박사

Unraveling the mechanism of Unipolar resistive switching in transition metal oxides by transmission electron microscopy : 투과전자현미경을 이용한 전이금속 산화물에서의 단극성 저항변화 소자의 작동 메커니즘 규명

권덕황 2015년
논문상세정보
' Unraveling the mechanism of Unipolar resistive switching in transition metal oxides by transmission electron microscopy : 투과전자현미경을 이용한 전이금속 산화물에서의 단극성 저항변화 소자의 작동 메커니즘 규명' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • filament
  • in-situ tem
  • memristor
  • reram
  • resistive switching
  • rram
  • tem
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
230 0

0.0%

' Unraveling the mechanism of Unipolar resistive switching in transition metal oxides by transmission electron microscopy : 투과전자현미경을 이용한 전이금속 산화물에서의 단극성 저항변화 소자의 작동 메커니즘 규명' 의 참고문헌

  • Z. Zhang, W. Sigle, and W. Kurtz, “HRTEM and EELS study of screw dislocation cores in SrTiO3,” Phys. Rev. B, vol. 69, no. 14, p. 144103, Apr. 2004.
  • Z. Zhang, W. Sigle, and M. R hle, “Atomic and electronic characterization of the a[100] dislocation core in SrTiO3,” Phys. Rev. B, vol. 66, no. 9, p. 094108, Sep. 2002.
  • Z. Zhang, W. Sigle, W. Kurtz, and M. R hle, “Electronic and atomic structure of a dissociated dislocation in SrTiO3,” Phys. Rev. B, vol. 66, no. 21, p. 214112, Dec. 2002.
  • Z. Xu, Y. Bando, W. Wang, X. Bai, and D. Golberg, “Real-Time In SituHRTEM-Resolved Resistance Switching of Ag 2S Nanoscale Ionic Conductor,” ACS Nano, vol. 4, no. 5, pp. 2515–2522, May 2010.
  • Y. Yang, W. L , Y. Yao, J. Sun, C. Gu, L. Gu, Y. Wang, X. Duan, and R. Yu, “In situ TEM Observation of Resistance Switching in Titanate Based Device,” Sci. Rep., vol. 4, p. 3890, 2014.
  • Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of conducting filament growth in nanoscale resistive memories,” Nature Communications, vol. 3, 2012.
  • Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W. D. Lu, “Electrochemical dynamics of nanoscale metallic inclusions in dielectrics,” Nature Communications, vol. 5, pp. 1–9, Jun. 2014.
  • Y. Sato, K. Kinoshita, M. Aoki, and Y. Sugiyama, “Consideration of switching mechanism of binary metal oxide resistive junctions using a thermal reaction model,” Appl. Phys. Lett., vol. 90, no. 3, p. 033503, 2007.
  • Y. Nian, J. Strozier, N. Wu, X. Chen, and A. Ignatiev, “Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides,” Phys. Rev. Lett., vol. 98, no. 14, p. 146403, Apr. 2007.
  • Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application,” Nano Lett., vol. 9, no. 4, pp. 1636–1643, 2009.
  • X. Sun, G. Li, L. Chen, Z. Shi, and W. Zhang, “Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO3/Ti memory cells,” Nanoscale research letters, vol. 6, no. 1, pp. 1–8, 2011.
  • W.-S. Kim, Y.-G. Jang, D.-H. Kim, H.-C. Kim, and S.-H. Hong, “Hetero-epitaxial growth of vertically-aligned TiO2 nanorods on an m-cut sapphire substrate with an (001) SnO2 buffer layer,” CrystEngComm, vol. 14, no. 15, p. 4963, 2012.
  • W. Jiang, M. Noman, Y. M. Lu, J. A. Bain, P. A. Salvador, and M. Skowronski, “Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen- migration-based resistance switching,” J. Appl. Phys., vol. 110, no. 3, p. 034509, Mar. 2012.
  • V. Srot, M. Watanabe, C. Scheu, P. A. van Aken, U. Salzberger, B. Luer en, J. Janek, and M. R hle, “Solid State Ionics,” Solid State Ionics, vol. 181, no. 35, pp. 1616–1622, Nov. 2010.
  • V. Metlenko, A. H. H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann-Eifert, R. Dittmann, R. Waser, and R. A. De Souza, “Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO 3?,” Nanoscale, vol. 6, no. 21, pp. 12864–12876, Aug. 2014.
  • U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Selfaccelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices,” IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 193–200, 2009.
  • U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Filament conduction and reset mechanism in NiO-based resistiveswitching memory (RRAM) devices,” IEEE Trans. Electron Devices, vol. 56, no. 2, pp. 186–192, 2009.
  • T. Oka and N. Nagaosa, “Interfaces of Correlated Electron Systems: Proposed Mechanism for Colossal Electroresistance,” Phys. Rev. Lett., vol. 95, no. 26, p. 266403, Dec. 2005.
  • T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, and T. Chikyow, “Oxygen migration at Pt/HfO[sub 2]/Pt interface under bias operation,” Appl. Phys. Lett., vol. 97, no. 8, p. 082902, 2010.
  • T. Mizoguchi, Y. Sato, J. P. Buban, K. Matsunaga, T. Yamamoto, and Y. Ikuhara, “Sr vacancy segregation by heat treatment at SrTiO[sub 3] grain boundary,” Appl. Phys. Lett., vol. 87, no. 24, p. 241920, 2005.
  • T. Leisegang, H. St cker, A. Levin, T. Wei bach, M. Zschornak, E. Gutmann, K. Rickers, S. Gemming, and D. Meyer, “Switching Ti Valence in SrTiO3 by a dc Electric Field,” Phys. Rev. Lett., vol. 102, no. 8, p. 087601, Feb. 2009.
  • T. Hara, “Electronic structures near surfaces of perovskite type oxides,” Materials Chemistry and Physics, vol. 91, no. 2, pp. 243–246, Mar. 2005.
  • T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, “Electrical properties and colossal electroresistance of heteroepitaxial SrRuO3⁄SrTi1−xNbxO3 (0.0002⩽x⩽0.02) Schottky junctions,” Phys. Rev. B, vol. 75, no. 16, p. 165101, Apr. 2007.
  • T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO[sub 3]⁄SrTi[sub 0.99]Nb[sub 0.01]O[sub 3],” Appl. Phys. Lett., vol. 86, no. 1, p. 012107, 2005.
  • T. Fujii, M. Arita, Y. Takahashi, and I. Fujiwara, “In situtransmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching,” Appl. Phys. Lett., vol. 98, no. 21, p. 212104, 2011.
  • S.-Y. Chung, I.-D. Kim, and S.-J. L. Kang, “Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate.,” Nat Mater, vol. 3, no. 11, pp. 774–778, Nov. 2004.
  • S.-J. Choi, G.-S. Park, K.-H. Kim, S. Cho, W.-Y. Yang, X.-S. Li, J.-H. Moon, K.-J. Lee, and K. Kim, “In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid Electrolyte Memory,” Adv. Mater., vol. 23, no. 29, pp. 3272–3277, Jun. 2011.
  • S. von Alfthan, N. A. Benedek, L. Chen, A. Chua, D. Cockayne, K. J. Dudeck, C. Els sser, M. W. Finnis, C. T. Koch, B. Rahmati, M. R hle, S.-J. Shih, and A. P. Sutton, “The Structure of Grain Boundaries in Strontium Titanate: Theory, Simulation, and Electron Microscopy,” Annu. Rev. Mater. Res., vol. 40, no. 1, pp. 557–599, Jun. 2010.
  • S. Tsui, Y. Q. Wang, Y. Y. Xue, and C. W. Chu, “Mechanism and scalability in resistive switching of metal-Pr[sub 0.7]Ca[sub 0.3]MnO[sub 3] interface,” Appl. Phys. Lett., vol. 89, no. 12, p. 123502, 2006.
  • S. Stille, C. Lenser, R. Dittmann, A. Koehl, I. Krug, R. Muenstermann, J. Perlich, C. M. Schneider, U. Klemradt, and R. Waser, “Detection of filament formation in forming-free resistive switching SrTiO3 devices with Ti top electrodes,” Appl. Phys. Lett., vol. 100, no. 22, p. 223503, 2012.
  • S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5655–5657, 2004.
  • S. Menzel, M. Waters, A. Marchewka, U. B ttger, R. Dittmann, and R. Waser, “Origin of the Ultra-nonlinear Switching Kinetics in Oxide-Based Resistive Switches,” Adv. Funct. Mater., vol. 21, no. 23, pp. 4487–4492, Nov. 2011.
  • S. Lee, W. G. Kim, S. W. Rhee, and K. Yong, “Resistance switching behaviors of hafnium oxide films grown by MOCVD for nonvolatile memory applications,” J. Electrochem. Soc., vol. 155, no. 2, pp. H92–H96, 2008.
  • S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, and C. S. Hwang, “Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM,” Sci. Rep., vol. 3, Dec. 2013.
  • S. B. Lee, S. H. Chang, H. K. Yoo, M. J. Yoon, S. M. Yang, and B. S. Kang, “Reversible changes between bipolar and unipolar resistance-switching phenomena in a Pt/SrTiO x/Pt cell,” Current Applied Physics, vol. 12, no. 6, pp. 1515–1517, 2012.
  • S. B. Lee, H. K. Yoo, S. H. Chang, L. G. Gao, B. S. Kang, M. J. Lee, C. J. Kim, and T. W. Noh, “Time-dependent currentvoltage curves during the forming process in unipolar resistance switching,” Appl. Phys. Lett., vol. 98, no. 5, p. 053503, 2011.
  • S. B. Lee, D.-H. Kwon, K. Kim, H. K. Yoo, S. Sinn, M. Kim, B. Kahng, and B. S. Kang, “Avoiding fatal damage to the top electrodes when forming unipolar resistance switching in nano-thick material systems,” J. Phys. D: Appl. Phys., vol. 45, no. 25, p. 255101, Jun. 2012.
  • S. Andersson, B. COLLEN, G. KRUUSE, U. KUYLENSTIERNA, A. Magneli, H. PESTMALIS, and S. Asbrink, “Identification of Titanium Oxides by X-Ray Powder Patterns,” Acta Chemica Scandinavica, vol. 11, no. 10, pp. 1653–1657, 1957.
  • R. Waser, “Nanoelectronics and information technology,” 2012.
  • R. Waser, T. Baiatu, and K.-H. Haerdtl, “DC electrical degradation of perovskite-type titanates. II. Single crystals,” Journal of the American Ceramic Society, vol. 73, no. 6, pp. 1654–1662, 1990.
  • R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., vol. 21, no. 25, pp. 2632–2663, Jul. 2009.
  • R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat Mater, vol. 6, no. 11, pp. 833–840, Oct. 2007.
  • R. T. Tung, “The physics and chemistry of the Schottky barrier height,” Appl. Phys. Rev., vol. 1, no. 1, p. 011304, Mar. 2014.
  • R. R. Cerchiara, P. E. Fischione, J. Liu, J. M. Matesa, A. C. Robins, H. L. Fraser, and A. Genc, “Raising the Standard of Specimen Preparation for Aberration-Corrected TEM and STEM,” Micros. Today, vol. 19, no. 1, pp. 16–19, Jan. 2011.
  • R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, “Ruth Muenstermann, R. Waser et al., Adv. Mater. (2010) Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devicessupp,” Adv. Mater., vol. 22, no. 43, pp. 4819–4822, Oct. 2010.
  • R. MOOS and K. H. HARDTL, “Defect chemistry of donordoped and undoped strontium titanate ceramics between 1000 and 1400 C,” Journal of the American Ceramic Society, vol. 80, no. 10, pp. 2549–2562, 1997.
  • R. Klie, M. Beleggia, Y. Zhu, J. Buban, and N. Browning, “Atomic-scale model of the grain boundary potential in perovskite oxides,” Phys. Rev. B, vol. 68, no. 21, p. 214101, Dec. 2003.
  • R. Jung, M.-J. Lee, S. Seo, D.-C. Kim, G.-S. Park, K. Kim, S. Ahn, Y. Park, I.-K. Yoo, J.-S. Kim, and B. H. Park, “Decrease in switching voltage fluctuation of Pt⁄NiO[sub x]⁄Pt structure by process control,” Appl. Phys. Lett., vol. 91, no. 2, p. 022112, 2007.
  • R. Fors, S. Khartsev, and A. Grishin, “Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition,” Phys. Rev. B, vol. 71, no. 4, p. 045305, Jan. 2005.
  • R. F. Klie, W. Walkosz, G. Yang, and Y. Zhao, “Aberrationcorrected Z-contrast imaging of SrTiO3 dislocation cores,” Journal of Electron Microscopy, vol. 58, no. 3, pp. 185–191, May 2009.
  • R. F. Klie and N. D. Browning, “Atomic scale characterization of oxygen vacancy segregation at SrTiO[sub 3] grain boundaries,” Appl. Phys. Lett., vol. 77, no. 23, p. 3737, 2000.
  • R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer Science & Business Media, 2011.
  • R. A. De Souza, “The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3,” Phys. Chem. Chem. Phys., vol. 11, no. 43, p. 9939, 2009.
  • Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, “Real-Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide-Electrolyte-Based ReRAM,” Adv. Mater., vol. 24, no. 14, pp. 1844–1849, Mar. 2012.
  • Q. Fu, T. Wagner, S. Olliges, and H.-D. Carstanjen, “Metal−Oxide Interfacial Reactions: Encapsulation of Pd on TiO 2(110),” J. Phys. Chem. B, vol. 109, no. 2, pp. 944–951, Jan. 2005.
  • P. Waldner and G. Eriksson, “Thermodynamic modelling of the system titanium-oxygen,” Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, vol. 23, no. 2, pp. 189–218, Jun. 1999.
  • P. R. Mickel, A. J. Lohn, C. D. James, and M. J. Marinella, “Isothermal switching and detailed filament evolution in memristive systems,” Adv. Mater., vol. 26, no. 26, pp. 4486–4490, 2014.
  • P. Gao, Z. Kang, W. Fu, W. Wang, X. Bai, and E. Wang, “Electrically Driven Redox Process in Cerium Oxides,” J. Am. Chem. Soc., vol. 132, no. 12, pp. 4197–4201, Mar. 2010.
  • N. Shanthi and D. D. Sarma, “N. Shanthi and D. D. Sarma PRB (1998) Electronic structure of electron doped SrTiO3,SrTiO3-delta and Sr1-xLaxTiO3,” Phys. Rev. B, vol. 57, no. 4, pp. 2153–2158, Jan. 1998.
  • N. D. Browning, R. F. Klie, and Y. Lei, “Vacancy Segregation at Grain Boundaries in Ceramic Oxides,” pp. 15–25, 2004.
  • N. A. Benedek, A. L.-S. Chua, C. Els sser, A. P. Sutton, and M. W. Finnis, “Interatomic potentials for strontium titanate: An assessment of their transferability and comparison with density functional theory,” Phys. Rev. B, vol. 78, no. 6, p. 064110, 2008.
  • M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, “Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory,” Nano Lett., vol. 9, no. 4, pp. 1476–1481, Apr. 2009.
  • M. Rozenberg, I. Inoue, and M. S nchez, “Nonvolatile Memory with Multilevel Switching: A Basic Model,” Phys. Rev. Lett., vol. 92, no. 17, p. 178302, Apr. 2004.
  • M. Quintero, P. Levy, A. Leyva, and M. Rozenberg, “Mechanism of Electric-Pulse-Induced Resistance Switching in Manganites,” Phys. Rev. Lett., vol. 98, no. 11, p. 116601, Mar. 2007.
  • M. Kim, G. Duscher, N. Browning, K. Sohlberg, S. Pantelides, and S. Pennycook, “Nonstoichiometry and the Electrical Activity of Grain Boundaries in SrTiO3,” Phys. Rev. Lett., vol. 86, no. 18, pp. 4056–4059, Apr. 2001.
  • M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory,” Adv. Mater., vol. 19, no. 17, pp. 2232–2235, Sep. 2007.
  • M. Imaeda, T. Mizoguchi, Y. Sato, H. S. Lee, S. D. Findlay, N. Shibata, T. Yamamoto, and Y. Ikuhara, “Atomic structure, electronic structure, and defect energetics in [001](310)Σ5 grain boundaries of SrTiO3 and BaTiO3,” Phys. Rev. B, vol. 78, no. 24, p. 245320, Dec. 2008.
  • M. Hamaguchi, K. Aoyama, S. Asanuma, Y. Uesu, and T. Katsufuji, “Electric-field-induced resistance switching universally observed in transition-metal-oxide thin films,” Appl. Phys. Lett., vol. 88, no. 14, p. 142508, 2006.
  • M. H. Lee and C. S. Hwang, “Resistive switching memory: observations with scanning probe microscopy,” Nanoscale, vol. 3, no. 2, p. 490, 2011.
  • M. Batuk, S. Turner, A. M. Abakumov, D. Batuk, J. Hadermann, and G. Van Tendeloo, “Atomic Structure of Defects in Anion-Deficient Perovskite-Based Ferrites with a Crystallographic Shear Structure,” Inorg. Chem., vol. 53, no. 4, pp. 2171–2180, Feb. 2014.
  • L. Fitting, S. Thiel, A. Schmehl, J. Mannhart, and D. A. Muller, “Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3,” Ultramicroscopy, vol. 106, no. 11, pp. 1053–1061, Oct. 2006.
  • K. Takehara, Y. Sato, T. Tohei, N. Shibata, and Y. Ikuhara, “Titanium enrichment and strontium depletion near edge dislocation in strontium titanate [001]/(110) low-angle tilt grain boundary,” J Mater Sci, vol. 49, no. 11, pp. 3962–3969, Mar. 2014.
  • K. T. Jacob and S. Gupta, “Phase diagram of the system Ca-Ti-O at 1200 K,” Bulletin of Materials Science, vol. 32, no. 6, pp. 611–616, Dec. 2009.
  • K. Szot, W. Speier, G. Bihlmayer, and R. Waser, “Switching the electrical resistance of individual dislocations in singlecrystalline SrTiO3,” Nat Mater, vol. 5, no. 4, pp. 312–320, 2006.
  • K. Szot, G. Bihlmayer, and W. Speier, “Nature of the resistive switching phenomena in TiO2 and SrTiO3. origin of the reversible insulator-metal transition,” Solid State Physics - Advances in Research and Applications, vol. 65, pp. 353–559, 2014.
  • K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, and C. S. Hwang, “Anode-interface localized filamentary mechanism in resistive switching of Ti O2 thin films,” Appl. Phys. Lett., vol. 91, no. 1, 2007.
  • K. M. Kim, B. J. Choi, B. W. Koo, S. Choi, D. S. Jeong, and C. S. Hwang, “Resistive switching in Pt/Al 2O 3/TiO 2/Ru stacked structures,” Electrochem. Solid-State Lett., vol. 9, no. 12, pp. 343–346, 2006.
  • K. M. Kim and C. S. Hwang, “The conical shape filament growth model in unipolar resistance switching of TiO2 thin film,” Appl. Phys. Lett., vol. 94, no. 12, 2009.
  • K. K. Likharev and D. B. Strukov, “Prospects for the development of digital CMOL circuits,” Proc. Int. Symp. Nanoscale Architect., pp. 109–116, 2007.
  • K. J. Dudeck, N. A. Benedek, M. W. Finnis, and D. J. H. Cockayne, “Atomic-scale characterization of the SrTiO_{3} Σ3(112)[1[over ]10] grain boundary,” Phys. Rev. B, vol. 81, no. 13, p. 134109, Apr. 2010.
  • K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura, and H. Takagi, “Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 47, no. 8, pp. 6266–6271, 2008.
  • J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, S.-J. Lin, W.-W. Wu, and L.-J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett., vol. 13, no. 8, pp. 3671–3677, Aug. 2013.
  • J. Y. Son and Y. H. Shin, “Direct observation of conducting filaments on resistive switching of NiO thin films,” Appl. Phys. Lett., vol. 92, no. 22, p. 222106, 2008.
  • J. Schmachtel and H. Muller-Buschbaum, “Oxotitanates with mixed valence, II, About Sr2Ti6O13,” Zeitschrift fur Naturforschung Teil B Anorganische Chemie, organische Chemie, vol. 35, no. 1, pp. 4–6, 1980.
  • J. P. Buban, M. Chi, D. J. Masiel, J. P. Bradley, B. Jiang, H. Stahlberg, and N. D. Browning, “Structural variability of edge dislocations in a SrTiO3 low-angle [001] tilt grain boundary,” J. Mater. Res., vol. 24, no. 7, pp. 2191–2199, Jan. 2011.
  • J. M. Knaup, J. Marx, and T. Frauenheim, “Reduction of the TiO 2- xmelting temperature induced by oxygen deficiency with implications on experimental data accuracy and structural transition processes,” phys. stat. sol. (RRL), vol. 8, no. 6, pp. 549–553, Mar. 2014.
  • J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nature Nanotechnology, vol. 8, no. 1, pp. 13–24, Jan. 2013.
  • J. F. Gibbons and W. E. Beadle, “Switching properties of thin Nio films,” SOLID STATE ELECTRONICS, vol. 7, no. 11, pp. 785–797, 1964.
  • J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, “‘Memristive’ switches enable “stateful” logic operations via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, Aug. 2010.
  • H. Sim, D. Choi, D. Lee, S. Seo, M. J. Lee, I. K. Yoo, and H. Hwang, “Resistance-switching characteristics of polycrystalline Nb2O5 for nonvolatile memory application,” IEEE Electron Device Lett., vol. 26, no. 5, pp. 292–294, 2005.
  • H. S. Lee, T. Mizoguchi, J. Mistui, T. Yamamoto, S. J. L. Kang, and Y. Ikuhara, “Defect energetics in SrTiO3 symmetric tilt grain boundaries,” Phys. Rev. B, vol. 83, no. 10, 2011.
  • G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, and S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiO[sub x] film,” Appl. Phys. Lett., vol. 91, no. 22, p. 222103, 2007.
  • G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, “Overview of candidate device technologies for storage-class memory,” IBM Journal of Research and Development, vol. 52, no. 4, pp. 449–464, 2008.
  • G. J. McCARTHY, W. B. White, and R. Roy, “Phase Equilibria in the 1375 C Isotherm of the System Sr‐Ti‐O,” Journal of the American Ceramic Society, vol. 52, no. 9, pp. 463–467, 1969.
  • G. I. Meijer, “Materials science: Who wins the nonvolatile memory race?,” Science, vol. 319, no. 5870, pp. 1625–1626, 2008.
  • E. M. Levin, C. R. Robbins, H. F. McMurdie, and K. Reser, “Phase Diagrams for Ceramicists,” 1969.
  • E. Lee, M. Gwon, D.-W. Kim, and H. Kim, “Resistance statedependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO[sub 3] junctions,” Appl. Phys. Lett., vol. 98, no. 13, p. 132905, 2011.
  • D.-J. Seong, M. Jo, D. Lee, and H. Hwang, “HPHA Effect on Reversible Resistive Switching of Pt⁄Nb-Doped SrTiO[sub 3] Schottky Junction for Nonvolatile Memory Application,” Electrochem. Solid-State Lett., vol. 10, no. 6, p. H168, 2007.
  • D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilamentsin TiO,” Nature Nanotechnology, vol. 5, no. 2, pp. 148–153, Jan. 2010.
  • D. S. Shang, J. R. Sun, L. Shi, J. Wang, Z. H. Wang, and B. G. Shen, “Electronic transport and colossal electroresistance in SrTiO[sub 3]:Nb-based Schottky junctions,” Appl. Phys. Lett., vol. 94, no. 5, p. 052105, 2009.
  • D. S. Jeong, H. Schroeder, and R. Waser, “Coexistence of bipolar and unipolar resistive switching behaviors in a Pt TiO2 Pt stack,” Electrochem. Solid-State Lett., vol. 10, no. 8, pp. G51–G53, 2007.
  • D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, “Characteristic electroforming behavior in Pt/ TiO2 /Pt resistive switching cells depending on atmosphere,” J. Appl. Phys., vol. 104, no. 12, 2008.
  • D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, “Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications,” IEEE Electron Device Lett., vol. 26, no. 10, pp. 719–721, 2005.
  • D. E. RASE and R. ROY, “Phase Equilibria in the System Bao-Tio2,” Journal of the American Ceramic Society, vol. 38, no. 3, pp. 102–113, 1955.
  • D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May 2008.
  • D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, “Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3,” Nature, vol. 430, no. 7000, pp. 657–661, 2004.
  • C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, “Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys. Lett., vol. 86, no. 26, pp. 1–3, 2005.
  • C. Park, Y. Seo, J. Jung, and D. W. Kim, “Electrodedependent electrical properties of metal/Nb-doped SrTiO[sub 3] junctions,” J. Appl. Phys., vol. 103, no. 5, p. 054106, 2008.
  • C. Lenser, M. Patt, S. Menzel, A. K hl, C. Wiemann, C. M. Schneider, R. Waser, and R. Dittmann, “Insights into Nanoscale Electrochemical Reduction in a Memristive Oxide: the Role of Three-Phase Boundaries,” Adv. Funct. Mater., vol. 24, no. 28, pp. 4466–4472, Apr. 2014.
  • C. LO, “Memristor. The missing circuit element,” IEEE Trans Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.
  • C. L. Jia, “Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials,” Science, vol. 303, no. 5666, pp. 2001–2004, Mar. 2004.
  • C. Jooss, L. Wu, T. Beetz, R. F. Klie, M. Beleggia, M. A. Schofield, S. Schramm, J. Hoffmann, and Y. Zhu, “Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites,” Proceedings of the National Academy of Sciences, vol. 104, no. 34, pp. 13597–13602, 2007.
  • B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, no. 3, 2005.
  • B. Hessen, S. A. Sunshine, and T. Siegrist, “New reduced ternary titanates from borate fluxes,” Journal of Solid State Chemistry, vol. 94, no. 2, pp. 306–312, 1991.
  • A. Sawa, “Resistive switching in transition metal oxides,” Materials today, vol. 11, no. 6, pp. 28–36, May 2008.
  • A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti⁄Pr[sub 0.7]Ca[sub 0.3]MnO[sub 3] interface,” Appl. Phys. Lett., vol. 85, no. 18, p. 4073, 2004.
  • A. M. Abakumov, J. Hadermann, S. Bals, I. V. Nikolaev, E. V. Antipov, and G. Van Tendeloo, “Crystallographic Shear Structures as a Route to Anion-Deficient Perovskites,” Angew. Chem., vol. 118, no. 40, pp. 6849–6852, Oct. 2006.
  • A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, pp. 139–141, 2000.