박사

동해 울릉분지 퇴적물 내 혐기성 유기탄소 분해에 관련된 미생물 군집구조 = Microbial community structures associated with anaerobic carbon oxidation in the Ulleung Basin sediments, East Sea

조혜연 2015년
논문상세정보
    • 저자 조혜연
    • 형태사항 26 cm: 삽도 ;: xii, 154 p. :
    • 일반주기 권두 Abstract, 권말 국문요지 수록, 지도교수: 현정호, 부록 수록, 참고문헌: p. 124-145
    • 학위논문사항 해양환경과학과,, 학위논문(박사)-, 2015. 8, 한양대학교 대학원 :
    • 발행지 서울
    • 언어 eng
    • 출판년 2015
    • 발행사항 한양대학교 대학원,
    • 주제어 해양학
    유사주제 논문( 9)
' 동해 울릉분지 퇴적물 내 혐기성 유기탄소 분해에 관련된 미생물 군집구조 = Microbial community structures associated with anaerobic carbon oxidation in the Ulleung Basin sediments, East Sea' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 해양학
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
10 0

0.0%

' 동해 울릉분지 퇴적물 내 혐기성 유기탄소 분해에 관련된 미생물 군집구조 = Microbial community structures associated with anaerobic carbon oxidation in the Ulleung Basin sediments, East Sea' 의 참고문헌

  • methyl coenzyme M reductase A. (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483-5491.
  • Zhang Y, Maignien L, Zhao X, Wang F, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiology 11:137-144.
  • Yoon J-H, Kang S-J, Park S, Oh T-K (2007d) Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia. Int J Syst Evol Microbiol 57:1310-1314
  • Yoon J-H, Kang S-J, Oh T-K (2006d) Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 56:1251-1255
  • Yong JJ, Park SJ, Kim HJ, Rhee SK (2007) Glaciecola agarilytica sp. nov., an agar-digesting marine bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 57:951-953
  • Yang S-H, Lee J-H, Ryu J-S, Kato C, Kim S-J (2007) Shewanella donghaensis sp. nov., a psychrophilic, piezosensitive bacterium producing high levels of polyunsaturated fatty acid, isolated from deep-sea sediments. Int J Syst Evol Microbiol 57:208-212
  • Yanagawa K, Sunamura M, Lever, Y. Morono MA, Hiruta A, Ishizaki O, Matsumoto R, Urabe T, Inagaki F (2011) Niche separation of methanotrophic archaea (ANME-1 and - 2) in methane-seep sediments of the Eastern Japan Sea offshore Joetsu. Geomicrobiol J 28:118-129.
  • Wuchter C, Abbas B, Coolen MJL, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburf JJ, Schouten S, Damste JSS (2006) Document Archaeal nitrification in the ocean. PNAS 103:12317-12322.
  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. in The prokaryotes, eds Balows A., Tr per H. G., Dworkin M., Harder W., Schleifer K.-H. (Springer-Verlag, New York, N.Y), IV: 3352–3378
  • Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA stable-isotope probing Nature Protocols 2: 838-844
  • Webster G, Watt Lc, Rinna J, Fry JC, Evershed RP, Parkes RJ, Weightman AJ (2006) A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulphate-reducing marine sediment enrichments. Environ Microbiol 8: 1575-1589.
  • Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes RJ (2011) Enrichment and cultivation of prokaryotes associated with the sulphate–methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol 77:248–263.
  • Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72:179-197.
  • Webster G, Parkes RJ, Fry JC, Weightman AJ (2004) Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol 70:5708-5713.
  • Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65-85.
  • Wagner M, Roger AJ, Flax JL, Brussequ GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductase supports an early origin of sulfate respiration. J Bacteriol 180:2975- 2982.
  • Vetriani C, Tran HV, Kerkhof LJ (2003) Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 69:6481–6488.
  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Kelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.
  • Vandieken V, Thamdrup B (2013) Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Mcirobiol Ecol 84: 373-386.
  • Vandieken V, Pester M, Finke N, Hyun J-H, Friedrich MW, Loy A, Thamdrup B (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetateoxidizing manganese-reducing bacteria . ISME J 6:2078-2090.
  • Vandieken V, Finke N. J rgensen BB (2006) Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(III) reduction as principal anaerobic respiratory pathways. Mar Ecol Pro Ser 322: 15-27.
  • Vandieken V, Finke N, Tamdrup B (2014) Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment. FEMS Microbiol Ecol 87: 733-745.
  • UBGH2 Scientists (2010) Preliminary Report of UBGH Drilling Expedition 2 submitted to Gas Hydrate R&D Organization, Korea 710P.
  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985–1995
  • Treude T, Niggemann J, Kallmeyer J, Wintersteller P, Schubert CJ, Boetius A, J rgensen BB (2005) Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta 69:2767-2779.
  • Thaumdrup B, Fleischer S (1998) Temperature dependence of oxygen respiration, nitrogen mineralization and nitrification in Arctic sediment. Aquat Mcirob Ecol 151:191-199
  • Thamdurp B, Dalsgaard T (2000) The fate of ammonium in anoxic manganese oxide-rich marine sediment. Geochimica et Cosmochimica Acta 64:4157-4164
  • Thamdrup B, Rossell -Mora R, Amann R (2000) Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol 66:2888–2897
  • Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650
  • Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomes A, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence of anaerobic methanothophic communities. Appl Environ Microbiol 68:1994-2007.
  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193-198.
  • Tanaka N, Romanenko LA, Frolova GM, Mikhailov VV (2010) Aestuariibacter litoralis sp. nov., isolated from a sandy sediment of the Sea of Japan. Int J Syst Evol Microbiol 60:317-320
  • Suzuki D, Ueki A, Amaishi A, Ueki K (2008) Desulfoluna butyratoxydans gen. nov., sp. nov., a novel gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 58:826-832
  • Suzuki D, Ueki A, Amaishi A, Ueki K (2007b) Desulfopila aestuarii gen. nov., sp. nov., a gram-nagative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57:520-526
  • Suzuki D, Ueki A, Amaishi A, Ueki K (2007a) Desulfobulbus japonicus sp. nov., a novel Gram-negative propionate-oxidizing, sulfate-reducing bacterium ioslated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57:849-855
  • Sievert SM, Wieringa EBA, Wirsen CO, Taylor CD. (2007) Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygensulfide gradients. Environ Microbiol 9: 271-276
  • Shubert CJ, Ferdelman TG, Strotmann B (2000) Organic matter composition and sulfate reduction rates in sediments off Chile. Organic. Geochim. 31:351–361
  • Shin HR, Shin CW, Kim C, Byun SK, Hwang SC (2005) Movement and structural variation of warm eddy WE92 for three years in the western East/Japne Sea. Deep-Sea Res II 52:1742–1762.
  • Seyler LM, McGuinness LM, Kerkhof LJ (2014) Crenarchaeal heterotrophy in salt marsh sediments. ISME J 8:1534-1543.
  • Seitzinger S,Harrison J, B hlke JK,Bouwman AF,Lowrance R,Peterson B,Tobias C,Van Drecht G (2006) Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications 16: 2064-2090
  • Schloss RD, Westcott SL, Thomas R, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DV, Weber CF (2009) Introducing mother: open-source, platform-independent, communitysupported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537-7541.
  • Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8:1251-1260.
  • Schauer R, Roy H, Augustin N, Gennerich HH, Peters M, Wenzhoefer F, Amann R, Meyerdierks A (2011) Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field. Environ Microbiol. 13: 2633-2648.
  • Schauer R, Bienhold C, Ramette A, Harder J (2010) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J 4(2):159-70
  • Sch fer H, Ferdelman TG, Fossing H, Muyzer G (2007) Microbial diversity in deep sediments of the Benguela Upwelling System. Aquat Microb Ecol 50:1-9.
  • Sasi Jyothsna TS1, Rahul K, Ramaprasad EV, Sasikala Ch, Ramana ChV (2013) Arcobacter anaerophilus sp. nov. isolated from an estuarine sediment and emended description of the genus Arcobacter. Int J Syst Evol Microbiol 63: 4619-4625.
  • S rensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596-4603.
  • S rensen J, J rgensen BB (1987) Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry. Geochimica et Cosmochimica Acta 51: 1583-1590
  • S rensen J, Christensen D, J rgensen BB (1981) Volatile fatty acid and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5-11.
  • S rensen J (1982) Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43:319-324.
  • Ruff SE, Arnds J, Knittel K, Amann R, Wegener G, Ramette A, Boetius A (2013) Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS One 30:e72627.
  • Romanenko, LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E (2004) Reinekea marinisedimentorum gen. nov., sp., nov., a novel gammaproteobacterium from marine coastal sediments. Int J Syst Evol Microbiol 54:669-673
  • Romanenko LA, Tanaka N, Svetashev VI, Mikhailov VV (2011c) Primorskyibacter sedentarius gen. nov., sp. nov., a novel member of the class Alphaproteobacteria from shallow marine sediments. Int J Syst Evol Microbiol 61:1572-1578
  • Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV (2012) Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 63:1261- 1266
  • Romanenko LA, Tanaka N, Svetashev VI, Kalinovskaya NI (2011b) Pacificibacter maritimus gen. nov., sp. nov., isolated from shallow marine sediment. Int J Syst Evol Microbiol 61:1375-1381
  • Romanenko LA, Tanaka N, Svetashev VI, Falsen E (2013b) Description of Cobetia amphilecti sp. nov., Cobetia litoralis sp. nov. and Cobetia pacifica sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of Cobetia marina and emended descriptions of the genus Cobetia and Cobetia marina. Int J Syst Evol Microbiol 63:288-297
  • Romanenko LA, Tanaka N, Kalinovskaya NI, Mikhailov (2013a) Antimicrobial potential of deep surface sediment associated bacteria from the Sea of Japan. World J Microbiol Biotechnol 29:1169-1177
  • Romanenko LA, Tanaka N, Frolova GM, Svetashev VI, Mikhailov VV (2011a) Litoreibacteralbidus gen. nov., sp. nov. and Litoreibacter janthinus sp. nov., members of the class Alphaproteobacteria isolated from the seashore. Int. J. Syst. Evol. Microbiol. 61:148–154
  • Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2010b) Kangiella japonica sp. nov., isolated from a marine environment. Int J Syst Evol Microbiol 60:2583-2586
  • Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2010a) Arenicella xantha gen. nov., sp. nov., a gammaproteobacterium isolated from a marine sandy sediment. Int J Syst Evol Microbiol 60:1832-1836
  • Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2009b) Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the Sea of Japan. Int J Syst Evol Microbiol 59:1443-1446
  • Romanenko LA, Tanaka N, Frolova GM (2009a) Marinomonas arenicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 59:2834-2838
  • Romanenko LA, Schumann P, Zhukova NV, Rohde M, Mikhailov VV, Stackebrandt E (2003) Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53:1885-1888
  • Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55:143-148
  • Reschke S, Ittekkot V, Panin N (2002) The nature of organic matter in the Danube river particles and north-western Black Sea sediments. Estuar Coast Shelf Sci 54:563–574
  • Reeburgh WS, Alperin MJ (1988) Studies on anaerobic methane oxidation. In Degens ET, Kempe S and Naidu AS (Eds.), Transport of carbon and minerals in major world rivers, lakes, and estuaries (Pt. 5). SCOPE/UNEP, 367-375.
  • Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethaneand propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412-6422
  • Raghoebarsing AA., Pol A, van de Pas-Schoonen KT, Ettwig KF, Rijpstra WI, Schouten S, Damst JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918-921.
  • Radajewski S, Ineson P, Parekh N, Murrell J (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403: 646-649.
  • Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Mffett JW, Armbrust EV, Stahl DA (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS 111:12504-12509
  • Paull, C. K., W. Usseler III, W. P. Dillon (1991) Is the extent of glaciations limited by marine gas-hydrates? Geophys Res Lett 18:432-434.
  • Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PN, Lettinga G, Stams AJ (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159-2165.
  • Parkes JR, Gragg BA, Banning N, Brock F, Webster G, Fry GC, Hornibrook E, Pancost RD, Kelly S, Knab N, J rgensen BB, Rinna J, Weightman AJ (2007) Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol 9:1146-1161.
  • Park S-J, Park B-J, Rhee S-K (2008) Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12:605-615
  • Park S-J, Kang C-H, Nam Y-D, Bae J-W, Park Y-H, Quan Z-X, Moon D-S, Kim H-J, Roh DH, Rhee S-K (2006) Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 56:895-898
  • Park B-J, Park S-J, Yoon D-N, Schouten S, Damst JSS, Rhee S-K (2010) Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 76:7575-7587
  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001b) Methaneconsuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484-487.
  • Orphan VJ, Hinrichs K-U, Ussler III W, Paull CK, Taylor LT, Sylva SS, Hayes JM, Delong EF (2001a) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922-1934.
  • Orcutt BN, Joye SB, Kleindienst S, Knittel K, Alban R, Retiz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res II 57:2008-2021.
  • Ohta K, Terai H, Kimura I, Tanaka K (1999) Simultaneous determination of hydrogen, methane, and carbon monoxide in water by gas chromatography with a semiconductor detector. Anal Chem 71:2697–2699.
  • Nunoura T,Oida H, Toki T, Ashi J, Takai K, Horikoshi K (2006) Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol Ecol 57:149-157.
  • Nunoura T, Oida H, Miyazaki J, Miyashita A, Imachi H, Takai K (2008) Quantification of mcrA by fluorescent PCR in methanogenic and anaerobic methanotrophic microbial communities. FEMS Microbiol Ecol 64:240-247.
  • Nielsen OI, Kristensen E, Holmer M (2003) Impact of Arenicola marina (polychaeta) on sediment sulfur dynamics. Aquat Microb Ecol 33:95–105
  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environmental Microbiology 6:274-287.
  • Nedashkovskaya OI, Vancanneyt M, Kim SB, Han J, Zhukova NV, Shevchenko LS (2010) Salinimicrobium marinum sp. nov., a halophilic bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Salinimicrobium and Salinimicrobium catena. Int J Syst Evol Microbiol 60:2303-2306
  • Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV (2003d) Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int J Syst Evol Microbiol 53:1287- 1290
  • Nedashkovskaya OI, Kim SB, Han SK, Lysenko AM, Rohde M, Rhee MS, Frolova GM, Falsen E, Mikhailov VV, Bae KS (2004) Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov. Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int. J. Syst. Evol. Microbiol. 54:1017–1023
  • Muyzer G, Stams AJM (2008) The ecology and biogtechnology of sulphate-reducing bacteria. Nature reviews Microbiology 6:441-454.
  • Muun CB (2004) Marine microbiology, Ecology and applications. Garland Science/ BIOS Scientific Publisheres
  • Mortimer RJG, Krom MD, Harris SJ, Hayes PJ, Davies IM, Davison W, Zhang H (2002) Evidence for suboxic nitrification in recent marine sediments. Mar Ecol Pro Ser 236:31-35.
  • Mortimer RJG, Harris SJ, Krom MD, Thomas EF, Prosser JI, Barnes J, Anschuts P, Hayes PJ, Davies IM (2004) Anoxic nitrification in marine sediments. Mar Ecol Pro Ser 276:37- 51.
  • Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10:162-173.
  • McClung CR, Patriquin DG, Davis RE (1983) Campylobacter nitrofigilis sp. nov. a nitrogenfixing bacterium associated with roots of Spartina alterniflora. Int J Syst Bacteriol 33:605-612.
  • Mark V Brown, Federico M Lauro, Matthew Z DeMaere, Les Muir, David Wilkins, Torsten Thomas, Martin J Riddle, Jed A Fuhrman, Cynthia Andrews-Pfannkoch, Jeffrey M Hoffman, Jeffrey B McQuaid, Andrew Allen, Stephen R Rintoul, and Ricardo Cavicchioli (2012) Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8:595
  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2009) Brock Biology of microorganisms.12th Ed. Rentic Hall, NJ.
  • M rsdorf G, Frunzke K, Gadkari D, Meyer O (1992) Microbial growth on carbon monoxide. Biodegradation 3:61-82.
  • Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNAbased stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Mcirobiol 6: 73-78.
  • Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61: 2132-2138.
  • Lovley DR, Phillips EJP (1988) Nobel mode of microbial energy metabolism: Oraganic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472-1480.
  • Lovley DR, Phillips EJ (1989) Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediment. Appl Environ Microbiol 55:3234-3236.
  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe (III) and Mn (IV) reduction. Adv Microb Physiol 49:219-285.
  • Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218-7230.
  • Lloyd KG, Alperin MJ, Teske A (2011) Environmental evidence for net methane production and oxidation in putative Anaerobic MEthanotrophioc (ANME) archaea. Environ Microbiol 13:2548-2564.
  • Lim D, Choi J, Xu Z, Kim M, Choi D (2009) Methane-derived authigenic carbonates from the Ulleung basin sediments, East Sea of Korea. Cont Shelf Res 29:1588-1596.
  • Liesack W, Finster K (1994) Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfurmusa gen. nov. including Desulfuromusa kysingii sp. nov. Desulfuromusa bakii sp. nov. and Desulfuromusa succinoxidans sp. nov. International journal of systematic bacteriology 44: 753-758.
  • Lie HJ, Byun SK, Bang I, Cho CH (1995) Physical structure of eddies in the southwestern East Sea. J. Oceanol Soc Kor 30:170-183
  • Levican A, Collado L, Figueras MJ (2013) Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov. two new species isolated from food and sewage. Syst Appl Microbiol 36:22-27. Li L, Kato C, Horikoshi K (1999) Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8: 659-677
  • Levican A, Collado L, Aguilar C, Yustes C, Di guez AL, Romalde JL, Figueras MJ. (2012) Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov. new species isolated from shellfish. Syst Appl Microbiol 35: 133-138.
  • Lentini CJ, Wankel SD, Hansel CM (2012) Enriched iron (III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Frontiers in Microbiology 3: article 404.
  • Leloup J, Quillet L, Berthe T, Petit F (2006) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55:230-238.
  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, J rgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131-142.
  • Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, J rgensen BB (2009) Sulfatereducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zone. Environ Microbiol 11:1278-1291.
  • Lee T, Hyun JH, Mok JS, Kim D (2008) Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung basin, East/Japan Sea. Geo Mar Lett 28:153–159.
  • Lee JC, Na JY (1985) Structure of upwelling off the southeast coast of Korea. J Oceanol Soc Kor 20:6–19.
  • Lee JC (1983) Variation of sea level and sea surface temperature associated with windinduced upwelling in the southeast coast of Korea in summer. J Oceanol Soc Kor 18:149–160.
  • Lee J-W, Kwon KK, Azizi A, Oh H-M, Kim W, Bahk J-J, Lee D-H, Lee J-H (2013) Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar Petrol Geol 47:136-146
  • Lee H-S, Kwon KK, Yang S-H, Bae SS, Park CH, Kim S-J, Lee J-H (2008) Description of Croceitalea gen. nov. in the family Flavobacteriaceae with two species, Croceitalea eckloniae sp. nov. and Croceitalea dokdonensis sp. nov., isolated from the rhizosphere of the marine alga Ecklonia kurome. Int J Syst Evol Microbiol 58:2505-2510
  • Lane DJ (1991) 16S/23S rRNA sequencing, p. 115–147. In E. Stackebrandt and M. Goodfellow (ed.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, NY.
  • L sekannT, Knitte K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance o aerobic and anaerobic methane oxidizers at the Haakon mosby mud volcano, Barents sea. Appl Environ Microbiol 73:3348-3362.
  • Kwon S-W, Kim B-Y, Weon H-Y, Baek Y-K, Go S-J (2007a) Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 57:954-958
  • Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. Proc.Natl. Acad. Sci. USA. 96, 3420-3426.
  • Kvenvolden KA (1988b) Methane hydrates and global climate. Global Biogeochem Cy 2:221-229.
  • Kvenvolden KA (1988a) Methane hydrate: a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41-51.
  • Kostka JE, Gribsholt B, Petrie E, Dalton D, Skelton H, Kristensen E (2002) The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments. Limnol Oceanogr 47:230–240
  • Kondo R, Nedwell DB, Purdy KJ, Silva SQ (2004) Detection and enumeration of sulphatereducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21:145– 157.
  • Koike I, S rensen J (1988) Nitrate reduction and denitrification in marine sediment. In T. H. Blackburn & J. S rensen (eds). Nitrogen cycling in coastal marine environemtns. SCOPE. John Wiley % Sons Ltd: 251-273.
  • Knittel K, L sekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467-479.
  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, et al. (2003) Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Giomicrobiol J 20:269-294.
  • Knab NJ, Cragg BA, Holmkvist L, Borowski C, Parkes RJ, J rgensen BB (2009) Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences 5:2305- 2341.
  • Knab NJ, Cragg BA, Borowski C, Parkes RJ, Pancost R, J rgensen BB (2008) Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses. Geochim Cosmochim Acta 72:2868-2879.
  • Kirchman DL (2012) Processes in microbial ecology. Oxford.
  • King GM (2007) Microbial carbon monoxide consumption in salt marsh sediments. FEMS Microbiol Ecol 59:2-9.
  • King GM (1988) Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh. Limnol Oceanogr 33: 376–390
  • Kim Y-G, Choi DH, Hyun S, Cho BC (2007a) Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 57:409-413
  • Kim SB, Nedashkovskaya OI, Mikhailov VV, Han SK, Kim KO, Rhee MS, Bae KS (2004) Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 54:1617-1620
  • Kim S-J, Park S-J, Cha I-T, Min D, Kim J-S, Chung W-H, Chae J-C, Jwon CO, Rhee S-K (2014) Metabolic versatility if toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomics analysis. Environl Microbiol 16: 189-204.
  • Kim KR, Kim K (1996) What is happening in the East Sea (Japan Sea)? Recent chemical observations during CREAMS 93–96. J. Kor. Soc. Oceanogr. 31:164–172
  • Kim KK, Lee J-S, L KC, Oh H-M, Kim S-G (2010c) Pontibaca methylaminivorans gen. nov., sp. nov., a member of the family Rhodobacteraceae. Int J Syst Evol Microbiol 60:2170-2175
  • Kim K, Kim KR, Chung JY, Choi BH and others (1996) New findings from CREAMS observations: water masses and eddies in the East Sea. J. Kor. Soc. Oceanogr. 31:155– 163
  • Kim BY, Yoo SH, Weon HY, Jeon YA, Hong SB, Go SJ, Stackebrandt E, Kwon SW (2008) Jannaschia pohangensis sp. nov., isolated from seashore sand in Korea. Int J Syst Evol Microbiol 58:496-499
  • Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW, Stackebrandt E, Go SJ (2006) Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56:2653- 2656
  • Kim BK, Jung M-Y, Yu DS, Park S-J, Oh TK, Rhee S-K, Kim JF (2011) Genome sequence of an ammonia-oxidizing soil archaeon, 'Candidatus Nitrosoarchaeum koreensis' MY1. J. Bacteriol. 193:5539-5540.
  • Kim BB, Cho H, Hyun J-H (2010) Community structure, diversity and vertical distribution of Archaea revealed by 16S rRNA gene analysis in the deep sea sediment of the Ulleung Basin, East Sea. Ocean and Polar Research 32:309-319.
  • Khripounoff A, Caprias J-C, Crassous P (2006) Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth. Limnol Oceanor 51(5):2033-2041
  • Khan ST, Nakagawa Y, Harayama S (2008) Fulvibacter tottoriensis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 58:1670-1674
  • Khan ST, Nakagawa Y, Harayama S (2006) Sediminicola luteus gen. nov., sp. nov., a novel member of the family Flavbacteriaceae. Int J Syst Evol Microbiol 56:841-845
  • Khan ST, Harayama S, Tamura T, Ando K, Takagi M, Kazuo S (2009) Paraoerskovia marina gen. nov., sp. nov., an actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 59:2094-2098
  • Katrin Knittel1, Tina L sekann, Antje Boetius1, Renate Kort, Rudolf Amann (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environmen Microbio 71:467-479.
  • Karl DM. (1993) Total microbial biomass estimation derived from the measurement of particulate adenosine-5'-triphosphate. In: Handbook of methods in aquatic microbial ecology, edited by Kemp, P.F., B.F. Sherr, E.B. Sherr and J.J. Cole, Lewis Publishers, Boca Raton, FL., 359-368 pp.
  • Kaneko R,Hayashi T, Tanahashi M, Naganuma T (2007) Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Mar Biotechnol 9:429-436.
  • KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543-548.
  • K nneke M, Schubert DM, Brown PC, Hugler M, Standfest S, Schwander T, von Borzyskowski LS Erb TJ, Stahl DA, Berg IA (2014) Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. PNAS 111:8239-8244.
  • K nneke M, Bernhard AE, Torre DL, Walker CB, Waterburry JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546
  • Joung YC, Kim HE, Joh KS (2013) Flavobacterium jumunjinense sp. nov., isolated from a lagoon of East Sea and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int J Syst Evol Microbiol doi: 10.1099/ijs.0.045286-0
  • Jorgensen SL, Hannisdal B, Lans n A, Baumberger T, Flesland K, Fonseca R, vre s L, Steen IH, Thorseth IH,. Pedersen RB, Schleper C (2012) Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA 109:2846-2855.
  • Jin T, Zhang T, Ye L, Lee OO, Wong YH, Qian PY (2011) Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Peral River Estruary, China. Appl Microbiol Biotechnol 90: 1137-1145
  • Javanaud C, Michotey V, Guasco S, Garcia N, Anschuts P, Canton M, Bonin P (2011) Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level. Research in Microbiology 162:848-857
  • J rgensen BB, Kasten S (2006) Sulfur cycling and methane oxidation. In Marine geochemistry. Schulz HD, Zabel M, eds. (Springer-Verlag Berlin Heidelberg New York Tokyo). P 271–309.
  • J rgensen BB (1982) Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 96:643–645.
  • J rgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, 1. Measurement with radiotracer techniques. Geomicrobiol J 1:11–27.
  • Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944-955.
  • Ivanova EP, Gorshkova NM, Zhukova NV, Lysenko AM, Zelepuga EA, Prokof’eva NG, Mikhailov VV, Nicolau DV, Christen R (2004b) Characterization of Pseudoalteromonas distincta-like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int J Syst Evol Microbiol 54:1431-1437
  • Ivanova EP, Bowman JP, Christen R, Zhukova NV, Lysenko AM, Gorshkova NM, Mitik- Dineva N, Sergeev AF, Mikhailov VV (2006) Salegentibacter flavus sp. nov. Int J Syst Evol Microbiol 56:583-586
  • Ingalls Ae, Shah SR, Hansman RL, Aluwihare LI, Samtos GM, Druffel ERM, Pearson A (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. PNAS 103: 6442-6447
  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K. (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224-7235.
  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, J rgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820.
  • Hyun J-H, Smith AC, Kostka JE (2007) Relative contributions of sulfate- and iron (III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh. Applied Geochemistry 22: 2637-2651.
  • Hyun J-H, Mok J-S. Cho, H-Y, Kim S-H, Lee KS, Kostka JE (2009) Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea Biogeochemistry 92:231-245.
  • Hyun J-H, Mok J-S, You OR, Kim D, Choi D-L (2010) Variations and controls of sulfate reduction in the continental slope and rise of the Ulleung Basin off the southeast Korean upwelling system in the East Sea. Geomicrobiol J 27:212-222.
  • Hyun J-H, Kim K-H, Kwon K-K, Lee J-H, Lee H-K, Kim S-J, Kim K-H (2002) Total microbial biomass measured by ATP in three marine sedimentary environments. Kor J Microbiol 38:119-126.
  • Hyun J-H, Kim K-H, Chi S-B, Moon J-W (1998) Distribution of ATP in the Deep-sea sediment in the KODOS 97-2 area, northeast equatorial Pacific Ocean. J Kor Soci Oceanor 3(3):142-148
  • Hyun J-H, Kim D, Shin C-W, Noh J-H, Yang E-J, Mok J-S, Kim S-H, Kim H-C, Yoo S. (2009) Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea. Aquat Microb Ecol 54:45–54.
  • Hulth S, Aller RC, Gilbert F (1999) Coupled anoxic nitrification/manganese reduction in marine sediment. Geoche Cosmochim Acta 63:49-66
  • Howarth RW (1993) Microbial processes in salt-marsh sediments.In: Ford TE (ed) Aquatic microbiology: An ecological approach. Blackwell, Cambridge, pp 239–259
  • Horozal S, Lee G, Yi B, Yoo D, Park K, Lee H, Kim W, Kim H, Lee K (2009) Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implication of heat flows derived from depths of the bottom-simulating reflector. Mar Geol 258:126–138.
  • Hong WL, Torres ME, Kim J-H, Choi J, Bahk J-J (2014) Towards quantifying the reaction network around the sulfate-methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach. Geochim. Cosmochim. Acta, 140: 127-141.
  • Holmkvist L, Ferdelman TG, J rgensen BB (2011) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75:3581-3599.
  • Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004) Potential role of an novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter eletrodiphilus gen. nov. sp. nov. in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023-6030.
  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer RG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediment. Nature 398:802-805.
  • Hines ME, Bazylinski DA, Tugel JB, Berry Lyons W (1991) Anaerobic microbial biogeochemistry in sediments from two Basins in the Gulf of Maine: Evidence for iron and manganese reduction. Source of the Document Estuarine, Coastal and Shelf Science 32: 313-324
  • Hatzenpichler R. (2012) Diversity, physiology and niche differentiation of ammoniaoxidizing archaea. Appl Environ Microbiol 78: 7501-7510
  • Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacteria diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487-1499.
  • Hamdan LJ, Gillevet PM, Pohlman JW, Sikaroodi M, Greinert J, Coffin RB (2011) Diversity and biogeochemical structuring of bacterial communities across the Porangahau ridge accretionary prism, New Zealand. FEMS Microbiol Ecol 77:518-532.
  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Robers K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95
  • Hallam SJ, Girguis RR, Preston CM, Richardson PM, DeLong EF. 2003. Identification of
  • Hall PO, Aller RC (1992) Rapid small-volume, flow injection analysis for CO2 and NH4 + in marine and freshwaters. Limnol Oceanogr 37:113–119
  • Gorshkova NM, Ivanova EP, Sergeev AF, Zhukova NV, Alexeeva Y, Wright JP, Nicolau DV, Mikhailov VV, Christen R (2003) Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53: 2073-2078
  • Glaubitz S, Lueders T, Abraham W-R, Jost G, J rgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoqutotrophic Gamma-and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environ Microbiol 11:326-337
  • Gillan DC, Danis B (2007) The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Res. Part II 54: 1682-1690
  • Gies EA, Konwar KM, Beatty T, Kallam SJ. 2014. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80:6807-6818.
  • Garcia J-L, Pate BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205-226.
  • Gamo T (1999) Global warming may have showed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea. Geophys Res Lett 26:3137-3140
  • Fry JCR, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbial Ecol 66:181-196.
  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102:14683-14688.
  • Fossing H, J rgensen, BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem 8:205–222.
  • Figueras MJ, Levican A, Collado L, Inza MI, Yustes C (2011b) Arcobacter ellisii sp. nov. isolated from mussels. Syst Appl Microbiol 34: 414-418
  • Figueras MJ, Collado L, Levican A, Perez J, Solsona MJ, Yustes C (2011a) Arcobacter molluscorum sp. nov. a new species isolated from shellfish. Syst Appl Microbiol 34:105-109.
  • Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I (2009) Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl Environ Microbiol 75: 7326-7334
  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Opden Camp HJM, Janssen-Megens EM, Francoijs
  • Elshahed MS, Youssef NH, Kuo Q, Najar FZ, Roe BA, Sisk TM, B hring SI, Hinrichs K-U, Krumholz LR (2007) Phylogenetic and metabolic diversity of Planctomycetes from anaerobic sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl Environ Microbiol 73: 4707-4716.
  • Ehrlich HL (1990) Geomicrobiology 2nd edn. Marcel Dekker Inc., New York, 646pp.
  • Durbin AM, Teske A (2010) Sediment-associated microdiversity within the marine group I crenarchaeota. Environ Microbiol Rep 2:693-703.
  • Dollhopf SL, Hyun J-H, Smith AC, Adams HJ, O’Brien S, Kostka JE (2005) Quantification fo ammonia-oxidizing bacteria and facters controlling nitrification in salt marsh sediments. Appl Environ Microbiol 71:240-246.
  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate caparcitor. Earth Planet Sci Lett 231:169-182.
  • DeLong, E.F. (1992) Archaea in coastal marine environments. Proc Natl Acad Sci U S A89: 5685-5689.
  • Dang H, Luan X-W, Chen R, Zjang X,Guo L, Klotx MG (2010) Diversity, abundance and distribution of amoA-encording archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol 72:370-385.
  • Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, Gonzalez L, Haffner GD, Mucci A, Sundby B, Fowle DA (2011) The methane cycle in ferruginius lake Matano. Geobiology 9:61-78.
  • Coolen MJL, Abbas B, Van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Sinninghe Damst JS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids Environ Microbiol 9:1001-1016
  • Conrad R, Thauer RK (1983) Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 20:229-232. Christensen JP, Rowe GT (1984) Nitrification and oxygen consumption in Northwest Atlantic deep-sea sediments. J Mar Res 42:1099-1116.
  • Collado L, Cleenwerck I, Van Trappen S, De Vos P, Figueras MJ (2009) Arcobacter mytili sp. nov. an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 59: 1391-1396
  • Cociasu A, Dorogan L, Humborg C, Popa L (1996) Long-term ecological changes in the Romanian coastal waters of the Black Sea. Mar. Pollut. Bull. 32:32−38
  • Cline JD (1969) Spectrophotometric determinations of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458.
  • Cl ment J-C, Shrestha J, Ehrenfeld JG, Jaff PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soil. Soil Biol Biochem 37:232-2328
  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biochem Cy 2:299-327.
  • Choi J-W, Im W-T, Liu Q-M, Yoo J-S, Shin J-H, Rhee S-K, Roh D-H (2007a) Planococcus donghaensis sp. nov., a starch-degrading bacterium isolated from the East Sea, South Korea. Int J Syst Evol Microbiol 57:2645-2650
  • Choi J-H, Im W-T, Yoo J-S, Lee S-M, Moon D-S, Kim H-J, Rhee S-K, Roh D-H (2008) Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. J Microbiol Biotechnol 18:189-193
  • Choi DH, Gim B-M, Choi TS, Lee J-S, Noh JH, Park Y-G, Kang S-G (2014) Seasonal variation of bacterial community composition in sediments and overlying waters of the South East Sea. J Kor Soc Oceanogr 19: 147-154.
  • Cho HY, Kim S-H, Shin K-H, Bahk J-J, Hyun J-H (2015) Microbial community composition associated with anaerobic oxidation of methane in gas hydrate-bearing sediments in the Ulleung Basin, East Sea. [The Sea] J Kor Soci Oceanogr 20: 53-62
  • Cho H, Kim S-H, Shin K-H, Bahk J-J, Hyun J-H (2015) Mcirobial community composition associated with anaerobic oxidation of methane in gas hydrate-bearing sediments in the Ulleung Basin, East Sea. J Kor Soc Oceanogr 20:53-62.
  • Chevalier N, Boulousassi I, Birgel D, Taphanel M-H, L pez-Garc a P (2012) Microbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and lipid biomarker investigation. Geobiology 11:55-71.
  • Capone DG, Kiene R (1988) Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. Limnol Oceanogr 33:725–749
  • Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology. Elsevier Academic Press, San Diego, CA
  • Canfield DE, Thamdrup B, Hansen JW (1993b) The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Act 57:3857-3883.
  • Canfield DE, J rgensen BB, Fossing H, Glud R and 6 others (1993a) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40
  • Canfield DE (1989) Reactive iron in marine sediments. Geochimica et aCosmochimica Acta 53:619-632.
  • Broecker WS (1991) The great ocean conveyor. Oceanography (Wash DC) 4:79–89
  • Boetius KA, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, J rgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623-626.
  • Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis PLoS One 6:E16626.
  • Biddle JF, Lipp JS, Lever MA, Lloyd KG, S rgensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs KU (2006) Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci 103:3846-3851.
  • Biddle JF, Cardman Z, Mendlovitx H, Albert DB, Lloyd KG, Boetius A, Teske A (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. The ISME J 6:1018-1031.
  • Berg C, Beckmann S, Jost G, Labrenz M, J rgens K (2013) Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea. FEMS Mcirobiol Ecol 85:251-261
  • Berelson WM, Prokopenko M, Sansone FJ, Graham AW, McManus J, Bernhard M (2005) Anaerobic diagenesis of silica and carbon in continental margin sediments: Discrete zones of TCO2 production. Geochim Cosmochim Acta 69:4611-4629.
  • Beal EJ, House CH, Orphan VJ. 2009. Manganese- and iron-dependent marine methane oxidation. Science 325:184-187.
  • Bartlett R, Mortimer RJG, Morris K (2008) Anoxic nitrification: Evidence from Humber Estuary sediments (UK). Chemical Geology 250: 29-39.
  • Barteltt R, Mortimer RJG, Morris K (2007) The biogeochemistry of a manganses-rich Scottish sea loch: Implications for the study of anoxic nitrification. Continenetal Shelf Research 27:1501-1509
  • Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulforvibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol p.515-521
  • Bahk J-J, Kim J-H, Kong GS, Park Y, Lee Y, Park KP (2009) Occurrence of near-seafloor gas hydrates and associated cold vents in the Ulleung Basin, East Sea. Geosci 13:371-385.
  • Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms.Aquat. Toxicol. 24: 21–62.
  • B ning P, Cuypers S, Grunwald M, Schnetger B, Brumsack HJ (2005) Geochemical characteristics of Chilean upwelling sediments at ~36 S. Mar. Geol. 220:1–21
  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 74:7724-7736.
  • Arakawa S, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C (2006) Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci Biotechnol Biochem 70:749-752
  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143-169
  • Alongi DM (1998) Coastal Ecosystem Processes. CRC Press, Boca Raton, p 419
  • Agogu H Brink M, Dinasquet J, Herndl G (2008) Major gradients in putatively nitrifying and non-nitrifying archaea in the deep North Atlantic. Nature 456: doi:10.1038/nature07535 Aller RC (1990) Bioturbation and manganese cycling in hemipelagic sediments. Phil Trans R Soc Lond 331:51–68.
  • Achtnich C, Bak F, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65-72.