Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C., Bioinspired hollowsemiconductor nanospheres as photosynthetic nanoparticles. Nat Commun 2012, 3.
  • Stojanovic, V. M.; Vukmirovic, N.; Bruder, C., Polaronic signatures and spectral properties ofgraphene antidot lattices. Phys Rev B 2010, 82 (16), 165410.
  • Stoerzinger, K. A.; Lin, J. Y.; Odom, T. W., Nanoparticle SERS substrates with 3D Raman-activevolumes. Chem Sci 2011, 2 (8), 1435-1439.
  • Singh, W. M.; Pegram, D.; Duan, H. F.; Kalita, D.; Simone, P.; Emmert, G. L.; Zhao, X., HydrogenProduction Coupled to Hydrocarbon Oxygenation from Photocatalytic Water Splitting. Angew ChemInt Edit 2012, 51 (7), 1653-1656.
  • Shi, Y.; Li, H.; Li, L. J., Recent advances in controlled synthesis of two-dimensional transitionmetal dichalcogenides via vapour deposition techniques. Chem Soc Rev 2014.
  • Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F., Chemical vapordeposition growth of monolayer MoSe2 nanosheets. Nano Res 2014, 7 (4), 511-517.
  • Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.;45Seabold, J. A.; Choi, K. S.; Grimes, C. A., Recent Advances in the Use of TiO2 Nanotube andNanowire Arrays for Oxidative Photoelectrochemistry. J Phys Chem C 2009, 113 (16), 6327-6359.
  • Sekar, P.; Greyson, E. C.; Barton, J. E.; Odom, T. W., Synthesis of nanoscale NbSe2materials from molecular precursors. Journal of the American Chemical Society 2005, 127(7), 2054-2055.
  • Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, (7), 487-496.
  • Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L., Plasmonicsfor extreme light concentration and manipulation (vol 9, pg 193, 2010). Nature Materials 2010, 9 (4).
  • Schlapbach, L., TECHNOLOGY Hydrogen-fuelled vehicles. Nature 2009, 460 (7257), 809-811.
  • Sakai, T.; Alexandridis, P., Mechanism of gold metal ion reduction, nanoparticle growthand size control in aqueous amphiphilic block copolymer solutions at ambient conditions. JPhys Chem B 2005, 109 (16), 7766-7777.
  • S., Solar Water Splitting Cells. Chem Rev 2010, 110 (11), 6446-6473.
  • Rowe, D. M.; Shukla, V. S., The Effect of Phonon-Grain Boundary Scattering on the LatticeThermal-Conductivity and Thermoelectric Conversion Efficiency of Heavily Doped Fine-Grained,Hot-Pressed Silicon Germanium Alloy. J Appl Phys 1981, 52 (12), 7421-7426.
  • Rowe, D. M., CRC handbook of thermoelectrics. CRC Press: Boca Raton, FL, 1995; p 701 p.
  • Rodriguez, I.; Atienzar, P.; Ramiro-Manzano, F.; Meseguer, F.; Corma, A.; Garcia, H., Photoniccrystals for applications in photoelectrochemical processes - Photoelectrochemical solar cells withinverse opal topology. Photonics Nanostruct 2005, 3 (2-3), 148-154.
  • Rao, C. N. R.; Matte, H. S. S. R.; Maitra, U., Graphene Analogues of Inorganic Layered Materials. Angew Chem Int Edit 2013, 52 (50), 13162-13185.
  • Ranganathan, S.; McCreery, R.; Majji, S. M.; Madou, M., Photoresist-derived carbon formicroelectromechanical systems and electrochemical applications. J Electrochem Soc 2000, 147 (1),277-282.
  • Ramadoss, A.; Saravanakumar, B.; Lee, S. W.; Kim, Y. S.; Kim, S. J.; Wang, Z. L., Piezoelectricdrivenself-charging supercapacitor power cell. ACS Nano 2015, 9 (4), 4337-45.
  • Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H., Secondary Branching and Nitrogen Doping of ZnONanotetrapods: Building a Highly Active Network for Photoelectrochemical Water Splitting. NanoLett 2012, 12 (1), 407-413.
  • Qin, L. C.; Zhao, X. L.; Hirahara, K.; Miyamoto, Y.; Ando, Y.; Iijima, S., Materialsscience - The smallest carbon nanotube. Nature 2000, 408 (6808), 50-50.
  • Qian, X. M.; Nie, S. M., Single-molecule and single-nanoparticle SERS: from fundamentalmechanisms to biomedical applications. Chem Soc Rev 2008, 37 (5), 912-920.
  • Popov, V. V.; Gordeev, S. K.; Grechinskaya, A. V.; Danishevskii, A. M., Electrical andthermoelectric properties of nanoporous carbon. Phys Solid State 2002, 44 (4), 789-792.
  • Policandriotes, T.; Filip, P., Effects of selected nanoadditives on the friction and wear performanceof carbon-carbon aircraft brake composites. Wear 2011, 271 (9-10), 2280-2289.
  • Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.;Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The effect of chemical residues on the physical andelectrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett 2011,99 (12).
  • Pettes, M. T.; Ji, H. X.; Ruoff, R. S.; Shi, L., Thermal Transport in Three-Dimensional FoamArchitectures of Few-Layer Graphene and Ultrathin Graphite. Nano Lett 2012, 12 (6), 2959-2964.
  • Perrault, S. D.; Chan, W. C. W., Synthesis and Surface Modification of HighlyMonodispersed, Spherical Gold Nanoparticles of 50?200 nm. Journal of the AmericanChemical Society 2009, 131 (47), 17042-17043.
  • Park, J. H.; Kim, S.; Bard, A. J., Novel carbon-doped TiO2 nanotube arrays with high aspect ratiosfor efficient solar water splitting. Nano Lett 2006, 6 (1), 24-28.
  • Pandolfo, A. G.; Hollenkamp, A. F., Carbon properties and their role in supercapacitors. J PowerSources 2006, 157 (1), 11-27.
  • Ouyang, F. P.; Peng, S. L.; Liu, Z. F.; Liu, Z. R., Bandgap Opening in Graphene Antidot Lattices:The Missing Half. Acs Nano 2011, 5 (5), 4023-4030.
  • Oregan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films. Nature 1991, 353 (6346), 737-740.
  • Okitsu, K.; Ashokkumar, M.; Grieser, F., Sonochemical synthesis of gold nanoparticles:Effects of ultrasound frequency. J Phys Chem B 2005, 109 (44), 20673-20675.
  • Ogawa, S.; Fan, F. R. F.; Bard, A. J., Scanning-Tunneling-Microscopy, Tunneling Spectroscopy,and Photoelectrochemistry of a Film of Q-Cds Particles Incorporated in a Self-Assembled Monolayeron a Gold Surface. J Phys Chem-Us 1995, 99 (28), 11182-11189.
  • Odom, T. W.; Gao, H. W.; McMahon, J. M.; Henzie, J.; Schatz, G. C., Plasmonic superlattices:Hierarchical subwavelength hole arrays. Chem Phys Lett 2009, 483 (4-6), 187-192.
  • Nozik, A. J., Photoelectrochemistry - Applications to Solar-Energy Conversion. Annu Rev PhysChem 1978, 29, 189-222.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
  • Nika, D. L.; Pokatilov, E. P.; Balandin, A. A., Theoretical description of thermal transport ingraphene: The issues of phonon cut-off frequencies and polarization branches. Phys Status Solidi B2011, 248 (11), 2609-2614.
  • Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid Exfoliationof Layered Materials. Science 2013, 340 (6139), 1226419.
  • Nehl, C. L.; Liao, H. W.; Hafner, J. H., Optical properties of star-shaped gold nanoparticles. NanoLett 2006, 6 (4), 683-688.
  • Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutierrez, M. C.; del Monte, F., Three dimensionalmacroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and127applications. Chem Soc Rev 2013, 42 (2), 794-830.
  • Nakayama, K.; Tanabe, K.; Atwater, H. A., Plasmonic nanoparticle enhanced lightabsorption in GaAs solar cells. Appl Phys Lett 2008, 93 (12).
  • Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.;Ajayan, P. M.; Lou, J., Vapour phase growth and grain boundary structure of molybdenum disulphideatomic layers. Nat Mater 2013, 12 (8), 754-759.
  • Mu, X.; Wu, X.; Zhang, T.; Go, D. B.; Luo, T., Thermal transport in graphene oxide--from ballisticextreme to amorphous limit. Sci Rep 2014, 4, 3909.
  • Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects inplasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 2002, 116 (15),6755-6759.
  • Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G., Bulk nanostructured thermoelectricmaterials: current research and future prospects. Energ Environ Sci 2009, 2 (5), 466-479.
  • McGrail, B. T.; Sehirlioglu, A.; Pentzer, E., Polymer Composites for Thermoelectric Applications. 46Angew Chem Int Edit 2015, 54 (6), 1710-1723.
  • Mazzamuto, F.; Nguyen, V. H.; Apertet, Y.; Caer, C.; Chassat, C.; Saint-Martin, J.; Dollfus, P.,Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. PhysRev B 2011, 83 (23), 235426.
  • Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H.,A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. AcsNano 2008, 2 (4), 687-692.
  • Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.;Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of Electrical, Chemical, and StructuralProperties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv FunctMater 2009, 19 (16), 2577-2583.
  • Mao, S.; Lu, G.; Chen, J., Three-dimensional graphene-based composites for energy applications. Nanoscale 2015, 7 (16), 6924-43.
  • Majumdar, A., THERMOELECTRIC DEVICES Helping chips to keep their cool. NatNanotechnol 2009, 4 (4), 214-215.
  • MacLean, H. L.; Lave, L. B., Evaluating automobile fuel/propulsion system technologies. ProgEnerg Combust 2003, 29 (1), 1-69.
  • Lunz, M.; Gerard, V. A.; Gun'ko, Y. K.; Lesnyak, V.; Gaponik, N.; Susha, A. S.; Rogach, A. L.;Bradley, A. L., Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTeNanocrystal Quantum Dot Monolayers. Nano Lett 2011, 11 (8), 3341-3345.
  • Lu, W.; Lieber, C. M., Nanoelectronics from the bottom up. Nat Mater 2007, 6 (11), 841-850.
  • Low, J. X.; Cao, S. W.; Yu, J. G.; Wageh, S., Two-dimensional layered composite photocatalysts. Chem Commun 2014, 50 (74), 10768-10777.
  • Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. B., Plasmon Resonant Enhancement ofPhotocatalytic Water Splitting Under Visible Illumination. Nano Lett 2011, 11 (3), 1111-1116.
  • Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; Lai, C. S.; Li, L. J., Growth of Large-Area and Highly Crystalline MoS2 Thin Layerson Insulating Substrates. Nano Lett 2012, 12 (3), 1538-1544.
  • Linic, S.; Christopher, P.; Ingram, D. B., Plasmonic-metal nanostructures for efficient conversionof solar to chemical energy. Nat Mater 2011, 10 (12), 911-921.
  • Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J.,Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4 (20), 6637-6641.
  • Lin, C. Y.; Lai, Y. H.; Mersch, D.; Reisner, E., Cu2O vertical bar NiOx nanocomposite as aninexpensive photocathode in photoelectrochemical water splitting. Chem Sci 2012, 3 (12), 3482-3487.
  • Lim, H.; Yoon, S. I.; Kim, G.; Jang, A. R.; Shin, H. S., Stacking of Two-Dimensional Materials inLateral and Vertical Directions. Chem Mater 2014, 26 (17), 4891-4903.
  • Lieber, C. M.; Wang, Z. L., Functional nanowires. Mrs Bull 2007, 32 (2), 99-108.
  • Li, J. T.; Wu, N. Q., Semiconductor-based photocatalysts and photoelectrochemical cells for solarfuel generation: a review. Catal Sci Technol 2015, 5 (3), 1360-1384.
  • Leonov, V.; Torfs, T.; Fiorini, P.; Van Hoof, C., Thermoelectric Converters of Human Warmth forSelf-Powered Wireless Sensor Nodes. Sensors Journal, IEEE 2007, 7 (5), 650-657.
  • Lee, K. S.; El-Sayed, M. A., Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 2006,110 (39), 19220-19225.
  • Lee, C. J.; Park, J., Growth model of bamboo-shaped carbon nanotubes by thermalchemical vapor deposition. Appl Phys Lett 2000, 77 (21), 3397-3399.
  • Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nanowire dyesensitizedsolar cells. Nat Mater 2005, 4 (6), 455-459.
  • Law, M.; Goldberger, J.; Yang, P. D., Semiconductor nanowires and nanotubes. AnnuRev Mater Res 2004, 34, 83-122.
  • Kudo, Y.; Takai, K.; Enoki, T., Electron transport properties of graphene with charged impuritiesand vacancy defects. J Mater Res 2013, 28 (8), 1097-1104.
  • Kotov, N. A.; Dekany, I.; Fendler, J. H., Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. J Phys Chem-Us 1995, 99 (35), 13065-13069.
  • Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G., Nano-embossed HollowSpherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells. Adv Mater2008, 20 (1), 195-199.
  • Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J., Photodetection with Active OpticalAntennas. Science 2011, 332 (6030), 702-704.
  • Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D., Nanowire ultravioletphotodetectors and optical switches. Adv Mater 2002, 14 (2), 158-+.
  • Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich methodfor gold nanoparticle synthesis revisited. J Phys Chem B 2006, 110 (32), 15700-15707.
  • Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P., Engineered doping of organic semiconductors forenhanced thermoelectric efficiency. Nat Mater 2013, 12 (8), 719-723.
  • Khoo, H. H.; Tan, R. B. H., Environmental impact evaluation of conventional fossil fuel production(oil and natural gas) and enhanced resource recovery with potential CO2 sequestration. Energ Fuel2006, 20 (5), 1914-1924.
  • Kettaf, M.; Conan, A.; Bonnet, A.; Bernede, J. C., Electrical-Properties of MolybdenumDitelluride Thin-Films. J Phys Chem Solids 1990, 51 (4), 333-341.
  • Kargar, A.; Sun, K.; Jing, Y.; Choi, C.; Jeong, H.; Jung, G. Y.; Jin, S.; Wang, D. L., 3D BranchedNanowire Photoelectrochemical Electrodes for Efficient Solar Water Splitting. ACS Nano 2013, 7 (10),9407-9415.
  • Jing, L. Q.; Zhou, J.; Durrant, J. R.; Tang, J. W.; Liu, D. N.; Fu, H. G., Dynamics ofphotogenerated charges in the phosphate modified TiO2 and the enhanced activity forphotoelectrochemical water splitting. Energ Environ Sci 2012, 5 (4), 6552-6558.
  • Jiang, X. C.; Herricks, T.; Xia, Y. N., CuO nanowires can be synthesized by heatingcopper substrates in air. Nano Lett 2002, 2 (12), 1333-1338.
  • Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W., Recent Advances inMetal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. AdvMater 2012, 24 (38), 5166-5180.
  • Jang, J. H.; Ullal, C. K.; Maldovan, M.; Gorishnyy, T.; Kooi, S.; Koh, C. Y.; Thomas, E. L., 3Dmicro- and nanostructures via interference lithography. Adv Funct Mater 2007, 17 (16), 3027-3041.
  • Jang, J. H.; Ullal, C. K.; Choi, T. Y.; Lemieux, M. C.; Tsukruk, V. V.; Thomas, E. L., 3D polymermicroframes that exploit length-scale-dependent mechanical behavior. Adv Mater 2006, 18 (16),2123-2127.
  • Ioffe, A. F., Semiconductor thermoelements, and Thermoelectric cooling. [Rev. and supplementedfor the English ed.; Infosearch: London,, 1957; p 184 p.
  • Ingram, D. B.; Linic, S., Water Splitting on Composite Plasmonic-Metal/SemiconductorPhotoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near theSemiconductor Surface. J Am Chem Soc 2011, 133 (14), 5202-5205.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature1991,354(6348), 56-58.
  • Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. D., Photoelectrochemical Properties of TiO2 NanowireArrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating. Acs Nano 2012,6 (6), 5060-5069.
  • Huang, Z. P.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U., Metal-Assisted ChemicalEtching of Silicon: A Review. Adv Mater 2011, 23 (2), 285-308.
  • Hopkins, P. E.; Norris, P. M.; Phinney, L. M.; Policastro, S. A.; Kelly, R. G., Thermal conductivityin nanoporous gold films during electron-phonon nonequilibrium. J Nanomater 2008, 2008, 418050.
  • Holland, B. T.; Blanford, C. F.; Stein, A., Synthesis of macroporous minerals with highly orderedthree-dimensional arrays of spheroidal voids. Science 1998, 281 (5376), 538-540.
  • Hodes, G.; Howell, I. D. J.; Peter, L. M., Nanocrystalline Photoelectrochemical Cells - a NewConcept in Photovoltaic Cells. J Electrochem Soc 1992, 139 (11), 3136-3140.
  • Hochbaum, A. I.; Yang, P. D., Semiconductor Nanowires for Energy Conversion. ChemRev 2010, 110 (1), 527-546.
  • Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.;Majumdar, A.; Yang, P. D., Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451 (7175), 163-U5.
  • Hoang, S.; Guo, S.; Hahn, N. T.; Bard, A. J.; Mullins, C. B., Visible light drivenphotoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett 2012, 12 (1),26-32.
  • Heremans, J. P., Low-dimensional thermoelectricity. Acta Phys Pol A 2005, 108 (4), 609-634.
  • Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M., The influence of the surfacemigration of gold on the growth of silicon nanowires. Nature 2006, 440 (7080), 69-71.
  • Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W.,Extremely efficient flexible organic light-emitting diodes with modified graphene anode. NatPhotonics 2012, 6 (2), 105-110.
  • Gunst, T.; Markussen, T.; Jauho, A. P.; Brandbyge, M., Thermoelectric properties of finitegraphene antidot lattices. Phys Rev B 2011, 84 (15), 155449.
  • Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang,P. D., Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Edit 2003,42 (26), 3031-3034.
  • Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
  • Gong, Y. J.; Liu, Z.; Lupini, A. R.; Shi, G.; Lin, J. H.; Najmaei, S.; Lin, Z.; Elias, A. L.; Berkdemir,A.; You, G.; Terrones, H.; Terrones, M.; Vajtai, R.; Pantelides, S. T.; Pennycook, S. J.; Lou, J.; Zhou,117W.; Ajayan, P. M., Band Gap Engineering and Layer-by-Layer Mapping of Selenium-DopedMolybdenum Disulfide. Nano Lett 2014, 14 (2), 442-449.
  • Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A.,Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 2010, 9 (7), 555-558.
  • Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat Mater 2007, 6 (3),183-191.
  • Fushinobu, K.; Majumdar, A.; Hijikata, K., Heat-Generation and Transport in SubmicronSemiconductor-Devices. J Heat Trans-T Asme 1995, 117 (1), 25-31.
  • Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-41.
  • Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F., Thermal Conductivityof Graphene and Graphite: Collective Excitations and Mean Free Paths. Nano Lett 2014, 14 (11),6109-6114.
  • Frens, G., Controlled Nucleation for the Regulation of the Particle Size in MonodisperseGold Suspensions. nature physical science 1973, 241, 20-22.
  • Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer,M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Self-Assembled Metal ColloidMonolayers - an Approach to Sers Substrates. Science 1995, 267 (5204), 1629-1632.
  • Fouquet, R.; Pearson, P. J. G., Seven centuries of energy services: The price and use of light in theUnited Kingdom (1300-2000). Energ J 2006, 27 (1), 139-177.
  • Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.;Koppens, F. H. L.; Palermo, V.; Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato,M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhanen, T.; Morpurgo, A.; Coleman, J. N.; Nicolosi, V.;Colombo, L.; Fert, A.; Garcia-Hernandez, M.; Bachtold, A.; Schneider, G. F.; Guinea, F.; Dekker, C.;Barbone, M.; Sun, Z. P.; Galiotis, C.; Grigorenko, A. N.; Konstantatos, G.; Kis, A.; Katsnelson, M.;Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.;Tredicucci, A.; Williams, G. M.; Hong, B. H.; Ahn, J. H.; Kim, J. M.; Zirath, H.; van Wees, B. J.; vander Zant, H.; Occhipinti, L.; Di Matteo, A.; Kinloch, I. A.; Seyller, T.; Quesnel, E.; Feng, X. L.; Teo,K.; Rupesinghe, N.; Hakonen, P.; Neil, S. R. T.; Tannock, Q.; Lofwandera, T.; Kinaret, J., Science andtechnology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale2015, 7 (11), 4598-4810.
  • Feng, Q.; Zhu, Y.; Hong, J.; Zhang, M.; Duan, W.; Mao, N.; Wu, J.; Xu, H.; Dong, F.; Lin, F.; Jin,C.; Wang, C.; Zhang, J.; Xie, L., Growth of Large-Area 2D MoS2(1-x)Se2x Semiconductor Alloys. Advanced Materials 2014, 26 (17), 2648-2653.
  • Fang, Z. Y.; Zhen, Y. R.; Fan, L. R.; Zhu, X.; Nordlander, P., Tunable wide-angle plasmonicperfect absorber at visible frequencies. Phys Rev B 2012, 85 (24).
  • Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F., AThree-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode inSupercapacitors. Adv Mater 2010, 22 (33), 3723-+.
  • Fan, P. Y.; Chettiar, U. K.; Cao, L. Y.; Afshinmanesh, F.; Engheta, N.; Brongersma, M. L., Aninvisible metal-semiconductor photodetector. Nat Photonics 2012, 6 (6), 380-385.
  • Fan, H. J.; Werner, P.; Zacharias, M., Semiconductor nanowires: From self-organization topatterned growth. Small 2006, 2 (6), 700-717.
  • Fairbanks, J., http://energy.gov/sites/prod/files/2014/03/f13/ace00e_fairbanks_2013_o.pdf. 2013.
  • Dresselhaus, M. S.; Lin, Y. M.; Black, M. R.; Rabin, O.; Dresselhaus, G., New directions for lowdimensional thermoelectricity. Mater Res Soc Symp P 2004, 793, 419-430.
  • Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of carbonnanotubes. Phys Rep 2005, 409 (2), 47-99.
  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P., New directions for low-dimensional thermoelectric materials. Adv Mater 2007, 19 (8),1043-1053.
  • Dow, H. S.; Oh, M. W.; Kim, B. S.; Park, S. D.; Min, B. K.; Lee, H. W.; Wee, D. M., Effect of Agor Sb addition on the thermoelectric properties of PbTe. J Appl Phys 2010, 108 (11).
  • Demichelis, F.; Pirri, C. F.; Tresso, E., Degree of Crystallinity and Electrical Transport-Propertiesof Microcrystalline Silicon Carbon Alloys. Philos Mag B 1993, 67 (3), 331-346.
  • Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-encapsulatedmetal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts ChemRes 2001, 34 (3), 181-190.
  • Courrol, L. C.; Silva, F. R. D. O.; Gomes, L., A simple method to synthesize silvernanoparticles by photo-reduction. Colloid Surface A 2007, 305 (1-3), 54-57.
  • Chhowalla, M.; Teo, K. B. K.; Ducati, C.; Rupesinghe, N. L.; Amaratunga, G. A. J.;Ferrari, A. C.; Roy, D.; Robertson, J.; Milne, W. I., Growth process conditions of verticallyaligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys2001, 90 (10), 5308-5317.
  • Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The chemistry of twodimensionallayered transition metal dichalcogenide nanosheets. Nat Chem 2013, 5 (4), 263-275.
  • Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M., Three-dimensionalflexible and conductive interconnected graphene networks grown by chemical vapour deposition. NatMater 2011, 10 (6), 424-428.
  • Chen, Z. H.; Tang, Y. B.; Liu, C. P.; Leung, Y. H.; Yuan, G. D.; Chen, L. M.; Wang, Y. Q.; Bello, I.;Zapien, J. A.; Zhang, W. J.; Lee, C. S.; Lee, S. T., Vertically Aligned ZnO Nanorod Arrays Sentisizedwith Gold Nanoparticles for Schottky Barrier Photovoltaic Cells. J Phys Chem C 2009, 113 (30),13433-13437.
  • Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K. J.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S., Thermal conductivity of isotopically modified graphene. Nat Mater 2012, 11 (3),203-207.
  • Chen, J. I. L.; von Freymann, G.; Kitaev, V.; Ozin, G. A., Effect of disorder on the opticallyamplified photocatalytic efficiency of titania inverse opals. J Am Chem Soc 2007, 129 (5), 1196-1202.
  • Chen, H. M.; Chen, C. K.; Chang, Y. C.; Tsai, C. W.; Liu, R. S.; Hu, S. F.; Chang, W. S.; Chen, K. H., Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency forWater Splitting. Angew Chem Int Edit 2010, 49 (34), 5966-5969.
  • Chen, G.; Shakouri, A., Heat transfer in nanostructures for solid-state energy conversion. J HeatTrans-T Asme 2002, 124 (2), 242-252.
  • Chang, Q. H.; Huang, L.; Wang, J. Z.; Ma, Z. J.; Li, P. P.; Yan, Y.; Zhu, J. X.; Xu, S. H.; Shen, L.;Chen, Q.; Yu, Q. J.; Shi, W. Z., Nanoarchitecture of variable sized graphene nanosheets incorporatedinto three-dimensional graphene network for dye sensitized solar cells. Carbon 2015, 85, 185-193.
  • Chang, P. H.; Bahramy, M. S.; Nagaosa, N.; Nikolic, B. K., Giant Thermoelectric Effect inGraphene-Based Topological Insulators with Heavy Adatoms and Nanopores. Nano Lett 2014, 14 (7),473779-3784.
  • Chandrasekharan, N.; Kamat, P. V., Improving the Photoelectrochemical Performance ofNanostructured TiO2 Films by Adsorption of Gold Nanoparticles†. The Journal of PhysicalChemistry B 2000, 104 (46), 10851-10857.
  • Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H., Metal Oxide-Coated Three-Dimensional Graphene Prepared by the Use of Metal-Organic Frameworks as Precursors. AngewChem Int Edit 2014, 53 (5), 1404-1409.
  • Cao, X. H.; Yin, Z. Y.; Zhang, H., Three-dimensional graphene materials: preparation, structuresand application in supercapacitors. Energ Environ Sci 2014, 7 (6), 1850-1865.
  • Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X.,Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011, 10 (6), 429-433.
  • Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of thiolderivatisedgold nanoparticles in a two-phase Liquid-Liquid system. Journal of the ChemicalSociety, Chemical Communications 1994, (7), 801-802.
  • Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. H., Nucleation and growth of carbonnanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 2000, 77 (17),2767-2769.
  • Bjorksten, U.; Moser, J.; Gratzel, M., Photoelectrochemical Studies on NanocrystallineHematite Films. Chem Mater 1994, 6 (6), 858-863.
  • Bhushan, B., Springer handbook of nanotechnology. 3rd rev. and extended ed.; Springer:Berlin ; New York, 2010; p xlviii, 1961 p.
  • Bendall, J. S.; Etgar, L.; Tan, S. C.; Cai, N.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M.; Welland,M. E., An efficient DSSC based on ZnO nanowire photo-anodes and a new D-pi-A organic dye. EnergEnviron Sci 2011, 4 (8), 2903-2908.
  • Bell, L. E., Cooling, heating, generating power, and recovering waste heat with thermoelectricsystems. Science 2008, 321 (5895), 1457-1461.
  • Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes - the route towardapplications. Science 2002, 297 (5582), 787-792.
  • Barreiro, A.; Selbmann, D.; Pichler, T.; Biedermann, K.; Gemming, T.; Rummeli, M. H.;Schwalke, U.; Buchner, B., On the effects of solution and reaction parameters for the aerosolassistedCVD growth of long carbon nanotubes. Appl Phys a-Mater 2006, 82 (4), 719-725.
  • Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A., Rationally designed nanostructuresfor surface-enhanced Raman spectroscopy. Chem Soc Rev 2008, 37 (5), 885-897.
  • Balandin, A. A., Thermal properties of graphene and nanostructured carbon materials. Nat Mater2011, 10 (8), 569-581.
  • Asif, M.; Muneer, T., Energy supply, its demand and security issues for developed and emergingeconomies. Renew Sust Energ Rev 2007, 11 (7), 1388-1413.
  • Archer, M. D.; Nozik, A. J., Nanostructured and photoelectrochemical systems for solar photonconversion. Imperial College Press ;World Scientific Pub. Co.: LondonSingapore ; Hackensack, NJ,2008; p xx, 760 p.
  • (a) Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S. B.; Feng, X. L.; Mullen, K., Three-DimensionalGraphene-Based Macro- and Mesoporous Frameworks for High-Performance ElectrochemicalCapacitive Energy Storage. J Am Chem Soc 2012, 134 (48), 19532-19535; (b) Li, X. H.; Antonietti,M., Polycondensation of Boron- and Nitrogen-Codoped Holey Graphene Monoliths from Molecules:Carbocatalysts for Selective Oxidation. Angew Chem Int Edit 2013, 52 (17), 4572-4576.
  • (a) Song, D. W.; Shen, W. N.; Dunn, B.; Moore, C. D.; Goorsky, M. S.; Radetic, T.; Gronsky, R.;Chen, G., Thermal conductivity of nanoporous bismuth thin films. Appl Phys Lett 2004, 84 (11),1883-1885; (b) Lee, J. H.; Grossman, J. C., Thermoelectric properties of nanoporous Ge. Appl PhysLett 2009, 95 (1), 013106.
  • (a) Demirdoven, N.; Deutch, J., Hybrid cars now, fuel cell cars later. Science 2004, 305 (5686),44974-976; (b) Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V., The hydrogen economy. PhysToday 2004, 57 (12), 39-44.