박사

Instability of Cryogenic Swirl Flows under Subcritical to Supercritical Conditions : 아임계 및 초임계 조건에서 극저온 스월 유동의 불안정성

조성호 2015년
논문상세정보
' Instability of Cryogenic Swirl Flows under Subcritical to Supercritical Conditions : 아임계 및 초임계 조건에서 극저온 스월 유동의 불안정성' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • cryogenic flow
  • flow instability
  • liquid propellant rocket engine
  • proper orthogonal decomposition
  • simplex swirl injector
  • supercritical condition
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
21 0

0.0%

' Instability of Cryogenic Swirl Flows under Subcritical to Supercritical Conditions : 아임계 및 초임계 조건에서 극저온 스월 유동의 불안정성' 의 참고문헌

  • Zong N, Meng H, Hsieh S-Y, Yang V (2004) A numerical study of cryogenic fluidinjection and mixing under supercritical conditions. Phys Fluids 16:4248-4261.
  • Yang V (2000) Modeling of supercritical vaporization, mixing, and combustion processesin liquid-fueled propulsion systems. P Combust Inst 28:925-942.
  • Wegener JL, Forliti DJ, Leyva IA, Talley DG (2014) Receptivity of a cryogenic coaxialgas-liquid jet to acoustic disturbances. In: The 50th AIAA/ASME/SAE/ASEE JointPropulsion Conference, Cleveland, USA.
  • Wang S, Hsieh S-Y, Yang V (2005) Unsteady flow evolution in swirl injector with radialentry. I. Stationary conditions. Phys Fluids 17:045106.
  • Teshome S, Leyva I, Talley D, Karagozian A (2012) Cryogenic high-pressure shear86coaxial jets exposed to transverse acoustic forcing. In: The 50th AIAA AerospaceSciences Meeting including the New Horizons Forum and Aerospace Exposition,Sashville, USA. Jan.
  • Talley DG (2002) Recent developments in liquid rocket injectors. In: Liquid PropulsionSystems?Evolution and Advancements, Indianapolis, IN, USA. 11-12 July 2002
  • Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortexcore (PVC) in swirl combustion systems. Prog Energ Combust 32:93-161.
  • Strakey P, Talley D, Hutt J (2001) Mixing characteristics of coaxial injectors at highgas/liquid momentum ratios. J Propul Power 17:402-410.
  • Sterling AM, Sleicher CA (1975) The instability of capillary jets. J Fluid Mech 68:477-495.
  • Senecal PK, Schmidt DP, Nouar I, Rutland CJ, Reitz RD, Corradini ML (1999) Modelinghigh-speed viscous liquid sheet atomization. Int J Multiphas Flow 25:1073-1097.
  • Semeraro O, Bellani G, Lundell F (2012) Analysis of time-resolved PIV measurements ofa confined turbulent jet using POD and Koopman modes. Exp Fluids 53:1203-1220.
  • Schmitt T, Rodriguez J, Leyva IA, Candel S (2012) Experiments and numericalsimulation of mixing under supercritical conditions. Phys Fluids 24:055104.
  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. JFluid Mech 656:5-28.
  • Rubinsky VR (1995) Combustion instability in the RD-0110 engine. In: Yang V,Anderson WE (eds) Liquid rocket engine combustion instability, Progress inAstronautics and Aeronautics, vol 169. AIAA, Washington, DC, pp 89-112.
  • Park H, Heister SD (2006) Nonlinear simulation of free surfaces and atomization inpressure swirl atomizers. Phys Fluids 18:052103-052111.
  • Oschwald M, Smith J, Branam R, Hussong J, Schik A, Chehroudi B, Talley D (2006)Injection of fluids into supercritical environments. Combustion Science andTechnology 178:49-100.
  • Oschwald M, Schik A (1999) Supercritical nitrogen free jet investigated by spontaneousraman scattering. Exp Fluids 27:497-506.
  • Oefelein JC, Yang V (1998) Modeling high-pressure mixing and combustion processes inliquid rocket engines. J Propul Power 14:843-857.
  • Oefelein JC, Yang V (1993) Comprehensive review of liquid-propellant combustioninstabilities in F-1 engines. J Propul Power 9:657-677.
  • Newman JA, Brzustowski T (1971) Behavior of a liquid jet near the thermodynamiccritical region. AIAA journal 9:1595-1602.
  • Musemic E, Rojek A, Gaspar M, Weichert F, Muller H, Walzel P (2009) Experimentalanalysis and 3D-visualization of oscillating hollow-conical liquid sheets in quiescentair. In: The 11th International Conference on Liquid Atomization and Spray Systems,Vail, USA.
  • Miller RS, Harstad KG, Bellan J (2001) Direct numerical simulations of supercriticalfluid mixing layers applied to heptane?nitrogen. J Fluid Mech 436:1-39.
  • Meyer KE, Pedersen JM, O zcan O (2007) A turbulent jet in crossflow analysed withproper orthogonal decomposition. J Fluid Mech 583:199-227.
  • Mayer WOH, Schik AH, Vielle B, Chauveau C, Gokalp I, Talley DG, Woodward RD(1998) Atomization and breakup of cryogenic propellants under high-pressuresubcritical and supercritical conditions. J Propul Power 14:835-842.
  • Mayer WOH, Ivancic B, Schik A, Hornung U (2001) Propellant atomization and ignitionphenomena in liquid oxygen/gaseous hydrogen rocket combustors. J Propul Power17:794-799.
  • Mayer W, Telaar J, Branam R, Schneider G, Hussong J (2003) Raman measurements ofcryogenic injection at supercritical pressure. Heat and Mass Transfer 39:709-719.
  • Mayer W, Tamura H (1996) Propellant injection in a liquid oxygen/gaseous hydrogenrocket engine. J Propul Power 12:1137-1147.
  • Markovich DM, Abdurakipov SS, Chikishev LM, Dulin VM, Hanjali? K (2014)Comparative analysis of low- and high-swirl confined flames and jets by properorthogonal and dynamic mode decompositions. Phys Fluids 26:065109.
  • Marchione T, Allouis C, Amoresano A, Beretta F (2007) Experimental investigation of apressure swirl atomizer spray. J Propul Power 23:1096-1101.
  • Linstrom PJ, Mallard WG NIST Chemistry WebBook, NIST Standard Reference84Database Number 69. National Institute of Standards and Technology, GaithersburgMD, 20899, http://webbook.nist.gov, (retrieved February 6, 2013).
  • Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J FluidMech 525:115-159.
  • Lefebvre AH (1989) Atomization and Sprays. Hemisphere, New York.
  • Landwehr F, Feggeler D, Walzel P, Weichert F, Schroter N, Muller H (2006) A fibresensor based frequency analysis of surface waves at hollow cone nozzles. Exp Fluids40:523-532.
  • Kim S, Khil T, Kim D, Yoon Y (2009) Effect of geometric parameters on the liquid filmthickness and air core formation in a swirl injector. Meas Sci Technol 20:015403.
  • Kim JG (2013) Spray structures in high pressure environment of gas-centered swirlcoaxial injector for staged combustion cycle engines. Ph.D. Thesis, Seoul NationalUniversity
  • Kim D, Im J-H, Koh H, Yoon Y (2007) Effect of ambient gas density on spraycharacteristics of swirling liquid sheets. J Propul Power 23:603-611.
  • Khavkin Y (2004) The Theory and Practice of Swirl Atomizers. Taylor & Francis, NewYork.
  • Kenny RJ, Hulka JR, Moser MD, Rhys NO (2009) Effect of chamber backpressure onswirl injector fluid mechanics. J Propul Power 25:902-913.
  • Im J-H, Kim D, Han P, Yoon Y, Bazarov V (2009) Self-pulastion characteristics of a gasliquidswirl coaxial injector. Atomization Spray 19:57-74.
  • Hutt JJ, Cramer JM (1996) Advanced rocket injector development at the Marshall SpaceFlight Center. In: AIAA, Space Programs and Technologies Conference, Huntsville,AL. Sep.
  • Huo H, Wang X, Yang V (2014) Flow dynamics of a simplex swirl injector atsupercritical conditions. In: The 52nd Aerospace Sciences Meeting, National Harbor,USA.
  • Heo J-Y, Kim K, Sung H-G, Choi H-S, Yang V (2012) Numerical study for kerosene/LOxsupercritical mixing characteristics of a swirl injector. In: 50th AIAA AerospaceSciences Meeting including the New Horizons Forum and Aerospace Exposition.
  • Han ZY, Parrish S, Farrell PV, Reitz RD (1997) Modeling atomization processes ofpressure-swirl hollow-cone fuel sprays. Atomization Spray 7:663-684.
  • Gallaire F, Rott S, Chomaz J-M (2004) Experimental study of a free and forced swirlingjet. Phys Fluids 16:2907-2917.
  • Fu Q-F, Yang L-J, Zhang W, Cui K-D (2012) Spray characteristics of an open-end swirlinjector. Atomization Spray 22:431-445.
  • Eberhart CJ, Lineberry DM, Frederick Jr. RA (2012) Propellant throttling effects on selfpulsationof liquid rocket swirl-coaxial injection. In: 48th AIAA/ASME/SAE/ASEEJoint Propulsion Conference & Exhibit, Atlanta, USA.
  • Donjat D, Estivalezes J-L, Michau M, Lavergne G (2003) Phenomenological study of thepressure swirl atomizer internal flow. In: The 9th International Conference on LiquidAtomization and Spray Systems, Sorrento, Italy.
  • Dombrowski N, Johns WR (1963) The Aerodynamic instability and disintegration ofviscous liquid sheets. Chem Eng Sci 18:203-214.
  • Dityakin YF, Klyachko LA, Novikov BV, Yagodkin VI (1977) Atomization of Liquids.Mashinostroenie, Moscow.
  • Decker M, Schik A, Meier UE, Stricker W (1998) Quantitative Raman imaginginvestigations of mixing phenomena in high-pressure cryogenic jets. Appl Opt37:5620-5627.
  • Davis DW, Chehroudi B (2007) Measurements in an acoustically driven coaxial jet undersub-, near-, and supercritical conditions. J Propul Power 23:364-374.
  • Culick FEC, Yang V (1995) Overview of combustion instabilities in liquid-propellantrocket engines. In: Yang V, Anderson WE (eds) Liquid rocket engine combustioninstability, Progress in Astronautics and Aeronautics, vol 169. AIAA, Washington,DC, pp 3-37.
  • Cooper D, Yule A (2001) Waves on the air core/liquid interface of a pressure swirlatomizer. In: The 17th Annual Conference on Liquid Atomization and SpraySystems, Zurich, Switzeland. 2001
  • Clark CJ, Dombrowski N (1972) Aerodynamic instability and disintegration of inviscidliquid sheets. Proceedings of the Royal Society of London A Mathematical and82Physical Sciences 329:467-478.
  • Cho S, Park G, Chung Y, Yoon Y, Bazarov VG (2014) Surface instability on cryogenicswirl flow at sub- to supercritical conditions. J Propul Power 30:1038-1046.
  • Chehroudi B, Talley D, Mayer W, Branam R, Smith JJ (2003) Understanding injectioninto high pressure supercritical environments. In: 5th International Symposium onLiquid Space Propulsion, Chatanooga , TN.
  • Chehroudi B, Talley D, Coy E (2002b) Visual characteristics and initial growth rates ofround cryogenic jets at subcritical and supercritical pressures. Phys Fluids 14:850-861.
  • Chehroudi B, Cohn R, Talley D (2002a) Cryogenic shear layers: experiments andphenomenological modeling of the initial growth rate under subcritical andsupercritical conditions. International journal of heat and fluid flow 23:554-563.
  • Chehroudi B (2010) Physical hypothesis for the combustion instability in cryogenicliquid rocket engines. J Propul Power 26:1153-1160.
  • Borodin VA, Dityakin YF, Klyachko LA, Yagodkin VI (1968) Atomization of Liquids. AirForce Foreign Technology Division Report, FTD-MT-24-97-68 (AD685151).
  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in theanalysis of turbulent flows. Annu Rev Fluid Mech 25:539-575.
  • Bazarov VG, Yang V (1998) Liquid-propellant rocket engine injector dynamics. J PropulPower 14:797-806.
  • Bayvel L (1993) Liquid Atomization vol 1040. vol 2756. Taylor & Francis, Washington.
  • Banuti DT, Hannemann K (2014) Supercritical pseudo-boiling and its relevance fortranscritical injection. In: The 50th AIAA/ASME/SAE/ASEE Joint PropulsionConference, Cleveland, USA.
  • Arienti M, Soteriou MC (2009) Time-resolved proper orthogonal decomposition of liquidjet dynamics. Phys Fluids 21:112104.