박사

리튬 및 소듐 이차전지용 흑연계 전극소재에 대한 연구 : Graphite Derivatives for Li and Na Rechargeable Batteries

김해겸 2015년
논문상세정보
' 리튬 및 소듐 이차전지용 흑연계 전극소재에 대한 연구 : Graphite Derivatives for Li and Na Rechargeable Batteries' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • batteries
  • carbon
  • energy conversion
  • energy storage
  • graphene
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
661 0

0.0%

' 리튬 및 소듐 이차전지용 흑연계 전극소재에 대한 연구 : Graphite Derivatives for Li and Na Rechargeable Batteries' 의 참고문헌

  • 리튬 이차 전지용 그래핀 기반 전극물질 개발
    강기석 권혁조 김해겸 홍지현 재료마당, Vol. 25, 27-33 (2012)Publications (Contributing author) [2012]
  • Zhu, Y et al. Exfoliation of graphite oxide in propylene carbonate andthermal reduction of the resulting graphene oxide platelets. ACS Nano2010, 4, 1227-1233.
  • Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.;Chen, Y. A high-performance supercapacitor-battery hybrid energy storage173device based on graphene-enhanced electrode materials with ultrahighenergy density. Energy & Environ. Sci. 2013, 6, 1623-1632.
  • Yuan, Y. F., Xia, X. H., Yang, J. L., Chen, Y. B., Guo, S. Y.Hierarchically ordered porous nickel oxide array film with enhancedelectrochemical properties for lithium ion batteries. Electrochem. Commun.2010, 12, 890-893.
  • Yang, X.; Zhu, J.; Qiu, L.; Li, D. Bioinspired Effective Prevention172of Restacking in Multilayered Graphene Films: Towards the NextGeneration of High-Performance Supercapacitors. Adv. Mater. 2011, 23,2833-2838.
  • Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.;Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-typeNax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeableNa batteries. Nat. Mater. 2012, 11, 512-517.
  • Wu, Z.-S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.-M. Doped GrapheneSheets As Anode Materials with Superhigh Rate and Large Capacity forLithium Ion Batteries. ACS Nano 2011, 5, 5463-5471.
  • Wang, Y.-X.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Reducedgraphene oxide with superior cycling stability and rate capability for sodiumstorage. Carbon 2013, 57, 202-208.
  • Wang, X.; Li, G.; Chen, Z.; Augustyn, V.; Ma, X.; Wang, G.; Dunn,B.; Lu, Y. High-Performance Supercapacitors Based on Nanocomposites ofNb2O5 Nanocrystals and Carbon Nanotubes. Adv. Energy Mater. 2011, 1,1089-1093.
  • Wang, Q.; Wen, Z. H.; Li, J. H. A Hybrid Supercapacitor Fabricatedwith a Carbon Nanotube Cathode and a TiO2?B Nanowire Anode. Adv.Funct. Mater. 2006, 16, 2141-2146.
  • Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.;Goodenough, J. B. A Superior Low-Cost Cathode for a Na-Ion Battery.Angew. Chem. Int. Ed. 2013, 52, 1964-1967.
  • Wang, J.; Polleux, J.; Lim, J.; Dunn, B. PseudocapacitiveContributions to Electrochemical Energy Storage in TiO2 (Anatase)Nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
  • Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reductionof Chemically Exfoliated Graphene Sheets. J. Am. Chem. Soc. 2009, 131,9910-9911.
  • Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K.Sn/graphene nanocomposite with 3D architecture for enhanced reversiblelithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378-8384.
  • Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets forenhanced lithium storage in lithium ion batteries. Carbon 2009, 47, 2049-2053.
  • Vivekchand, S. R. C.; Rout, C.; Subrahmanyam, K. S.; Govindaraj,A.; Rao, C. N. R. Graphene-based electrochemical supercapacitors. J ChemSci 2008, 120, 9-13.
  • Understanding the electrochemical mechanism of the new iron-basedmixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable batteryHyungsub Kim, Inchul Park, Seongsu Lee, Hyunchul Kim, Kyu-Young Park,Young-Uk Park, Haegyeom Kim, Jongsoon Kim, Hee-Dae Lim, Won-SubYoon, and Kisuk KangChemistry of Materials, Vol 25, 3614 (2013)
  • Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2cathode material in lithium ion battery.Sung-Kyun Jung, Hyeokjo Gwon, Jihyun Hong, Kyu-Young Park, Dong-Hwa Seo, Haegyeom Kim, Jangsuk Hyun, and Kisuk Kang*Advanced Energy Materials, Vol 4, 1300787(2014)
  • The predicted crystal structure of Li4C6O6, an organic cathode material forLi-ion battery, from first-principles multi-level computational methods.Dong-Hwa Seo, Hyungjun Kim, Haegyeom Kim, William A. Goddard III,and Kisuk Kang*Energy and Environmental Science, Vol. 4, 4938 (2011)
  • The potential for long-term operation of a lithium-oxygen battery using anon-carbonate-based electrolyte.Hee-Dae Lim, Kyu-Young Park, Hyeokjo Gwon, Jihyun Hong, HaegyeomKim and Kisuk Kang*Chemical Communications, Vol. 48, 8374-8376 (2012)188
  • The Reaction Mechanism and Capacity Degradation Model in LithiumInsertion Organic Cathodes, Li2C6O6, Using Combined Experimental andFirst Principles Studies.Haegyeom Kim, Dong-Hwa Seo, Gabin Yoon, William A. Goddard III,Yun-Sung Lee*, Won-Sub Yoon*, and Kisuk Kang*The Journal of Physical Chemistry Letters, Vol. 5, 3086 (2014)181
  • Tarascon, J. M.; Armand, M. Issues and challenges facingrechargeable lithium batteries. Nature 2001, 414, 359-367.
  • Superior rechargeability and efficiency of Li-O2 batteries: Hierarchicalair-electrode architecture combined with a soluble catalyst.Hee-Dae Lim, Hyelynn Song, Jinsoo Kim, Hyeokjo Gwon, Youngjoon Bae,Kyu-Young Park, Jihyun Hong, Haegyeom Kim, Taewoo Kim, Yong HyupKim, Xavier Lepro, Raquel Ovalle-Robles, Ray H. Baughman, and KisukKang*Angewandte Chemie, Vol. 53, 3926-3931 (2014)187
  • Sudworth, J.; Tiley, A. Sodium Sulphur Battery. Springer: 1985.
  • Stevens, D. A.; Dahn, J. R. The Mechanisms of Lithium andSodium Insertion in Carbon Materials. Journal of The ElectrochemicalSociety 2001, 148, A803-A811.
  • Stevens, D. A.; Dahn, J. R. High Capacity Anode Materials forRechargeable Sodium?Ion Batteries. Journal of The Electrochemical Society2000, 147, 1271-1273.
  • Stanokovich, S. et al. Synthesis of graphene-based nano-plateletss viachemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.92
  • Sodium Storage Behavior in Natural Graphite using Ether-basedElectrolyte Systems.Haegyeom Kim, Jihyun Hong, Young-Uk Park, Jinsso Kim, Insang Hwang,Kisuk Kang*Advanced Functional Materials DOI:10.1002/adfm.201402984.
  • SnO2/graphene composite with high lithium storage capability forlithium rechargeable batteries.Haegyeom Kim, Sung-Wook Kim, Young-Uk Park, Hyeokjo Gwon, Dong-Hwa Seo, Yuhee Kim and Kisuk Kang*Nano research, Vol.3, 813-821 (2010)184
  • Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-IonBatteries. Adv. Funct. Mater. 2013, 23, 947-958.
  • Size-selective synthesis of mesoporous LiFePO4/C microspheres based onnucleation and growth rate control of primary particles.Min-Young Cho, Haegyeom Kim, Hyungsub Kim, Young Su Lim, Kwang-Bum Kim, Jae-Won Lee, Kisuk Kang,* and Kwang Chul Roh. *Journal of Materials Chemistry A. Vol. 2, 5992-5927 (2014)185
  • Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat.Mater. 2008, 7, 845-854.
  • Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.;Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y., et al. EfficientReduction of Graphite Oxide by Sodium Borohydride and Its Effect onElectrical Conductance. Adv. Funct. Mater. 2009, 19, 1987-1992.
  • Seah, D. B. a. M. P. Practical Surface Analysis. John Wiley & Sons,New York, NY, USA, 2nd edition 1993.
  • Scalable Functionalized Graphene Nano-Platelets as Tunable Cathodesfor High-performance Lithium Rechargeable Batteries.Haegyeom Kim, Hee-Dae Lim, Sung-Wook Kim, Jihyun Hong, Dong-HwaSeo, Dae-chul Kim, Seokwoo Jeon, Sungjin Park, and Kisuk Kang*Scientific Reports, Vol. 3, 1506 (2013)
  • Sauvage, F.; Laffont, L.; Tarascon, J. M.; Baudrin, E. Study of theInsertion/Deinsertion Mechanism of Sodium into Na0.44MnO2. Inorg.Chem. 2007, 46, 3289-3294.
  • Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P.The First Report on Excellent Cycling Stability and Superior Rate Capabilityof Na3V2(PO4)3 for Sodium Ion Batteries. Adv. Energy Mater. 2013, 3, 444-450.
  • Santhanam, R.; Noel, M. Effect of solvents on the intercalation/deintercalationbehaviour of monovalent ionic species from non-aqueoussolvents on polypropylene-graphite composite electrode. J. Power Sources1997, 66, 47-54.
  • Sakaushi, K.; Hosono, E.; Nickerl, G.; Gemming, T.; Zhou, H.;Kaskel, S.; Eckert, J. Aromatic porous-honeycomb electrodes for a sodiumorganicenergy storage device. Nat. Commun. 2013, 4, 1485.
  • Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: anintercalation based anode for sodium-ion battery applications. J. Mater.Chem. A 2013, 1, 2653-2662.
  • Recent Progress on Flexible Lithium Rechargeable Batteries.Hyeokjo Gwon, Jihyun Hong, Haegyeom Kim, Dong-Hwa Seo, SeokwooJeon and Kisuk Kang*Energy and Environmental Science Vol 7, 538 (2014)
  • Raymundo-Pinero, E.; Leroux, F.; Beguin, F. A High-PerformanceCarbon for Supercapacitors Obtained by Carbonization of a SeaweedBiopolymer. Adv. Mater. 2006, 18, 1877-1882.
  • Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M.Nano-sized transition-metal oxides as negative-electrode materials forlithium-ion batteries. Nature 2000, 407, 496-499.
  • Perry, R. H., Green, D. W. Perry’s chemical engineers’ handbook, 7th ed.,New York, McGraw-Hill. 1997
  • Park, Y.-U.; Seo, D.-H.; Kwon, H.-S.; Kim, B.; Kim, J.; Kim, H.;Kim, I.; Yoo, H.-I.; Kang, K. A New High-Energy Cathode for a Na-IonBattery with Ultrahigh Stability. J. Am. Chem. Soc. 2013, 135, 13870-13878.
  • Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni,A.; Ruoff, R. S. Colloidal Suspensions of Highly Reduced Graphene Oxidein a Wide Variety of Organic Solvents. Nano Lett. 2009, 9, 1593-1597.
  • Park, S. et al. Colloidal suspensions of highly reduced graphene oxide ina wide variety of organic solvents. Nano Lett. 2009, 9, 1593-1597.
  • Park, S. et al. Chemical structures of hydrazine-treated graphene oxideand generation of aromatic nitrogen doping. Nat. Commun. 2012, 3, 638
  • Park, S. et al. Aqueous suspension and characterization of chemicallymodified graphene sheets. Chem. Mater. 2008, 20, 6592-6594.
  • Pan, H.; Hu, Y.-S.; Chen, L. Room-temperature stationary sodium-5ion batteries for large-scale electric energy storage. Energy & EnvironmentalScience 2013, 6, 2338-2360.
  • Oshima, T.; Kajita, M.; Okuno, A. Development of Sodium-SulfurBatteries. International Journal of Applied Ceramic Technology 2004, 1,269-276.
  • Organic Nanohybrids for Fast and Sustainable Energy Storage.Minha Lee, Jihyun Hong, Haegyeom Kim, Hee-Dae Lim, Sung Baek Cho,Kisuk Kang*, and Chan Beum Park*.Advanced Materials, Vol. 16, 2558-2565 (2014)
  • Oh, S.-M.; Myung, S.-T.; Hassoun, J.; Scrosati, B.; Sun, Y.-K.Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem.Commun. 2012, 22, 149-152.
  • Novel high-energy hybrid supercapacitor based on anatase TiO2-reducedgraphene oxide and activated carbon.Haegyeom Kim, Min-Young Cho, Mok-Hwa Kim, Kyu-Young Park,Hyeokjo Gwon, Yunsung Lee, Kwang Chul Roh, and Kisuk Kang*Advanced Energy Materials, Vol. 3, 1500 (2013)
  • Novel Transition-metal-free- Cathode for High Energy and PowerSodium Rechargeable Batteries.Haegyeom Kim, Young-Uk Park, Kyu-Young Park, Hee-Dae Lim,Jihyun Hong, and Kisuk Kang*Nano Energy, Vol. 4, 97 (2014)
  • Neutron and X-ray diffraction study of pyrophosphate-based Li2-xMP2O7(M = Fe, Co) for lithium rechargeable battery electrodesHyungsub Kim, Seongsu Lee, Young-Uk Park, Haegyeom Kim, JongsoonKim, Seokwoo Jeon and Kisuk Kang*Chemistry of Materials, Vol. 23, 3930 (2011)
  • Nesbitt, H. W.; Bancroft, G. M.; Henderson, G. S.; Ho, R.; Dalby, K.N.; Huang, Y.; Yan, Z. Bridging, non-bridging and free (O2?) oxygen in129Na2O-SiO2 glasses: An X-ray Photoelectron Spectroscopic (XPS) andNuclear Magnetic Resonance (NMR) study. J. Non-Cryst. Solids 2011, 357,170-180.
  • Nano-graphite platelet loaded with LiFePO4 nanoparticles used as thecathode in a high Performance Li-ion battery.Haegyeom Kim, Hyungsub Kim, Sung-Wook Kim, Kyu-Young Park, JinsooKim, Seokwoo Jeon, and Kisuk Kang*Carbon, Vol. 50, 1966-1971 (2012)183
  • Multicomponent effects on the crystal structures and electrochemicalproperties of spinel-structured M3O4 (M=Fe, Mn, Co) anodes in lithiumrechargeable batteries.Haegyeom Kim, Dong-Hwa Seo, Hyungsub Kim, Inchul Park, Jihyun Hong,Kyu-Young Park, and Kisuk Kang*Chemistry of Materials, Vol. 24, 720-725 (2012)
  • Mechanism of Co3O4/graphene catalytic activity in Li-O2 batteries usingcarbonate based electrolytes.Hee-Dae Lim, Hyeokjo Gwon, Haegyeom Kim, Sung-Wook Kim, TaehoYoon, Jang Wook Choi, Seung M. Oh, and Kisuk Kang*Electrochimica Acta, Vol. 90, 63-70 (2013)
  • McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.;Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.;Prud'homme, R. K., et al. Single Sheet Functionalized Graphene byOxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19,4396-4404.
  • Martins Ferreira, E. H.; Moutinho, M. V. O.; Stavale, F.; Lucchese,M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectrafrom single-, few-, and many-layer graphene with increasing disorder. Phys.Rev. B 2010, 82, 125429.
  • Lu, G., Ocola, L. E., Chen, J. Reduced graphene oxide for roomtemperaturegas sensors. Nanotechnology 2009, 20, 445502
  • Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. Largereversible capacity of high quality graphene sheets as an anode material forlithium-ion batteries. Electrochimica Acta 2010, 55, 3909-3914.
  • Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B.-S.;Hammond, P. T.; Shao-Horn, Y. High-power lithium batteries fromfunctionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531-537.
  • Lee, J.; Shin, W.; Lim, S.; Kim, B.; Choi, J. Modified graphite andgraphene electrodes for high-performance lithium ion hybrid capacitors.Mater. Renew. Sustain. Energy 2014, 3, 1-8.Publications (First author)
  • Lee, H. ?W. et al. Ultrathin spinel LiMn2O4 nanowires as high powercathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852-3856.
  • Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.;Aksay, I. A.; Car, R. Raman Spectra of Graphite Oxide and FunctionalizedGraphene Sheets. Nano Lett. 2007, 8, 36-41.
  • Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N.Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2.130Electrochem. Commun. 2010, 12, 355-358.
  • Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. ElectrodeMaterials for Rechargeable Sodium-Ion Batteries: Potential Alternatives toCurrent Lithium-Ion Batteries. Advanced Energy Materials 2012, 2, 710-721.
  • Kim, H.; Park, K.-Y.; Cho, M.-Y.; Kim, M.-H.; Hong, J.; Jung, S.-K.; Roh, K. C.; Kang, K. High-Performance Hybrid Supercapacitor Basedon Graphene-Wrapped Li4Ti5O12 and Activated Carbon. ChemElectroChem2014, 1, 125-130.
  • Kim, H.; Lim, H.-D.; Kim, S.-W.; Hong, J.; Seo, D.-H.; Kim, D.-c.;Jeon, S.; Park, S.; Kang, K. Scalable Functionalized Graphene Nanoplateletsas Tunable Cathodes for High-performance Lithium RechargeableBatteries. Sci. Rep. 2013, 3, 1506.
  • Kim, H.; Cho, M.-Y.; Kim, M.-H.; Park, K.-Y.; Gwon, H.; Lee, Y.;Roh, K. C.; Kang, K. A Novel High-Energy Hybrid Supercapacitor with anAnatase TiO2?Reduced Graphene Oxide Anode and an Activated CarbonCathode. Advanced Energy Materials 2013, 3, 1500-1506.
  • Kim, H. et al. Nano-graphite platelet loaded with LiFePO4 nanoparticlesused as the cathode in a high performance Li-ion battery. Carbon 2012, 50,1966-1971.
  • Kim, H. et al. Graphene-based hybrid electrode material for high-powerlithium-ion batteries. J. Electrochem. Soc. 2011, 158, A930-A935.
  • Kim, D.; Kang, S.-H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan,N.; Balasubramanian, M.; Johnson, C. S. Enabling Sodium Batteries UsingLithium-Substituted Sodium Layered Transition Metal Oxide Cathodes. Adv.Energy Mater. 2011, 1, 333-336.
  • Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu,131T.; Okuyama, R.; Nakai, I.; Komaba, S. Synthesis and electrode performanceof carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem.Commun. 2011, 13, 1225-1228.
  • Jung, J. Lead-Acid Battery. In Electrochemical Technologies forEnergy Storage and Conversion, Wiley-VCH Verlag GmbH & Co. KGaA:2011; pp 111-174.
  • Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L.Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ionbatteries. Electrochem. Commun. 2012, 14, 86-89.
  • Jian, Z.; Yu, H.; Zhou, H. Designing High-Capacity CathodeMaterials for Sodium-Ion Batteries. Electrochem. Commun. 2013, In press,http://dx.doi.org/10.1016/j.elecom.2013.06.017.
  • Jain, A.; Aravindan, V.; Jayaraman, S.; Kumar, P. S.;Balasubramanian, R.; Ramakrishna, S.; Madhavi, S.; Srinivasan, M. P.Activated carbons derived from coconut shells as high energy densitycathode material for Li-ion capacitors. Sci. Rep. 2013, 3, 3002.
  • Invited paper: Preparation and Electrochemical Characterization ofDoped Spinel LiMn1.88Ge0.1Li0.02O4 Cathode Material.Sung-Wook Kim, Vadam Ganesh Kumar, Dong-Hwa Seo, Young-Uk Park,Jinsoo Kim, Haegyeom Kim, Jongsoon Kim, Jihyun Hong, and Kisuk Kang*Electronic Materials Letters, Vol. 7, 105-108 (2011)
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J.Am. Chem. Soc. 1958, 80, 1339-1339.
  • Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T. Design andTailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 forNext Generation Supercapacitors. Nano Letters 2006, 6, 2690-2695.
  • Highly Reversible Co3O4/Graphene Hybrid Anode for LithiumRechargeable BatteriesHaegyeom Kim, Dong-Hwa Seo, Sung-Wook Kim, Jongsoon Kim, andKisuk Kang*Carbon, Vol. 49, 326-332 (2011)
  • High-performance hybrid supercapacitor based on graphene-wrappedLi4Ti5O12 and activated carbon.Haegyeom Kim, Kyu-Young Park, Min-Young Cho, Mok-Hwa Kim,Jihyun Hong, Sung-Kyun Jung, Kwang Chul Roh, and Kisuk Kang*ChemElectroChem, Vol. 1, 125 (2014)
  • Han, X., Chang, C., Yuan, L., Sun, T., Sun, J. Aromatic carbonylderivative polymers as high-performance Li-ion storage materials. Adv.Mater. 2007, 19, 1616-1621.
  • Han, J.; Kim, D.; Sunwoo, M. State-of-charge estimation of leadacidbatteries using an adaptive extended Kalman filter. Journal of PowerSources 2009, 188, 606-612.
  • Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaim, E.; Delmas,C. P2-NaxVO2 system as electrodes for batteries and electron-correlatedmaterials. Nat. Mater. 2013, 12, 74-80.
  • Graphene-Based Hybrid Electrode Material for High-Power Lithium-IonBatteriesHaegyeom Kim, Sung-Wook Kim, Jihyun Hong, Hee-Dae Lim, Hyung SubKim, Jung-Keun Yoo and Kisuk Kang*Journal of The Electrochemical Society, Vol. 158, A930-A935 (2011)
  • Graphene for advanced Li/S and Li/air batteries.Haegyeom Kim†, Hee-Dae Lim†, Jinsoo Kim, and Kisuk Kang*Journal of Materials Chemistry A, Vol. 2, 33 (2014) †Equal contribution182
  • Gall, T. L., Reiman, K. H., Grossel, M. C., Owen, J. R. Poly(2,5-dihydroxy-1,4-benzoquinon-3,6-methylene): a new organic polymer aspositive electrode material for rechargeable lithium batteries. J. PowerSources 2003, 119-121, 316-320.
  • Feng, H.; Cheng, R.; Zhao, X.; Duan, X.; Li, J. A low-temperaturemethod to produce highly reduced graphene oxide. Nat. Commun. 2013, 4,1539.
  • Factors that affect the phase behavior of multi-component olivine(LiFexMnyCo1-x-yPO4; 0 < x, y < 1) in lithium rechargeable batteries: Onephasereaction vs. two-phase reaction.Kyu-Young Park, Jihyun Hong, Jongsoon Kim, Young-Uk Park, HaegyeomKim, Dong-Hwa Seo, Sung-Wook Kim, Jang-Wook Choi and Kisuk Kang*Journal of The Electrochemical Society, Vol. 160, A444-A448 (2013)
  • Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.;4Nazar, L. F. A multifunctional 3.5[thinsp]V iron-based phosphate cathode forrechargeable batteries. Nat Mater 2007, 6, 749-753.
  • Electrochemical and ex-situ analysis on manganese oxide/graphenehybrid anode for lithium rechargeable batteries.Haegyeom Kim, Sung-Wook Kim, Jihyun Hong, Young-Uk Park and KisukKang*Journal of Materials Research, Vol. 26, 2665-2671 (2011)
  • Effects of sulfur doping on graphene-based nanosheets for use as anodematerials in lithium-ion batteries.Young Soo Yun, Vet-Duc Le, Haegyeom Kim, Sung-Jun Chang, Seung JaeBaek, Jungjin Park, Byung Hoon Kim, Young-Hyun Kim, Kisuk Kang, andHyoung-Joon Jin*Journal of Power Sources, Vol. 262, 79-85 (2014)
  • Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.;Novoselov, K. S.; Casiraghi, C. Probing the Nature of Defects in Grapheneby Raman Spectroscopy. Nano Lett. 2012, 12, 3925-3930.
  • Dreyer, D. R., Park, S., Bielawski, C. W., Ruoff, R. S. The chemistry ofgraphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.
  • Doeff, M. M.; Ma, Y.; Visco, S. J.; De Jonghe, L. C.Electrochemical Insertion of Sodium into Carbon. Journal of TheElectrochemical Society 1993, 140, L169-L170.
  • Dikin, D. A. et al. Preparation and characterization of grahene oxidepaper. Nature 2007, 448, 457-460.
  • Dietz, H.; Garche, J.; Wiesener, K. The effect of additives on thepositive lead?acid battery electrode. Journal of Power Sources 1985, 14,305-319.
  • Demir-Cakan, R., Hu, Y. ?S., Antonietti, M., Maier, J., Titirici, M. ?M.Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticlesassembly and lithium storage properties. Chem. Mater. 2008, 20, 1227-1229.
  • Defect-free solvothermally assisted synthesis of microsphericalmesoporous LiFePO4/C.Min-Young Cho, Kwang-Bum Kim, Jae-Won Lee, Haegyeom Kim,Hyungsub Kim, Kisuk Kang* and Kwang Chul Roh*RSC Advances, Vol. 3, 3421-3427 (2013)186
  • Critical role of oxygen evolved from layered Li-excess metal oxides inlithium rechargeable batteries.Jihyun Hong, Hee-Dae Lim, Minah Lee, Sung-Wook Kim, Haegyeom Kim,Song-Taek Oh, Geun-Chang Chung and Kisuk Kang*Chemistry of Materials, Vol. 24, 2692-2697 (2012)
  • Conway, B. E.; Birss, V.; Wojtowicz, J. The role and utilization ofpseudocapacitance for energy storage by supercapacitors. Journal of PowerSources 1997, 66, 1-14.
  • Chen, Z.; Augustyn, V.; Jia, X.; Xiao, Q.; Dunn, B.; Lu, Y. High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically PorousNanowire Composites. ACS Nano 2012, 6, 4319-4327.
  • Chen, W.; Yan, L.; Bangal, P. R. Preparation of graphene by therapid and mild thermal reduction of graphene oxide induced by microwaves.Carbon 2010, 48, 1146-1152.
  • Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. GrapheneOxide?MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010, 4,2822-2830.
  • Chen, H. et al. From biomass to a renewable LixC6O6 organic electrodefor sustainable Li-ion batteries. ChemSusChem 2008, 1, 348-355.
  • Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials forRechargeable Lithium Batteries. Angewandte Chemie International Edition2008, 47, 2930-2946.
  • Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigationof the P2?NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74-80.
  • Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.;Tolbert, S. H.; Abruna, H. D.; Simon, P.; Dunn, B. High-rate electrochemicalenergy storage through Li+ intercalation pseudocapacitance. Nat. Mater.2013, 12, 518-522.
  • Aqueous Rechargeable Li and Na Ion Batteries.Haegyeom Kim†, Jihyun Hong†, Kyu-Young Park†, Hyungsub Kim†, Sung-Wook Kim, and Kisuk Kang*Chemical Reviews, Vol. 114, 11788 (2014) †Equal contribution
  • Appetecchi, G. B.; Prosini, P. P. 0.4&#xa0;Ah classgraphite/LiMn2O4 lithium-ion battery prototypes. J. Power Sources 2005,146, 793-797.
  • Amatucci, G. G.; Tarascon, J. M.; Klein, L. C. Cobalt dissolution inLiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 1996,83, 167-173.
  • All-graphene-battery: bridging the gap between supercapacitors andlithium ion batteries.Haegyeom Kim, Kyu-Young Park, Jihyun Hong, and Kisuk Kang*Scientific Reports, Vol. 4, 5278 (2014)
  • Alcantara, R.; Jimenez-Mateos, J. M.; Lavela, P.; Tirado, J. L.Carbon black: a promising electrode material for sodium-ion batteries.Electrochem. Commun. 2001, 3, 639-642.
  • Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4Spinel: First Report on a Transition Metal Oxide for the Negative Electrodeof Sodium-Ion Batteries. Chem. Mater. 2002, 14, 2847-2848.
  • Advanced Hybrid Supercapacitor based on a mesoporous niobiumpentoxide/carbon as high-performance anode.Eunho Lim†, Haegyeom Kim†, Changshin Jo†, Kyojin Ku, Seongseop Kim,Hyung Ik Lee, In-Sik Nam, Songhun Yoon*, Kisuk Kang*, and Jinwoo Lee*ACS Nano, Vol. 8, 8968 (2014) †Equal contribution
  • Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. Solvated Li-IonTransfer at Interface Between Graphite and Electrolyte. J. Electrochem. Soc.462004, 151, A1120-A1123.
  • A new high-energy cathode for a Na-ion battery with ultrahigh stability.Young-Uk Park, Dong-Hwa Seo, Hyung-Soon Kwon, Byoungkook Kim,Jongsoon Kim, Haegyeom Kim, Inkyung Kim, Han-Ill Yoo, and Kisuk KangJournal of the American Chemical Society, Vol 135,13870 (2013)