박사

Preparation and characterization of cellulose nanofibril aerogel cross-linked with maleic acid and sodium hypophosphite : 말레인산과 차아인산나트륨을 이용한 가교 결합된 셀룰로오스 나노피브릴 에어로젤의 제조 및 특성 연구

김채훈 2015년
논문상세정보
' Preparation and characterization of cellulose nanofibril aerogel cross-linked with maleic acid and sodium hypophosphite : 말레인산과 차아인산나트륨을 이용한 가교 결합된 셀룰로오스 나노피브릴 에어로젤의 제조 및 특성 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • aerogel
  • cationic modification
  • cellulose nanofibril
  • cross-linking
  • ion adsorption
  • shape recovery
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
65 0

0.0%

' Preparation and characterization of cellulose nanofibril aerogel cross-linked with maleic acid and sodium hypophosphite : 말레인산과 차아인산나트륨을 이용한 가교 결합된 셀룰로오스 나노피브릴 에어로젤의 제조 및 특성 연구' 의 참고문헌

  • de Melo, J. C. P., da Silva Filho, E. C., Santana, S. A. A., and Airoldi, C., Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface, Colloids and Surfaces A, 346(1-3):138-145 (2009)
  • Zimmermann, T., Bordeanu, N., and Strub, E., Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohyd. Polym. 79(4):1086-1093 (2010)
  • Zhao, B., and Brittain, W. J., Polymer brushes: surface-Immobilized macromolecules, Prog. Polym. Sci. 25(5):677-710 (2000)
  • Zhang, W., Yaan, Z., Canhui, L., and Yulin, D., Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water, J. Mater. Chem. 22(23):11642-11650 (2012)
  • Zaman, M., Xiao, H., Chibante, F., and Ni, Y., Synthesis and characterization of cationically modified nanocrystalline cellulose, Carbo. Polym. 89:163-170 (2012)
  • Yano, H., and Nakahara, S., Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network, J. Mater. Sci. 39(95):1635– 1638 (2004)
  • Yang, C. Q., Chen, D., Guan, J., and He, Q., Cross-linking cotton cellulose by the combination of maleic acid and sodium hypophosphite. 1. Fabric wrinkle resistance, Ind. Eng. Chem. Res. 49:8325-8332 (2010)
  • Xhanari, K., Syverud, K., Chinga-Carrasco, G., Paso, K., and Stenius, P., Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants, Cellulose 18(2):257-270 (2011)
  • Wang, Y., Cellulose fiber dissolution in sodium hydroxide solution at low temperature: dissolution kinetics and solubility improvement, Ph. D. thesis, Georgia Institute of Technology, (2008)
  • Wang, Y. Y., Tian, M., Xu, H. X., and Fan, P., Influence of moisture on mechanical properties of cellulose insulation paper, Int. J. Mod. Phys. B 28(7):1450051-1-1450051-12 (2014)
  • Wang, Q. Q., Zhu, J. Y., Reiner, R. S., Verrill, S. P, Baxa, U., and McNeil, S. E., Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC, Cellulose 19(6):2033-2047 (2012)
  • W gberg, L., Decher, G., Norgren, M., Lindstr m, T., Ankerfors, M., and Axn s, K., The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelerolytes, Langmuir 24(3):784-795 (2008)
  • Valo, H., Arola, S., Laaksonen, P., Torkkeli, M., Peltonen, L., and Linder, M. B., Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences. 50:69-77 (2013)
  • Uetani, K., and Yano, H., Nanofibrillation of wood pulp using a high-speed blender, Biomacromolecules 12(2):348-353 (2011)
  • Turbak, A. F., Synder, F. W., and Sandberg, K. R., Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential, J. Appl. Polym. Sci. Appl. Polym. Symp. 37:815-527 (1983)
  • Tingaut, P., Zimmermann, T., and Lopez-Suevos, F., Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose, Biomacromolecules 11(2):454- 464 (2010)
  • Tan, C., Fung, B. M., Newman, J. K., and Vu, C., Organic aerogels with very high impact strength, Adv. Mater. 13(9):644-646 (2001)
  • Taipale, T., sterberg, M., Nyk nen, A., Ruokolainen, J., and Lainen, J., Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose 17(5):1005-1020 (2010)
  • Taiguchi, T., and Okamura, K., New films produced from nicrofibrillated natural fibres, polym. int. 47(3):291-294 (1988)
  • Syverud, K., Xhanari, K., Chinga-Carrasco, G., Yu, Y., and Stenius, P., Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy, J. Nanopart. Res. 13(2):773-782 (2011)
  • Syverud, K. and Stenius, P., Strength and barrier properties of MFC films, Cellulose 16(1):75-85 (2009)
  • Svagan, A. J., Azizi Samir, M. A. S., and Berglund, L. A., Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils, Adv. Mater. 20(7):1263-1269 (2008)
  • Song, D., Kim, C., Jung, H., Lee, Y., Kim, J., Kim, G., and Park, C., Physical properties of shock-absoring materials made of pulp fibers for packaging, Journal of Korea TAPPI 37(3):41-49 (2005)
  • Siqueira, G., Tapin-Lingua, S., Bras, J., Da Silva Perez, d., and Dufresne, A., Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose 17(6):1147-1158 (2010a),
  • Siqueira, G., Tapin-Lingua, S., Bras, J., Da Silva Perez, d., and Dufresne, A., Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers, Cellulose 18(1):57-65 (2011b)
  • Siqueira, G., Bras, J., and Dufresne, A., Luffa cylindrical as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals, Bioresources 5(2):727-740 (2010)
  • Shin, H., The effect of cellulose crystallinity and oxidized starch as surface sizing on permanence of paper, Master of Science thesis, Seoul national university (2011)
  • Sehaqui, H., Zhou, Q., and Berglund, L. A., High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Composites Science and Technology 71(13):1593-1599 (2011)
  • Sehaqui, H., Salajkov , M., Zhou, Q., and Berglund, L. A., Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions, Soft Matter 6(8):1824-1832 (2010)
  • Salm n, Vasquez, V.R., Coronella, C.J., A simple model for vapor-moisture equilibrium in biomass substrates. AIChE Journal 55:1595–1603 (2009)
  • Sakurada, I., Nukushina, Y., and Ito, T., Experimental determination of the elastic modulus of crystalline regions in oriented polymers. Journal of Polymer Science, 57(165):651–660 (1962)
  • Saito, T., and Isogai, A., TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the waterinsoluble fraction, Biomacromolecules 5(5):1983-1989 (2004)
  • Saito, T., Nishiyama, Y., Putaux, J., Vignon, M., and Isogai, A., Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules 7(6):1687-1691 (2006)
  • Saito, T., Kimura, S., Nishiyama, Y., and Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8(8):2485-2491 (2007)
  • Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., and Heux, L., Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral condistion, Biomacromolecules 10(7):1992-1996 (2009)
  • Ryu, J., Youn, H. J., Sim, K., and Lee, H., Network strength and structure of nanofibrillated cellulose suspension with PEI adsorption, Proceeding of 2012 spring conference of the KTAPPI, Seoul, 79-86 (2012)
  • Russler, A., Wieland, M., Bacher, M., Henniges, U., Miethe, P., Liebner F., Potthast, A., and Rosenau, T., AKD-Modification of bacterial cellulose aerogels in supercritical CO2, Cellulose 19(4):1337-1349 (2012)
  • Rodionova, G, Lenes, M., Eriksen, ., Hoff, B. H., and Gregersen, ., Surface modification of microfibrillated cellulose films by gas-phase esterification: Improvement of barrier properties, Proceedings of 2010 TAPPI International conference on nanotechnology for the forest product industry, Finland, 27-29 (2010)
  • Qi, H., M der, E., and Liu, J., Electrically conductive aerogels composed of cellulose and carbon nanotubes, J. Mater. Chem. A 1(34):9714-9720 (2013)
  • Pekala, R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24(9):3221–3227 (1989)
  • P kk , M., Vapaavuori, J., Silvennoinen, R., Kosonen, H.,. Ankerfors, M., Lindstr m, T., Berglund, L. A., and Ikkala, O., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter 4(12):2492-2499 (2008)
  • P kk , M., Ankerfors, M., Kosonen, H., Nyk nen, A., Ahola, S., and sterberg, M., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules 8(6):1934-1941 (2007)
  • Olsson, R. T., Azizi Samir, M. A. S., Salazar-Alvarez, G., Belova, L., Str m, V., Berglund, L. A., Ikkala, O., Nogu s, J., and Gedde, U. W, Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates, Nature Nanotechnology, 5:584-588 (2010)
  • Nakagaito, A. N. and Yano, H., The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Appl. Phys. A 78(4):547-552 (2004)
  • Nachtergaele, W., The Benefits of Cationic Starches for the Paper Industry, Starch – St rke, 41(1):27-31 (1989)
  • Missoum, K., Belgacem, M. N., and Bras, J., Nanofibrillated cellulose surface modification: A review materials, 6(5):1745-1766 (2013)
  • Lu, X., Arduinischuster, M. C., Kuhn, J., Nilsson, O., Fricke, J., and Pekala, R. W., Thermal conductivity of monolithic organic aerogels, Science 255(5047):971-972 (1992)
  • Lu, J., Askeland, P., and Drzal, L.T., Surface modification of microfibrillated cellulose for epoxy composite applications, Polymer 49(5):1285-1296 (2008)
  • Liu, A., Walther, A., Ikkala, O., Belova, L., and Berglund, L. A. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions Biomacromolecules, 12(3):633–641 (2011)
  • Littunen, K., Hippi, U., Johansson, L. S., sterberg, M., Tammelin, T., Laine, J., and Sepp l , J., Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr. Polym. 84(3):1039–1047 (2011)
  • Liebner, F., Potthas, A., Rosenau, T., Haimer, E., and Wendland, M., Cellulose aerogels: Highly porous, ultra-lightweight materials, Holzforschung 62(2):129- 135 (2008)
  • Liebner, F., Haimer, E., Wendland, M., Neouze, M., Schulfter, K., Miethe, P., Henze, T., Potthast, A., and Rosenau, T., Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultralightweight cellulosic aerogels, Macromol. Biosci. 10(4):345-352 (2010)
  • Li, S., Xiao, M., Zheng, A., and Xiao, H., Cellulose microfibrils grafted with PBA via surface initiated atom transfer radical polymerization for biocomposite reinforcement, Biomacromolecules 12(9):3305-3312 (2011)
  • Lee, M., Jo, J., and Shin, J., Changes of the physical properties of corrugated fiberboard boxes for fruit and vegetable packaging by preservation temperature and relative humidity, Journal of Korea TAPPI 34(1):46-53 (2002)
  • L nnberg, H., Larsson, K., Lindstr m, T., Hult, A., and Malmstr m, E., Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites--influence of the graft length on the mechanical properties, ACS Appl. Mater. Interfaces 3(5):1426-1433 (2011)
  • Korhonen, J. T., Kettunen, M., Ras, R. H. A., and Ikkala, O., Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents, ACS Appl. Mater. Interfaces, 3(6):1813-1816 (2011)
  • Kolakovic, R., Peltonen, L., Laaksonen, T., Putkisto, K., Laukkanen, A., and Hirvonen, J., Spray-dried cellulose nanofi bers as novel tablet excipient. AAPS PharmSciTech 12(4):1366-1373 (2011).
  • Koga, H., Azetsu, A., Tokunaga, E., Saito, T., Isogai, A., and Kitaoka, T., Topological loading of Cu(I) catalysts onto crystalline cellulose nanofibrils for the Huisgen click reaction, J. Mater. Chem. 22(12):5538-5542 (2012)
  • Kistler, S., Coherent expanded aerogels and jellies, Nature 127:741-741 (1931) Kim, H., Choi, W., and Um, G., The effect of atmospheric conditions on the physical and mechanical properties of linerboard, Journal of Korea TAPPI, 38(5):60-65 (2006)
  • Khalil, M. L., Beliakova, M. K., and Aly, A. A., Preparation of some starch ethers using the semi-dry state process. Carbohydrate Polymers, 46(3):217–226 (2001)
  • Kettunen, M., Silvennoinen, R. J., Houbenov, N., Nyk nen, A., Ruokolainen, J., Sainio, J., Pore, V., Kemell, M., Ankerfors, M., Lindstr m, T., Ritala, M., Ras, R. H. A., and Ikkala, O., Photoswitchable superabsorbency based on nanocellulose aerogels, Adv, Funct. Mater. 21(3):510-517 (2011)
  • Karnitz Jr. O., L.V.A. Gurgel, J.C.P.Melo, V.R. Botaro, T.M.S. Melo, R.P.F. Gil, L.F. Gil, Adsorption of heavymetal ion fromaqueous singlemetal solution by chemically modified sugarcane bagasse, Bioresour. Technol. 98:1291–1297 (2007)
  • Kang, K., and Kim, H., Effects of temperature and relative humidity on the physical properties of electronic copying paper, Journal of Korea TAPPI, 44(3):70-78 (2012)
  • Jonoobi, M., Harun, J., Mathew, A., Hussein, M., and Oksman, K., Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307 (2010)
  • Johnson, R. K., Zink-Sharp, A., Renneckar, S. H., and Glasser, W. G., A new bio-based nanocomposite: Fibrillated TEMPO-oxidized cellulose in hydroxypropylcellulose matrix, Cellulose 16(2):227-238 (2008)
  • Johansson, L-S., Tammelin, T., Campbell, J M., Set l , H., and sterberg, M., Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose, Soft Matter, 7(22):10917-10924 (2011)
  • Jo, J., Shin, J., Kim, W., So, K., Im, H., Seo, Y., and Son, K., Standardization and computer programing of safety factors of corrugated fiberboard containers for agricultural products (I) – Physical properties of corrugated fiberboard and estimation of box compressive strength with changes of relative humidity -, Proceedings from Korea TAPPI spring conference (2005)
  • Jin, H., Kettunen, M., Laiho, A., Pynn nen, H., Paltakari, J., Marmur, A., Ik kala, O., and Ras, R. H. A., Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil, Langmuir 27(5):1930-1934 (2011b)
  • Iwamoto, S., Nakagaito, A. N., and Yano, H., Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Appl. phys. A 89(2):461-466 (2007)
  • Iwamoto, S., Nakagaito, A. N., Yano, H., and Nogi, M., Optically transparent composites reinforced with plant fiber-based nanofibers, Appl. Phys. A (2005)
  • Isogai, T., Saito, T., and Isogai, A., Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation, Cellulose 18(2):421-431 (2011a)
  • Isogai, A., and Atalla, R. H., Dissolution of cellulose in aqueous NaOH solution, Cellulose 5(4):309-319 (1998)
  • Husing, N., Schubert, U. Aerogels–airy materials: chemistry, structure, and properties. Angewandte Chemie International Edition 37:22–45 (1988)
  • Hult, E.-L., Iotti, M., and Lenes, M., Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose, 17(3), 575–586 (2010)
  • Ho, T. T. T., Zimmermann, T., Hauert, R., and Caseri, W., Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration process, Cellulose 18(6):1391-1406 (2011)
  • Hirota, M., Tamura, M., Saito, T., and Isogai, A., water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8, Cellulose 17(2):279-288 (2009)
  • Herrick, F. W., Casebier, R. L., Hamilton, J. K., and Sandberg, K. R., Microfibrillated cellulose: morphology and accessibility, (1983) J. Appl. Polym. Sci. Appl. Polym. Symp. 37:797-813 (1983)
  • Henriksson, M., Henriksson, G., Berglund, L. A., and Lindst m, T., An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, Eur. Polym. J. 43(8):3434-3441 (2007)
  • Heiskanen, I., Backfolk, K., Vehvil inen, M., Kamppuri, T., and Nousiainen, P., Process for producing mucrofibrillated cellulose, European patent 2011004301, 28 June 2012
  • Heath, L., and Thielemans, W., Cellulose nanowhisker aerogels, Green Chemistry 12(8):1448-1453 (2010)
  • Hasani, M., Cranston, E. D., Westman, G., and Gray, D. G., Cationic surface functionalization of cellulose nanocrystals, Soft Matter, 4:2238-2244 (2008)
  • Habibi, Y., Lucia, L. A., and Rojas, O. J., Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev. 110(6):3479-3500 (2010)
  • Gouss , C., Chanzy, H., Cerrada, M.L., and Fleury, E., Surface silylation of cellulose microfibrils: Preparation and rheological properties, Polymer 45(5):1569-1575 (2004)
  • Gavillon, R., and Budtova, T., Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions, Biomacromolecules 9(1):269-277 (2008)
  • Eriksen, ., Syverud, K., and Gregersen, ., The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nord. Pulp Pap. Res. J. 23(3):299-304 (2008)
  • Dufresne, A., Cavaill , J. Y., and Helbert, W., Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling, Polym. Composites 18(2):198–210 (1997)
  • Duchemin, B. J. C., Staiger, M. P., Tucker, N., and Newman, R. H., Aerocellulose based on all-cellulose composites, J. Appl. Polym. Sci. 115(1):216-221 (2010)
  • Dong H, Snyder JF, Tran DT, Leadore JL. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydrate Polymers 95:760-767 (2013)
  • Ciolacu, D., Ciolacu, F., and Popa, V. I., Amorphous cellulose – structure and characterization, Cellulose Chem. Technol. 45(1-2):13-21 (2011).
  • Cho, S. H., Kim, R., Park, J. J., and Lee, M. C., Durable press finishing of silk/cotton fabrics with BTCA (3) – the stydy of ester crosslinkages of silk/cotton fabrics treated with BTCA by FT-IR spectroscopy, Journal of Korean Society of Dyers and Finishers, 15(4):17-23 (2003)
  • Chen, W., Lickfield, G. C., and Yang, C. Q., Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study, Polymer 45(3):1063-1071 (2004)
  • Chen, W., Haipeng, Y., Qing, L., Yixing, L., and Jian L., Ultralight and highly flexible aerogels with long cellulose I nanofibers, Soft Matter 7(21)10360- 10368 (2011)
  • Chakraborty, A., Sain, M., and Kortschot, M., Cellulose microfibres: A novel method of preparation using high shear refining and cryocrushing, Holzforschung 60(1):53-58 (2005)
  • Cervin, N. T., Aulin, C., Lasson, P. T., and W gberg, L., Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids, Cellulose 9(2):401-410 (2012)
  • Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., and Zhang, L., Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel, Angewandte Chemie 51(9):2076-2079 (2012)
  • Brodin, F. W., Lund, K., Brelid, H., and Theliander, H., Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres, Cellulose 19(4):1413-1423 (2012)
  • Bendoraitiene, J., Kavaliauskaite, R., Klimaviciute, R., and Zemaitaitis, A., Peculiarities of starch cationization with glycidyltrimethylammonium chloride. Starch 58(12): 623–631 (2006)
  • Aulin, M., Johansson, L. S., Tanem, B. S., and Stenius, P., Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose 13(6):665-677 (2009)
  • Aulin, C., Netrval, J, W gberg, L., and Lindstr m, T., Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter 6(14):3298- 3305 (2010)
  • Andresen, M., Johansson, L., Tanem, B., and Stenius, P., Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose 13(6):665-677 (2007)
  • Alemdar, A., and Sain, M., Isolation and characterization of nanofibers from agricultural residues-wheat sraw and soy hulls. Bioresour. Technol. 99(6):1664- 1671 (2008)
  • Abo-Farha, S. A., Abdel-Aal, A. Y., Ashour, I. A., and Garamon, S. E., Removal of some heavy metal cations by synthetic resin purolite C100, Journal of Hazardous Materials 169:190-194 (2009)
  • Abbott, A. P., Bell, T. J., Handa, S., and Stoddart, B., Cationic functionalization of cellulose using a choline based ionic liquid analoge, Green Chem. 8:784-786 (2006)