박사

복합차원 열유동 해석 기법을 통한 가솔린 자동차용 엔진 폐열 회수 시스템 열교환기의 설계 최적화 : Design Optimization of Heat Exchangers of an Engine Waste Heat Recovery System for a Gasoline Vehicle based on Combined-Dimensional Thermal Flow Analysis Approach

배석정 2015년
논문상세정보
' 복합차원 열유동 해석 기법을 통한 가솔린 자동차용 엔진 폐열 회수 시스템 열교환기의 설계 최적화 : Design Optimization of Heat Exchangers of an Engine Waste Heat Recovery System for a Gasoline Vehicle based on Combined-Dimensional Thermal Flow Analysis Approach' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • boiler
  • combined-dimensional analysis
  • condenser
  • rankine cycle
  • thermal flow analysis
  • waste heat recovery system
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
65 0

0.0%

' 복합차원 열유동 해석 기법을 통한 가솔린 자동차용 엔진 폐열 회수 시스템 열교환기의 설계 최적화 : Design Optimization of Heat Exchangers of an Engine Waste Heat Recovery System for a Gasoline Vehicle based on Combined-Dimensional Thermal Flow Analysis Approach' 의 참고문헌

  • [Ye09] Ye, L., Tong, M. W. and Zeng, X. (2009), Design and analysisof multiple parallel-pass condensers. International Journal ofRefrigeration, 32, 6, 1153-1161.
  • [Wei08] Wei. D. H., Lu, X. S., Lu, Z., Gu, J. M. (2008), Dynamicmodeling and simulation of an Organic Rankine Cycle (ORC) systemfor waste heat recovery, Applied Thermal Engineering, 28, 1216?1224.
  • [Vicente04] Vicente, P. G., Garcia, A., Viedma. A. (2004).Experimental investigation on heat transfer and frictionalcharacteristics of spirally corrugated tubes in turbulent flow atdifferent Prandtl numbers, International Journal of Heat and MassTransfer, 47, 671-681.
  • [Teng07] Teng, H., Regner, G. and Cowland, C. (2007). Waste HeatRecovery of Heavy-Duty Diesel Engines by Organic Rankine CyclePart Ⅱ: Working Fluids for WHR-ORC. SAE Paper No. 2007-01-0543.
  • [Stobart06] Stobart, R., and Weerasinghe, R. (2006). Heat Recoveryand Bottoming Cycles for SI and CI Engines ?A Perspective, SAEPaper No. 2006-01-0662.
  • [Sanaye11] Sanaye, S., Dehghandokht. M. (2011). Modeling andmulti-objective optimization of parallel flow condenser usingevolutionary algorithm, Applied Energy, 88, 1568-1577.
  • [Ringler09] Ringler, J., Seifert, M., Guyotot, M. and Hubner, M.(2009). Rankine Cycle for Waste Heat Recovery of IC Engines. SAEPaper No. 2009-01-0174.
  • [Nelson09] Nelson, C. R. (2009). “Exhaust Energy Recovery,”Presentation at USDOE Directions in Engine-Efficiency and EmissionsResearch Conference.
  • [Naphon06] Naphon, P., Wongwises, S. (2006), A review of flow andheat transfer characteristics in curved tubes, Renewable and SustainableEnergy Reviews, 10, 463-490. (Requoted: Ju H, Huang Z, Xu Y, DuanB, Yu Y. (2001), Hydraulic performance of small bending radiushelical coil-pipe. J Nucl Sci Technol, 18, 826-831.)
  • [Mehta79] Mehta, M.H. , Rao, M. R. (1979), Investigations on heattransfer and frictional characteristic of enhanced tubes for condensers,Advances in Enhanced Heat Transfer, ASME, 11-21.
  • [Lopes12] Lopes, J., Douglas, R., McCullough, G., and O'Shaughnessy,R. (2012). Review of Rankine Cycle Systems Components for HybridEngines Waste Heat Recovery, SAE Paper No. 2012-01-1942.
  • [Kim06] Kim, B. J., Sohn, B. H. (2006). An experimental study offlow boiling in a rectangular channel with offset strip fins,International Journal of Heat and Fluid Flow, 27, 514-521. (Requoted:Lockhart, R. W., Martinelli, R. C. (1949). Proposed correlation of datafor isothermal two-phase two-component flow in pipes, ChemicalEngineering Progress, 45, 39?48.)
  • [Kee10] Kee., J. D. and Lee., J. H. (2010). Technology Trends ofTurbo Compound System for Engine Waste Energy Harvesting. AutoJournal of KSAE, 32, 5, 33-42.
  • [Kays84] Kays, W. M., London, A. L. (1984). Compact heatexchangers. McGraw-Hill, 3rd edition. 14-21, 35-38.
  • [Kadota08] Kadota, M. and Yamamoto, K. (2008). Advanced TransientSimulation on Hybrid Vehicle Using Rankine Cycle System. SAEPaper No. 2008-01-0310.
  • [Incropera96] Incropera, F., Dewitt, P. D. (1996). Introduction to HeatTransfer, John Wiley & Sons Inc., 3rd edition.
  • [Heo5] Heo, H. S. and Bae, S. J. (2010). Technology Trends ofRankine Steam Cycle for Engine Waste Heat Recovery. Auto Journalof KSAE, 32, 5, 23-32.
  • [Gungor86] Gungor, K. E., Winterton, R. H. S. (1986). A generalcorrelation for boiling in tubes and annuli, International Journal ofHeat Transfer, 19, 351-358.
  • [Gaddis97] Gaddis, E. S., Gnielinski, V. (1997), Pressure drop on theshell side of shell-and-tube heat exchangers with segmental baffles,Chemical Engineering and Processing, 36, 149-159.
  • [Freymann12] Freymann, R., Ringler, J., Seifert, M. and Horst, T.(2012). The Second Generation Turbosteamer. MTZ Worldwide, 2012, 2,18-28.
  • [Feru13] Feru, E., Kupper, F., Rojer, C., Seykens, X., Scappin, F.,Willems, F., Smits. J, De Jager, B., Steinbuch, M., ExperimentalValidation of a Dynamic Waste Heat Recovery System Model forControl Purposes, SAE Paper No. 2013-01-1647.
  • [Endo07] Endo, T., Kawajiri, S., Kojima, Y., Takahashi, K., Baba, T.,Ibaraki, S., Takahashi, T. and Shinohara, M. (2007). Study onMaximizing Energy in Automotive Engines. SAE Paper No.2007-01-0257.
  • [Dong13] Dong, J., Su, L., Chen, Q., Xu, W. (2013). Experimentalstudy on thermal-hydraulic performance of a wavy fin-and-flat tubealuminum heat exchanger, Applied Thermal Engineering, 51, 32-39.
  • [Dong07] Dong, J., Chen, J., Chen. Z,, Zhou, Y., Zhang, W. (2007).Heat transfer and pressure drop correlations for the wavy fin andflat tube heat exchangers, Applied Thermal Engineering, 27, 2066-2073.
  • [Domanski08] Domanski, P. A., Hermes., C. J. L. (2008). Animproved correlation for two-phase pressure drop of R-22 andR-410A in 180˚ return bends, Applied Thermal Engineering, 28, 793-800.
  • [Collier94] Collier, J. G., Thome, J. R. (1994). Convective Boiling andCondensation, 3rd ed., Oxford University Press Inc., New York, U.S,64-68.
  • [Chen09] Chen, I. Y., Tseng, C. Y., Lin, Y. T., Wang. C. C. (2009).Two-phase flow pressure change subject to sudden contraction insmall rectangular channels, International Journal of Multiphase Flow, 35,297?306.
  • [Chen07] Chen, I. Y., Liu, C. C., Lin, Chien, K. H., Wang. C. C.(2007). Two-phase flow characteristics across sudden expansion insmall rectangular channels, Experimental Thermal and Fluid Science, 32,696-706.
  • [Chang00] Chang, Y. J., Hsu, K. C., Lin, Y. T., Wang, C. C. (2000). Ageneralized friction correlation for louver fin geometry, InternationalJournal of Heat and Mass Transfer, 43, 2237-2243.
  • [Cavallini71] Cavallini, A., Zecchin., R. (1971). A dimensionlesscorrelation for heat transfer in forced convection condensation,Proceedings of the 13th International Congress of Refrigeration, 2, 193-200.
  • [Bae12] Bae, S. J., Heo, H. S., Park, J. S., Lee, H. Y. and Kim, C. J.(2012). Design and Performance Evaluation of Low TemperatureCondenser of Waste Heat Recovery System for Fuel EconomyImprovement. Spring Conference of KSAE, 250-255.
  • [Bae11] Bae, S. J., Heo, H. S., Lee, H. K., Lee, D. H., Kim, T. J.,Park, J. S., Lee, H. Y. and Kim, C. J. (2011). PerformanceCharacteristics of a Rankine Steam Cycle and Boiler for EngineWaste Heat Recovery. SAE Paper No. 2011-28-0055.
  • [Arunachalam12] Arunachalam, P. N., Shen, M., Tuner, M., Tunestal,P. and Thern. M., Waste Heat Recovery from Multiple Heat Sourcesin a HD Truck Diesel Engine Using a Rankine Cycle - A TheoreticalEvaluation, SAE Paper No. 2012-01-1602.